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Welcome to part two of the lecture on instruction scheduling and software pipelining. 

(Refer Slide Time: 00:25) 

 

So, we discussed you know one part of simple basic block scheduling last time, we will 

continue with the today and then go on to trace, superblock and hyper blocks scheduling. 



(Refer Slide Time: 00:41) 

 

To do a bit of recap basic block scheduling consist of a you know, a basic block consists 

of micro operation sequences. These are the instructions of the machine and this micro 

operation sequences of are indivisible. That means, the micro operations which constitute 

the MOS cannot be scheduled separately. Each MOS of course, has a several stapes and 

each of these steps requires one cycle for execution. 

So, it is possible that different instructions have a different number of micro operations 

within their MOS. And therefore, they may require different number of cycles and also 

different number of resources. So, we have two constraints for basic block scheduling; 

one is the precedence constraint, and other is the resource constraints. The precedence 

constraint relates to data dependences and execution delays whereas the resource 

constraint relates to the availability of shared resources. 



(Refer Slide Time: 01:51) 

 

So, here is the formal description of the basic block scheduling problem, it is actually 

basic block is model as a directed cyclic graph. And here the nodes or the MOS are the 

instructions, edges are the precedence constrains. And the label on each node tells us 

about the resource usage of that particular node or the MOS. And it does so for every 

micro operation of the MOS. And of course we have also length of the node which is 

nothing but the length of the resources vector. The problem is to find the shortest 

schedule sigma, which is a mapping from the nodes to the natural numbers this n nothing 

but the timeline. Such that, the precedence constrains are met and also the and also the 

resource constraints are met. 



(Refer Slide Time: 02:59) 

 

The precedence constraint simply you know can be shown diagrammatically as follows. 

So, this is the node which has been scheduled already and this is the node which is to be 

scheduled and the delay on the edge u v is d. So, this constraint simply says that sigma v 

cannot be scheduled, d plus sigma u steps you know before d plus sigma u steps are 

completed. So, this is quite clear because this instruction takes d cycles to complete. 

Similarly, for the resource scheduling this is the timeline in which the nodes are schedule 

on which this nodes are schedule, so v 1 is schedule at 0, v 2 at 1, v 3 at 2, v 4 at 3 

etcetera. This is the step MOS sub step again in times of time because each MOS sub 

step requires only one cycle. So, if the resource constraint simply says add up the 

resources along the diagonal and that should be less than or equal to the number of 

resources available. 

So, here we have shown only one resource and the number of resources is available is 5. 

And there is a clear violation here 3 plus 3 plus 2 being 8, that is because v 1 is still 

active in this sub step 2, v 1 v 2 is active and it is in sub step 1 v 3 is active and it is in 

sub step 0. So, the resource requirements of the sub step are 3 3 and 2 respectively so 

that adds up to 8. So, this schedule is not a feasible schedule and for this step you know 2 

2 plus 2 plus 1 is fine so the resource constraints are satisfied, but since there is no 

satisfaction of constraints here, this schedule cannot be used. 



(Refer Slide Time: 04:59) 

 

The algorithm for list scheduling is quit straight forward it is a topological sort based 

algorithm, what we do is a we pick up the root nodes of the directed acyclic graph as the 

starting point. There are put it to queue called ready queue and we keep doing it until the 

ready queue is not empty. So, we pick the highest priority node in the queue and then we 

find the we find the lowest times slot in which the precedence constraints are satisfied.  

And then from that l b onwards, we find the slot in which the resource constraints are 

satisfied, as i explain before. So, that would be the schedule for the node v now, v goes 

in to the set of schedule nodes and the ready list is updated, by removing v and adding 

those successors of the schedule nodes. For example, u not of u in schedule, so that 

means you should have already you know u is not a schedule node already. And then we 

also pick up the successors of the schedule node w is scheduled, so this are all ready to 

be placed into the ready queue. 



(Refer Slide Time: 06:17) 

 

So, the ready queue updated is very simple you know as follows, so if this are the 

schedule nodes and we already know that you know v has been schedule. So, u 1 u 2 u 3 

are ready to be put it into the ready queue, that is because the predecessor of u 1 u 2 u 3 

have already been schedule, whereas the predecessor of x 2 is not yet schedule. 

(Refer Slide Time: 06:44) 

. 

So, this is these are the two functions which I explained you know corresponding to the 

satisfaction of constraints, precedence and resource. 



(Refer Slide Time: 06: 56) 

 

So, precedence constraints satisfaction simply says, we find a slot for v which is 

maximum of a sigma u and plus 2 sigma u 2 plus 4 or sigma u 3 plus 3. In this case, it 

happens be 29. So, this is the earliest time at which v can be schedule and that is Lb as 

returned by the function satisfy precedence constraints. 

(Refer Slide Time: 07:21) 

 

As far as the resource constrain satisfaction is concerned, we check at every times slot. 

Whether the requirements of resources of various kinds and for the various sub steps is 

indeed under control. So for example, if we schedule this node here, as we have already 



seen we exceed the number of resources available. So, this slot is left free the same is 

true for this slot as well so for example if we place this here we get 3 then 1 and 2 so that 

is 6 which exceeds 5. So, 3 is also kept vacant and then we can schedule 4 and 5 here, so 

these are the no up slots. 

(Refer Slide Time: 08:06) 

 

Now, the last issue that we need to look at before we look at examples, is how do we 

order the ready queue by priority, what is our priority ordering function. So, one possible 

priority ordering function is the height of the node in the directed acyclic graph. That is, 

the longest path from the node to a terminal node, I will give you an example of this to 

explain it. 



(Refer Slide Time: 08:41) 

 

So, suppose we consider this graph right, so this is a directed acyclic graph. So, the 

legend says the left side the blue is the path length that we need to compute. Whatever, is 

inside the circle is the node number and then what is return to the right of the circle in 

red, is the execution time, and the label on the edge latency of the instruction. So, this a 

very generalized you know model, it allows execution time to be attach to the node and 

latency to be attach to the edge. 

The reason why this may become important you is one example of that is the load 

instruction. So for example, immediate if there are many load units available, then you 

know after one of the loads is started and which requires one cycle of execution time. We 

can actually load you know schedule other loads on a other load units, but for this 

particular load which was started it may require several units of time to make the result 

available. 

So, the load execution time is 1, whereas the load latency is 2 that could be an example a 

instruction, which has an execution time and a latency as well. The path length is 

commuted as the execution time if n is a leaf. So, in this case these two are the leaves, so 

we have the execution time as 2 and 1, so the path length is initialized to 2 and 1 

respectively here. Otherwise we take the maximum of the latency of the edge and added 

to it the path length of the target node. 



So for example, if we take we have computed the path length for these two as 1 and 2. 

Now, we consider the node and these are the two successors which have already been 

scheduled. So, we take the execution time and of this node alright, so this is the node for 

which we want to compute the path length. So, what we do is we take the latency of this 

instruction, with this instruction which is given as a 2 and we consider the path length of 

this particular node. 

So, that is 1 so 2 plus 1 is the path length as computed along this path. Along this path 

we have a latency of 0 and a path length of 2, so this is 2 plus 0 equal to 2. So, the 

maximum of these two is 3, so that is the path length of 4. So, you can see that quite 

easily so we have to use 2 plus 1 here. 

And then we move on to this node and for that node the execution time you know the 

delay or the latency is 0 and the path length here is 3, so 3 plus 0 is 3. So, that is denoted 

as the path length here, for this node latency is 2 and the path length is 3. So, we note 5 

as the path length here, and for this node this is 3 plus 1 that is 4. So, this is how we 

compute the path lengths we will see another example little later. 

(Refer Slide Time: 12:31) 

 

The second possibility is to use early start and late start, latest start times as the priority 

ordering values. So, E start is the earliest time at which a node can be scheduled and L 

start is the latest time, at which the load can be scheduled. So, violating E start and L 

start may result in pipeline stalls, so we may have to introduce no ops in that case. So, 



every node can be scheduled between E start and L start, so that is the idea. So, how do 

we compute E start, E start of a node is the maximum of E start u i plus d of u i comma 

v. So, this is the delay and this is the E start of the node, so where u 1 to u k are the 

predecessors of v. So, let me and E start of the source node is 0, so let me show you an 

example of this. 

(Refer Slide Time: 13:43) 

 

We want to compute the E start of v that is, the earliest time at which this can be started. 

So, to do that we know the E start of the predecessors, so we add delay to it and find out 

the maximum, so 25 plus 4, 45 plus 7 and 16 plus 2, so the maximum comes to 52. 



(Refer Slide Time: 14:07) 

 

So, in a similar way the latest start time can be computed as the minimum of L start v i 

minus of d u i. Where v 1 to v k are the successors, so the L start of the sink node is set 

as the E start of the node itself. 

(Refer Slide Time: 14:27) 

 

So, again taking this example, we want to compute the L start of v for that we know the 

L start values of the successors, so w 1 w 2 and w 3. So, we compute 12 minus 2, 36 

minus 1 and 21 minus 3, so that comes to 10 as it is returned here. So, basically we are 



working backwards to compute the L start starting from the sink whereas, for the E start 

we start from the top and go towards the sink. 

(Refer Slide Time: 15:04). 

 

So, E start and L start values can be comfortably computed using a top down pass and a 

bottom up pass. So, basically we start the E start computation from that top go to the sink 

node and then initialize the L start value of the sink node, to its E start value and work 

backwards to compute the L start value. So of course, this is during the this can be done 

either during the you know before the scheduling begins or it is possible to do it 

dynamically during the scheduling itself. 

So, the different between these two is you know quite important if we do it before the 

scheduling begins, then we cannot alter the priority of the node during the scheduling 

process. Whereas, if we do it during the scheduling process itself, then the priority of the 

node can possibly be altered. 
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So, it is also possible to use a slack value as another priority item, so before we look at 

this slack we could also use you know E start or L start value has the priority item. So, if 

the lower the E start value, the higher the priority and the lower the L start value again it 

has a higher priority. In the case, of slack which is nothing but L start minus E start, the 

nodes with lower slack are given the higher priority. And instructions on the critical path 

may have a slack value of 0, and therefore automatically they will get the priority. 

(Refer Slide Time: 16:49) 

 



So, let us look at an example, of scheduling with the path length first and then using 

slack as second example. So, we already computed the path length for this example a few 

minutes ago now, let us try to schedule using the path length. So, to begin with the node 

number you know 1 and 3, these are the roots of the dag, so they will be put it in to the 

ready queue. 

Let us assume, that the resource constraints are always satisfied in other words there are 

enough numbers of resources in the system. So, we do not even have to check the 

resource schedule, resource constraint at this point we will see that in the next example 

in this case, there are no resource constraints. So, between 1 and 3 we need to pick one of 

the nodes to be schedule in the first time slot. 

So, to do that again we look at the path length this has 4 and this has 5 so the higher path 

length instruction is picked up first so that gets scheduled at 3. So, the sorry in the first 

time slot so number 3 gets scheduled in the first time slot. Therefore, the now ready 

queue has this 1 right, ready queue cannot contain 4 at this time even though it is the 

successor of 3 because 4 has a predecessor 2 which is not yet scheduled. 

So, we can only put those nodes whose predecessors are already scheduled into the ready 

list. So, after we schedule 3 we are force to schedule 1, there is no other option and after 

we schedule 1 we can schedule 2. The reason is so 1 we start this node 3, 1 is 

independent of it, so it can be schedule in the second time slot and node number 1 

executes with a just one delay. So, in the next third time slot we can schedule node 

number 2. 

So, once we do that of course, this seems to require 0 number of slots, and node number 

3 requires 2 slots to complete. So, since this was scheduled in slot number 1 you know in 

this is number 2, this is number 3 slot number 4 is available for instruction number 4, 

both 3 and 2 would have completed by that time. So, we can schedule you know 4 in slot 

number 4 as we have done here. 

Now, there are two possibility after slot number 4 for the slot number 5 we can schedule 

either 5 or 6, but it so happens that 5 you know requires a 2 cycles. And it has a path 

length of 1 this requires a 0 cycles and it has a path length of 2. So, since that path length 

indicates that this can should be scheduled first, we can put that into the slot number 5 



and by the in the slot number 6 you know 4 would have completed and 5 can be 

schedule. 

So, the difference between 4 and 5 is actually 2 time slots so that is sufficient for this 

instruction to complete. So, we could not have placed 5 into slot number 5 because the 

delay involved in completing 4 is 2 cycles. So, if we had try to place 5 we would have 

placed a no op in cycle number 5 and then we would have placed 5. That would have 

been inefficient schedule, but our heuristic of using the path length takes care of it and 

says we can schedule node number 6 in slot number 5. 

So, this is a path does schedule no ops in between so that is assuming there are no 

resource constraints. So, this is how we produce the schedule you know and this is how 

we use the path length in order to brake any conflicts. So, there was a conflict here and 

there was a conflict here as well. 

(Refer Slide Time: 21:14) 

 

Now, we go on to the second example this is the example, we had studied before. Here, 

the latencies of the add sub and store instructions are 1 cycle each, the load instruction 

has 2 cycles of latencies and the multiply instruction has 3 cycles of latencies. So, we 

actually this is the dag with all this extra you know anti and output dependences already 

marked. 



So, if you look at the instruction sequence i 1 to i 9, we are not sure whether we can 

actually schedule everything without any no op, so this dag does not tell you anything. 

Now, the early start E start and L start values can be computed in a top down pass and in 

a bottom up pass quite easily. So, we start with the E start value of this as 0, then you 

know using that simple computation we assign E start values to these two. And then this 

cannot be assigned E start value this 2 cannot assign E start value immediately. 

So, we will have to assign E start of 0 to this and then once that is assign we can assign 

the E start value for this as well. So, the E start value is indicated as the first component 

of this parenthesis and once we complete the computation of the E start values up to this 

point and then this point. We assign the L start value of this node as the E start value and 

then we backwards in order to produce the E start values. So, this is a fairly straight 

forward pass so I will not spend too much time in explaining how it is computed. 

Then the number to the left of the parenthesis is the path length. So, you know that is 

easy to compute again you know we start with a path length here as 0 and work 

backwards. The number to the back words the number to the right of the parenthesis is 

the slack which is nothing but the L start minus E start value. So, to schedule this so let 

me show you how this scheduling can happen. 

(Refer Slide Time: 24:00) 

 

So, let us assume that we have two integer units and one multiplication unit and all this 3 

units are capable of handling the load instruction and store instruction. The heuristic used 



you know whether we use the height of the node or the slack value the schedule comes 

out to be the same. 

So, let us begin to begin with a in this diagram we have both this you know i 1 here and i 

2 here both this are eligible to be scheduled. So, among these one of them can be 

scheduled on integer unit 1 and other can be scheduled on integer unit 2, there is no need 

to wait. So, both this loads are scheduled in the same cycle number 0 and in cycle 

number 1, we cannot scheduled anything. The reason is t 1 is needed in i 4 and you know 

it is also needed in i 3. 

(Refer Slide Time: 25:19) 

 

So, both this instruction require this value of t 1, so t 1 plus 4 and t 1 minus 2. So, the 

next cycle after this has to be left vacant, we have to introduce a no op here there is no 

other option. And by the time we arrive at cycle number 2 the loads have completed. So, 

we have you know this load and this load has been completed so we have this, this and 

this all the 3 as possibilities for scheduling they get it into the ready queue. 



(Refer Slide Time: 25:55) 

 

Now, we choose to schedule i 3 and i 4 because they have higher priority so that would 

be they would be scheduled again on integer units int 1 and int 2, we are still not use 

multiply. So, these are the two instructions so they have been scheduled in cycle number 

2 and there is no need to make them sequential here. So, cycle number 3 now, we have a 

you know i 5 and i 6 available to us right, i 5 was available in cycle number 2 also, but 

you know there was no availability of resources here. 

So, the 2 integer units are already taken and we required another integer unit to perform 

this t 5 equal to t 2 plus 3 this had to be perform. So, we did not have another integer unit 

here therefore, we priority choose i 3 and i 4 the whether the priority it is a same here the 

choice does not change really. So, once we have chosen this i 5 can be scheduled in the 

next slot, i 6 also available you know was ready to be scheduled in this slot so we can see 

that here. 



(Refer Slide Time: 27:25) 

 

So, this i 1 i t2 i 3 i 4 i 5 so this is this multiply can be schedule now, so that is what we 

do so this not yet ready because it dependence on this. 

(Refer Slide Time: 27:39) 

 

So, we schedule i 5 and i 6 so 1 is on integer unit that is i 5 i 6 is multiplies so that goes 

on the multiply unit. Then until the multiplication is complete we really cannot do 

anything, so we have to wait. So, there is no other instruction that we can schedule. So, 

we just wait multiply takes 3 cycles we just have to wait for 2 more cycles. Then in slot 



number 6 the cycle number 6 we are ready to schedule i 7, there is no conflict here so we 

just schedule i 7. 

Then the in the next cycle we i 8 is ready, so we schedule i 8 there is no conflict again 

and in i 9 we schedule in cycle number 8 and that is again schedule on one of the integer 

units. So, this is the way in which we work out the schedules starting from cycle number 

0 we walk on a cycle by cycle basis, look at the instruction which are in the ready queue 

pick up those which are higher priority and schedule them. 

So, what you must observe here is because the number of you know function unit this is 

more than one, we have scheduled more than one instruction. So, what we do is we just 

pick up one at a time based on priority and schedule them the available function unit, but 

we do not have to increment the cycle number because the resource is not a constrained 

at this point. 
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Now, how do we provide an input to the scheduling algorithm in terms you know there 

resource rather, how do we provide the reservation the instruction resource requirements 

to the scheduling algorithm. So, this is provided in the form of instruction reservation 

table, this is a very simple table for each instruction we have a table of this kind. Let us, 

assume that the number of resources are in the machine is really 5 not 4 so r 0 r 1 r 2 r 3 r 

4 so 0 to 4. 



So, and then the instructions require maximum of 4 cycles right and in each one of this 

slots, we mention the number of resources that is required for that particular time slots. 

So, this instruction requires 4 time slots to complete and in the first time slots it requires 

r 0 r 2 and r 3, it requires 1 of r 0 1 of r 2 and 1 of r 3. 

So, similarly, in the next cycle it requires r 0 r 1 and r 4, in t 2 it requires only r 3 and r 4 

and in t 3 it requires r 1 and r 4. So, these are the resource requirement of this particular 

instruction and this table which is called as instruction reservation table, tells us the 

resource requirements of the instruction. So, there is going to be one table for each 

instruction in the machine. 

(Refer Slide Time: 31:05) 

 

Now, how do we keep track of the usage of the resources during the scheduling because 

if the number, if there are many resources we need to you know keep some kind of a 

table, which shows the usage of this resources. So, this indeed happens this called as a 

global reservation table, so it has as many column as the number of resources in the 

machine. 

And the number of rows is equal to the length of the schedule. So, to begin with we do 

not know the number of rows, but once the schedule is complete this table will be t rows 

in length, in size. So, basically we start with the you know the slot t 0, then depending on 

the instructions which are ready to be scheduled that is there available in the ready queue 

and we the one with highest priority picked. 
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So, and that instruction reservation table will look something like this. 

(Refer Slide Time: 32:21) 

 

So, we super impose the instruction reservation table on this global resource reservation 

table and check whether the resource requirements of the instruction are met, how do we 

do that. 
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So, for that this is just a description to the GRT, it is constructed as the schedule is built 

cycle by cycle and all entries of the GRT are initialize to 0. So, the GRT maintain the 

state of all the resources in the machine and it can answer questions of the type, can an 

instruction of some class be scheduled in the current cycle say t k. How do we obtain this 

answer, this is obtained by ending the reservation table of the instruction with the GRT 

starting from that particular row. If the resulting table contains only 0’s then yes 

otherwise, it is a no. 

(Refer Slide Time: 33:21) 

 



So, that is what I meant here, so u and v we keep the reservation table here and then and 

the appropriate entries. So, if the so that means, a you know if the reservation table of the 

instruction requires a particular resource say r 0 and the GRT already has a 1 here, 

anding of these two will produce a 1 that means, the resource is busy. So, what we 

require is a 0 here, if this were to be a 0 whereas, instruction reservation table had a 1 

here, the anding operation would have produced 0 indicating that the resource is not 

busy. 
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So, that is precisely what he said here, if the resulting table contains only 0’s for the all 

rows and columns of the reservation table of the instruction you know that so many 

columns and so many rows. Then obliviously, all the resources required by the 

instruction are available and the instruction can be schedule otherwise, no. If the 

instruction can be scheduled after checking this, the GRT has to be updated. So, if this 

instruction is scheduled. 
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Then we similarly, you know we place the reservation table at the appropriate time slot, 

the reservation table of the instruction and do an or operation. So, then we actually make 

those resources, which are used by the instruction to be busy, so we put a one in all those 

places. 
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So, that precisely how the GRT is updated after the scheduling the instruction. So, that is 

about you know scheduling, instruction scheduling using the basic block scheduler. 
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Such, a simple list scheduling strategy has some disadvantages, the first disadvantage is 

see checking the resource constraints is a very inefficient process here, because it 

involves repeated anding and oring of the of the bit matrices is for many instruction in 

each scheduling steps. So, this is a bit of inefficiency, but is not that bed space overhead 

may considerable, but this is not a serious issue. 

The checking of resource constraints is the slower operation compare to space problems 

created by this, but still it is a very simple algorithm very effective and allows building 

you know building introducing many heuristic in to it for computation for the priority so 

it is still very validly used. 
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Now, you know let us move on to the next you know scheduling strategy, that is the 

global acyclic scheduling strategy. Let me explain why such a strategy is the in the 

required. It is so happens that the average size of basic block is small, in the in most 

applications say between 5 and 20 instructions. So, the instruction scheduling is not that 

effective, when we actually schedule very small number of instructions. 

In other words you know there are not n of choices for the various slots so we may be 

forced to put no ops there so this. So, this is a serious concern in architecture supporting 

greater instruction level parallelism. So for example, VLIW architectures have several 

function units, superscalar architectures have multiple instruction issue possibilities. So, 

on such architectures, when we can initiate you know either more than one instruction 

percent cycle or at least one instruction per cycle. And then use the pipelining available 

in the machine to execute them in various phases. 

So, in such machine very small basic blocks make the you know bring down the 

efficiency of the machine and make the program run slowly. So, global scheduling is 

actually go in you know is in the same spirit as the value numbering that we did for 

extended basic blocks. So, we take a set of basic blocks and try to schedule the 

instructions of basic blocks, a set of basic blocks as if there were a single basic block. 

So, this overlaps execution of successive basic blocks and there are several techniques 

for it, one is straight scheduling, the second is super blocks scheduling, third is hyper 



blocks scheduling and forth is software pipelining. There are many more of course, and 

we will deal with only four of this in our discussion. So, I hope that kind of clarifies why 

we require looking at more than one basic block. 
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So, trace scheduling is a fairly widely applicable method and trace is a frequently 

executed acyclic sequence of basic blocks in a control flow graph, so that is part of a 

path. So, how do we identify a trace. So, we identify the most frequently executed basic 

block and then extend the trace starting from this block forward and backward along the 

most frequently executed edges. 
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So, to show you an example, so this is the control flow graph. So, let us say this was the 

most frequently executed block, then grow it backwards and forwards and include this 

entire path as the main trace. 
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So, once we identify traces using profiling and you know this simple algorithm. We can 

apply list scheduling on the trace including the branch instructions of course, execution 

time for the trace may reduce now, but the execution time for the other path may 



increase, I will show you why this happens, but the overall performance will certainly 

improve. 
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So for example, this is our main trace, what we really do is a we consider these 3 basic 

blocks as one unit or one basic block and try to schedule the instructions. So, we can 

move instructions between these basic blocks and that introduces you know some 

compensation code that we are going to see little later. So, let us assume that we can 

move this instruction among these basic blocks by doing so since we have many 

instruction we will probably reduce the execution time of this set of basic blocks, but 

then execution most of the time goes along this path, but sometimes it also goes along 

this path. 

So, this is the outside of the trace, so this block the outside the trace. So, if we jump to 

this block apart from you know some compensation code etcetera, which needs to be 

executed we will see that later, jump into this block kind of brakes this pipeline. So, we 

may have to execute this block at a higher cost compare to what it was before. 
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So, that is what I was trying to explain here the execution time for the trace may reduce, 

but the execution time for the other path may increase, because of compensation code 

etcetera. 
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 So, let us consider this example so here in this example we have and if then else 

condition as well. So, in the if part we execute this and in the else particular we execute 

this and after the if-then else is over, we execute this. So, there are 4 basic blocks 

corresponding to these things, so this is the you know conditional block. Then we have 



the then part, we have the else part and we have the join corresponding to sum equal to 

sum plus b i. So, and here are the instruction corresponding to the 4 blocks? 
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So, suppose we take that trace and then apply our basic blocks scheduling algorithm a 

very simple, we have not found we still have not separated them into main trace and the 

site trace etcetera. We just take each block and schedule it using the basic blocks 

scheduling algorithm that is all. So, if we do that then you know we are actually will be 

force to introduce a no op here, a no op here and therefore, the number of instructions 

taken for this particular program you know. So, 9 cycle for the main trace and 6 cycle for 

the off trace. 
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So, remember we have identify that trace, but that is this is the main trace and this is the 

off trace, but this is the block in the off trace, but we did not apply any scheduling 

algorithm combining these basic blocks. We are still applying basic block scheduling 

algorithm separately for b 1 b 2 b 4 and b 3 that is the idea. 
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That is the comparison part so how does this take a 9 cycles for this basic block we 

require 3 cycles and then if we go to i 7 that would be i 7 is here, that would be the off 

trace. So, if we continue here that would be the main trace, so 0 1 2 3 4 5 6 all these 



corresponds to the main trace, and then we also have you know i 7. So, after this 6 we 

have a go to instruction which will bring us to 7 that is here i 9. 
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So, this corresponds to the merger block here, this block, so we execute this we execute 

this and then jump to this or we jump right in the beginning, jump to this point execute 

this and then fall through to b 4. 
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So, these are the two possibilities so if we fall through here then we execute b 1 and b 2 

then we jump to b 4 execute this. So, after 6 we have 7 and 8 so that means, we have 9 



cycles main trace, for the off trace we defiantly have to execute b 1 then we go to i seven 

execute this instruction and then fall through and execute the join. So, that would require 

a 3 cycle here you know, so this is the fourth cycle, fifth cycle and sixth cycle so that that 

is what we require. 

So, we require a 6 cycles for the off trace and 9 cycles for the main trace so that is our 

scheduling. And we have 2 integer units available, so we can schedule instruction freely 

on either one of them based on the dependences. So, this is a 2 way issue architecture 

with 2 integer units. So, we can issue instructions 2 instructions in the same cycle also 

and of course, it requires 1 cycle for add sub store, 2 cycles for load and goto has no stall 

so we can actually schedule this and something else also. 
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Suppose, we consider these 3 blocks as a single block and schedule so this is the trace 

scheduling what we did so far was not trace scheduling. So, we have in effect we would 

be moving some of the instruction from here, to this part and then we are also kind of 

deleting this branch because the flow of control will be maintained like this. So. we are 

not we are kind of falling through from execution from here to here, we do not have to 

jump. 

Whereas, for the off trace it is going to be different, so these instructions will be the 

effect is to move them here and then we have a store and then we have this three 

instructions that would be our main trace. And then the off trace would jump to this point 



execute this and then jump to this and execute this, so it takes more time. So, here there 

are no jumps whereas, on this part there are jumps, so this is the where the trace 

scheduling would happened. 
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So, let us look at it, so it requires 6 cycles for the main trace and 7 cycles for the off 

trace. Whereas, we had required 9 cycles for the main trace and 6 for the off trace in the 

normal scheduling you know application. So, this is the integer unit 1 integer unit 2, so 

this our main trace and this is the off trace block. So, how does the you know control go, 

so we have been able to schedule the instruction in a mixed manner. 

So, if this is the condition so if the condition is false we go to i 7, so that is the braking 

the main trace. So, otherwise we fall through we continue and this is the loop actually. 

So, if r 1 less than r 6 go back to i 1, so as long as we are executing the main trace we 

will be doing it very fast. So, the number of cycles required 0 1 2 3 4 and 5 so that would 

be for the main trace. Now, how does the off trace part execute so that is this part. 
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So, as I told you we have to jump to this part, execute this and then jump again into the 

middle of the main trace, execute these instructions and then get out. 
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So, here we go to i 7 execute r 4 equal to r 2 then we go to the middle of the main trace 

so that is i 9 that is here, execute this instruction, this instruction and also this jump 

instruction. So, at this point you know obviously we require 0 1 2 so 3 cycles then you 

know 3 4 that is 5 cycles and then 5 6 that is 7 cycles. So, that is what is here you know 



the main trace is very fast, but the off trace because of the two jumps requires more time 

to execute. 
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So, this is the trace scheduling, but then as I told you we require some extra code to be 

introduce into the various blocks. So, the side exits and side entrances are ignored during 

the scheduling of a trace and this requires compensation code to be inserted, during the 

book keeping phase after this scheduling of the trace. So, basically for the main trace we 

do the scheduling then check whether the instructions have been displaced from their 

original position. 

And then and see if extra code has to be introduced and we introduce it in the off trace. 

So, there are also other possible side effect, so one is the book keeping code which I am 

going to show you very soon. The speculative code motion load instruction moved ahead 

of conditional branch, so in our example so the register r 3 should not be live in the off 

trace path. 
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So, let me show you so here as I said this instructions are all going to be effectively 

moved here. So, that means the load instruction also moves here and the register r 3 

would be loaded and after that suppose we take this branch right. So, the load has already 

kind of happened so now you can see that. 
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So, the load is going on its own, so it has been scheduled in parallel with this load. So, 

the load of r 3 has completed by the time you jump to the off trace so that is here. So, this 

r 3 is still live at this point because the load has already completed at this point. 
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So, we come here, but we find that r 3 is live whereas, in the original control flow 

diagram r 3 was loaded here in some other block. So, if we had made an exit at this point 

r 3 would not have been live. So, this is a side effect the load has been moved 

speculatively to this point assuming that the main trace should be taken, but the main 

trace was not taken. So, the register r 3 is live even in this block. 
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The side effect of that is possibly some unwanted exceptions, so this is not easy to take 

care of. It requires additional hardware support to detect such exceptions and make sure 



that some repairer is cost executed repair is performed. So, trace scheduling requires 

some extra hardware support to take care of such unwanted exceptions. 

These are not supposed to have been cause, but because of the main trace being 

scheduled separately this has been caused, but it should not cause difficulty when the off 

trace is taken. So, such unwanted exceptions should be caught and delt with 

appropriately by the hardware. 
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Now, the compensation code, so this is the original sequence of instructions, instruction 

1 2 3 4 5 and these are the instructions which possibly corresponds to many blocks of the 

main trace. Now, suppose the instruction sequence here is modified to this, so we 2 3 4 

and then instruction 1 and then followed by the instruction 5. 

So, if we were actually exiting after instruction 2 here, right so in the original sequence 

we would have a executed 1 then 2. And maybe would have a executed exited to the off 

trace in the some iterations. Whereas, in this case now we do not execute instruction 1 at 

all, we simply execute instruction 2 and then we exit, so this is incorrect. 
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What we need to do is to insert instruction 1 in this path along this edge. So, this is the 

extra compensation code that is executed and there is nothing wrong in executing 

instruction 1 after instruction 2 because if we had use the main trace, we would have still 

executed instruction 1 after instruction 2. So, dependence is permitted so there is nothing 

wrong in inserting instruction 1 at this point. So, this is one time of compensation code. 
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Suppose, we had same sequence 1 2 3 4 5, so there was possibly a jump into the middle 

of this code to instruction 3 from outside. So, we would have now change the order of 



these instructions for the main trace so it has now become 1 then 5, then 2, then 3, then 4. 

So, what compensation code is required when instruction 5 moves above the side 

entrance in the trace? So, what the problem now is if we actually enter through this you 

know edge, we execute 3 and 4, but we do not execute 5 at all, 5 has mood up. 

(Refer Slide Time: 55:01) 

 

Obviously, the compensation code that is instruction 5 has to be inserted along this edge. 

And there is nothing wrong in inserting it here and executing it before 3 because even in 

the main trace we have scheduled instruction number 5 before instruction number 3. So, 

this is the compensation code that has to be inserted. So, compensation code actually can 

become quite large in some cases and this is the one of the disadvantage of trace 

scheduling. We will stop here and continue with the other type of scheduling in the next 

part of the lecture. 

Thank you. 


