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Welcome to part 7 of the lecture on machine independent optimizations. Today we will 

continue our discussion on static single assignment form and its application to 

optimizations. 
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So, the content of today’s lecture would be to look at the, you know constant propagation 

algorithm, but the variety that we are going to look at is the conditional constant 

propagation algorithm. To do a bit of recap, so a program is in the static single 

assignment form if each use of a variable is reached by exactly one definition. So, this is 

something I already mentioned. The flow of control remains the same as in the non SSA 

form. Then there is a special merge operator phi, which is used for the selection of values 

in joint nodes and of course the conditional constant propagation is going to be faster and 

more effective on the SSA forms. 
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So, the conditional constant propagation algorithm itself, it uses a SSA form with extra 

edges corresponding to the definition use chains. So, these are called SSA edges, we use 

both the flow graph and SSA edges and maintain two different work lists; one for the 

flow graph edges, and the other for the SSA edges. So, these are called flow pile and 

SSA pile respectively. Flow graph edges are used to keep track of the reachable code and 

the SSA edges are used to help in the propagation of values flow graph. So, edges will be 

added to the flow pile whenever a branch node is symbolically executed or whenever an 

assignment node has a single successor. 
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The SSA edges are added coming out of a node are added to the SSA, form SSA work 

list whenever there is a change in the definition value you know. So, there is the change 

in the value of the assigned variable change in the value of the definition. So, now the 

reason why we do this is to make sure that the node which is affected by the change in 

this value is processed as soon as possible.  

So, there is no need to go through all you know all the edges in the flow graph before we 

arrive at this particular node. So, I usually towards the end of the algorithm there will be 

very few changes in values and very few nodes will be affected. So, towards this phase 

of the algorithm it is beneficial if the affected nodes are inform directly, so this ensures 

that the all the uses of a definition are processed whenever a definition changes its value. 



So, this algorithm requires much lesser storage compared to the non SSA counterpart 

conditional branches at branch nodes are evaluated. So, they have either true value in 

which case the true edge is added to the, you know flow pile if the false edge is the one 

to be taken then the false edge is added to the flow pile. But, if the value is not known 

then both the edges are added to the flow pile, but at a join node the meet operation 

considers only those predecessors which are marked as executable. So, this allows us to 

actually you know remove some code which can never be reached. 
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So, I gave you this example last time, but we did not work through it, let us do that this 

time we have initialization of the three variables a 1, b 1, c 1 this is already in the SSA 

form. So, here we have a phi operator for b 2 to choose the value coming from the back 

edge or from the top. Similarly, c also has a phi operator to choose the value coming 

from this side or from that side, so let us see how this works. 
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Now, to begin with we add this edge to the flow pile, so when we extract this edge from 

the flow pile this node is going to be processed. So, we symbolically assign the lattice 

value as constant 1 for a 1, constant 1 for b 1 and constant 0 for c 1 then, since this is the 

only outgoing edge from b 1 this will be added to the flow pile. So, correspondingly 

when this node is when this edge is processed this node will be taken up for processing 

as well.  

So, here we have, you know a phi function, now this node is not yet marked as 

executable only the red ones are marked executable. So, the value coming from this point 

is irrelevant to us at this time, so the phi function will consider only the value coming 

from the top that is b 1. So, b 2 is evaluated as phi of b 1 obviously with just one 

parameter, it gives you the value of that parameter which is 1 c 2, similarly will give us 

0.  

Now, c 2 less than hundred can be evaluated to true because c 2 is a value 0 and once 

that is done the true branch is the only one which is relevant and that is added to the flow 

pile. So, when we process this edge we process this node and we see that b 2 less than 20 

is really true because b 2 has a value 1. So, again the true edges added to the flow pile 

and when we take up processing b 5 the two assignments are going to be evaluated.  

So, that gives us b 3 equal to a 1 equal to 1 because of this value a 1 which has not 

changed and c 3 is c 2 plus 1 c 2 is again just 1 just 0. Therefore, we get c 2 plus one as 1 



and then we add this node to the flow pile and when we actually process this edge this 

will this node b 7 will be processed. So, when we process this node we get again exactly 

one executable edge as incoming edge the other one is not yet marked as executable. So, 

b 4 becomes phi of b 3 corresponding to this incoming edge and that is value of b 3 

which is one c 4 becomes phi of c 3 which is the value 1 again.  

Now, this edge is marked as executable and that brings us to the node b 2 for a second 

visit, now during the second visit the value of b 2 actually you know has no change. So, 

because the value coming from this side is also 1 coming from the top is also one, 

whereas the value of c 2 changes c 4 from here is 1. Whereas, c 4 from the top is 0, so 

the meet of these two values is actually not a constant 1 and 0 you know, so from the two 

incoming edges that would be marked as not a constant. So, once that is marked as not a 

constant its value has change, so the two SSA edges will be added to the SSA pile, the 

value of c 2 less than 100.  

Now, is unknown because this is a not a constant, so both true and false edges will be 

marked as executable we had already process this true. So, there is no need to add it to 

the pile again, but this will be added to the flow pile again, now from, now on since this 

has already been marked. So, this will not be added processed once more unless the 

value changes because of the SSA edge, it indeed happens in this case. Now, the flow 

pile consists of only this particular edge and nothing else and obviously there is nothing 

to do in a stop node. 

So, there is no change as far any of the values are concern, so when we consider the SSA 

edges and process them, we would be actually looking at the node number b 5. So, when 

b 5 is evaluated we see that b 3 is now a 1 which is 1 and c 3 is c 2 plus 1 which is not a 

constant. So, previously b 3 of course was still 1, but c 3 was also 1, now because of c 2 

changing its value to unknown rather not a constant, now c 3 becomes not a constant. So, 

this leads to a change in value for c 3 and that would be you know made known to the 

algorithm by adding the SSA edge from b 5 to b 7 to the SSA pile.  

Now, of course we must process this node also because it has been affected by the 

change in b 2, but it so happens that the incoming edge is not yet marked as executable. 

So, this processing of this node will not be taken up because it is still unreachable via 



executable edges, so nothing happens in b 6 then we process you know we take up this 

edge right and we process this node b 7.  

So, when we process b 7, b 4 is computed as 1 phi of b 3 because the other one is still not 

marked as a executable c 4 now gets the value not a constant because of this value. Now, 

the c 4 previously had value 1 and b 4 had value 1, now b 4 retains the value 1, but c 4 

now gets the value not a constant. So, you know at this point we again have you know, 

for example there is a change in the value of c 4 and that will be affecting this particular 

node, so the SSA edge from here to here will have to be taken up. 

So, if the third visit to b 2 there is no change in either b 2 or c 2 and of course this 

expression also remains the same and since there is no change and there are no more 

edges to be processed in the either the SSA pile or the flow pile the algorithm stops. So, 

once the algorithm stops we can actually do some optimization such as dead code 

elimination, etcetera. 
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So, after the first round of simplification we have you know in this case, for example we 

have b 2 equal to 1 and c 2 of course is not a constant. So, it remains as it is c two equal 

to phi of c 4, c 1 and this expression could not be evaluated, so it remains as it is both the 

true and false edges have been added. Now, b 3 remains as 1 and c 3 expression remains 

as c 2 plus 1 because it became not a constant, here again b 4 becomes remains as 1 and c 

4 can be simplified as phi of c 3 because there is only one incoming edge here.  



So, that is c 3 itself, so after this round of simplification there is more simplification 

possible. So, we could eliminate some you know for example b 2 is 1 here, b 3 is 1 here, 

b 4 is 1 here, so but none of these have been really used anywhere, so we can remove 

such code. 
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So, all the constants here are not used, so they can all be kind of thrown away and here 

we could replace this by a constant itself. So, if we do all this simple modifications to the 

program using dead code elimination trivial phi function elimination copy propagation 

etcetera. So, we get the final form of the code which is a very compact piece of code, but 

remember this is still in SSA form it has a phi function. So, this is how and hyper block 

scheduling which are useful for you know multiple function unit processors and so on 

vector processors and so on.  

Now, the second type of optimization on machine code is called software pipelining, so 

instruction scheduling and software pipelining are actually machine dependent 

optimizations. So, they depend on the machine architecture and machine instructions, so 

they cannot be performed very effectively before we perform code generation. 
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So, what exactly is instruction scheduling well it is just reordering instructions, so as to 

keep the pipelines of functional units full with no stalls. So, this is the goal of instruction 

scheduling, so it is nothing but reordering of instructions I will give you an example to 

show what this means. So, the problem of this reordering is as usual like all good 

problems or difficult problems in computer science it is an N P complete problem and 

once it is N P complete. So, we can only apply heuristics to overcome the exponential 

explosion and the heuristics will obviously be you know will not produce optimal results. 

But, they will produce decent results if it is applied on basic blocks alone then it is called 

local instruction scheduling and if it is applied on several basic blocks at a time such as 

superblocks. Then it is called global scheduling this requires elongation of basic blocks 

similar to the extended basic blocks that we studied long back. 



(Refer Slide Time: 16:55) 

 

So, let us take this example, so we have several instructions here, so there are two load 

instructions t 1 gets a and t 2 gets b then we have t 3 as t 1 plus t 2. So, we have t 4 as 

load again t 5 is a another add instruction t 6 rather minus instruction t 6 is a you know 

multiplication and then d gets the value via a store. So, this is the instruction sequence i 1 

to i 7 that we are trying to execute if you look at this sequence and then see how the 

results are used we get this type of a graph this is a dependence graph.  

So, for example we have t 1 and then t 2, so t 3 uses t 1 plus t 2, so it has to necessarily 

wait this computation has to t 1 plus t 2 has to wait until loads of both a and b are 

complete. So, that is indicated by adding these two arcs to from the two loads to this 

particular plus add, so similarly the value of this addition is used later in you know in 

this i 5. So, again we have this you know edge and the load also feeds a value to this 

operator, so we have another edge from here.  

Finally, we have you know an edge from this to this indicating that there is a use of this t 

5 in this right and, finally t 6 is used in the store instruction. So, that is used that is 

indicated by this edge, so the value which is produced here is also used by this 

multiplication, so that is seen here easily so t three is used here as well.  

So, this is the dependence diagram that is relevant for this basic block, now as I 

mentioned the evaluation of t 1 plus t 2 cannot take place until both t 1 and t 2 are ready 

that is both these loads are completed. So, if we assume that load requires 2 cycles and if 



any other operation requires only 1 cycle then after t 1 is initiated we can go and initiate t 

2. Now, t 1 is still in progress at this point when we try to evaluate t 1 plus t 2 t 1 has 

completed because it has finish 2 cycles, but t 2 has not yet finished. 

So, we cannot execute any you know we cannot evaluate this particular plus operator, so 

this is said to have a stall at this point because we need to introduce a nop instruction to 

take care of being a, you know idle. Then there is another load here r 4 and the result of 

that load t 4 is used immediately in the next cycle and because load requires 2 cycles we 

really cannot evaluate t 3 minus t 4 in this cycle you know. So, immediately after t 4 we 

have to wait for one cycle and then go to then evaluate it, so at i 3 and i 5 we have two 

stalls. So, we need to introduce 1 nop after i 2 and another nop after i 4 to make sure that 

the code executes properly. So, the purpose of instruction scheduling is to try and 

eliminate such stalls, so let us see how we can eliminate these stalls by reordering the 

instructions. 
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So, we have the same sequence of instructions, but then you know these load instructions 

have been changed, the sequence of these load instructions have been changed. So, we 

have r 1 here, r 2 here and instead of r 3 we have r 4 right, so here we had r 1, r 2, r 3 and 

in this we have r 1, r 2, r 4. So, this is the difference, so after r 1 and r 2 actually are 

initiated, we initiate the next load instruction rather than you know we going directly to 

the addition.  



So, this gives enough time for this load instruction to complete, so at this point, now both 

r 1 and r 2 are ready they have their values available. So, of course if we had used r 4 

here, instead of r 2 we would not have had that value ready, but we are not using it. So, r 

1 and r 2, r 1 plus r 2 can be executed directly, now after this by the time we reach r 3 

minus r 4 this load would also have completed. 

So, r 3 minus r four can also be executed in the next cycle of course r 3 star r 5 and store 

r 6 can all be executed in the following cycles. So, this code requires only 7 cycles and 

has no stalls at all whereas the previous code it has 7 plus 2 nop, so 9 cycles and it had 2 

stalls. So, this is the purpose of instruction scheduling we try to eliminate as many stalls 

as possible we try to introduce as few nop as possible into the instruction sequence. 
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So, if we did have stall here after r 2 and another one just before r 5, this i 5 then you 

know the pipeline would have been kind of stuck at that point. So, it cannot proceed 

further until the load is ready, so this is the this will take more cycles and, therefore the 

speed of the program requires more time to execute. 
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So, let us go through some definitions before we take up the algorithm for instructions 

scheduling, so let us say there are three instructions i 1, i 2, i 3, r 1 is load of r 2, r 3 is r 1 

plus 4 and r 1 is r 4 plus r 5. So, what is significant here is that r 1 is computed into and 

then used here then you know r 1 is used here and then computed into again r 1 is 

computed into here and here. So, these are 3 different types of dependences, the first one 

r one being computed into and then used is called as a flow dependence it is indicated as 

i 1 delta i 2.  

So, the second one you know i 2 and between i 2 and i 3, we are using r 1 here and then 

writing into r 1. So, this is called anti dependence and it is indicated as i 2 delta bar i 3, 

the third one between i 1 and i 3 for the same r 1 is called as output dependence. So, the 

dependence is always indicated between instructions here, so i 1 i 2, i 2 i 3, i 1 i 3 

etcetera the reason why such dependences become important is that parallelization later 

cannot be perform that is one secondly instructions scheduling.  

So, we really cannot schedule this instruction ahead of this instruction because of this 

dependence then here is another important point. So, output dependences can be 

eliminated by register renaming flow dependence is also called as a true dependence and 

it cannot be eliminated by any transformation. But, anti and output dependences can be 

for example suppose we use r 1 here and r 1 prime here right, so the r 1 and r 1 prime let 



us say are two different registers. So, in that case there is no ant dependence between 

these two, similarly suppose we use r 1 here and this is r 1 prime.  

So, these two are two different registers and thereby the output dependence is also 

eliminated such register renaming in some of the machines can be done by the hardware 

at runtime as well. But, otherwise compilers can perform this register renaming and then 

eliminate such as well, so in fact if you recall during chaitins register location algorithm. 

So, we clearly said every live range has exactly one variable, so the second writing 

etcetera automatically is eliminated you know this is output dependence automatically 

gets eliminated. So, similarly since we are doing register renaming in that algorithm this 

anti dependence also gets eliminated. 
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So, let us look at the dependence directed acyclic graph a full example, so here is the 

basic block corresponding to this directed acyclic graph it has these nine instructions. So, 

we have shown the flow dependence has a full line, for example i 1 to i 2, i 1 to i 4 

etcetera and then we have shown the anti dependence in the form of these dash edges. 

So, the output dependence in the form of these dash dot edges, so what has why we 

should indicate so many dependences in this particular diagram. So, it so happens that 

there are two load instructions here and then there are two store instructions and the 

compiler has not been able to determine that a, b and c are all distinct memory locations. 



So, what has happened is the compiler assumes that it is possible to have a b and c as the 

same memory location, so it says lets add edges between the instruction load instruction. 

So, the store instruction to indicate that there is a dependence anti dependence, similarly 

between i 1 and i 8 as well, of course between i 2 and i 8 and i 2 and i 9. Then the output 

dependence between these two is added because of the same reason, so if the two store 

instructions use b and c. But, we have no idea that rather the compiler has no idea 

whether b and c correspond to the same memory location or they correspond to different 

memory locations. 

So, it adds an output dependence edge from this to this, so this is the complete 

dependence dag and whenever a scheduler goes through this dependence graph and tries 

to schedule instructions. But, it cannot violate any of these constraints either the flow 

dependence constraints or the anti dependence constraints or the output dependence 

constraints. So, let us see how to schedule such basic blocks the reason we want to 

consider basic blocks is that they are kind of independent entities. 

But, we will not consider the effect of the instructions before the basic block and after 

the basic block we will just assume that each of these instructions in the basic block are 

connected according to these dependence constraints and then schedule them. So, if we 

really want to do better work then we will have to look at other basic blocks also that we 

will do in the advanced instructions scheduling parts of the lecture. 
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So, each basic block consists of instructions which are called as micro operation 

sequences. 
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So, each of these micro operation sequences is indivisible in other words the micro 

operations within the sequence cannot be individually scheduled they will have the entire 

sequence has to be scheduled as 1 unit. So, that is why because they are indivisible then 

each M O S has you know micro operations these are the several steps in the instruction 

and each requiring resources. So, of course each step of the M O S requires one cycle for 

execution how does all this relate to real instructions in a machine.  

So, the M O S is nothing but the pipeline stages of the various micro operations 

correspond to the various pipeline stages of you know of the machine. So, obviously 

each pipeline stage requires resources and each pipeline stage executes in one cycle. So, 

this is a fairly a realistic assumption regarding the operation sequence and this is a fairly 

realistic modelling of the operation sequence. But, as well there are two types of 

constraints that we need to show one are called the precedence constraint and the other is 

called as the resource constraint. 

So, the precedence constraints they relate to the data dependences that I already mention 

you know flow anti and output dependences and they also relate to the execution delays 

possible because of these dependences. So, load may take two cycles multiply 3 cycles 

etcetera the resource constraints relate to the limited availability of shared resources. So, 



for example the function units you know adders, subtractors, multipliers, load store units, 

etcetera these are all the various shared resources. So, depending on the availability of 

these the schedules vary, so the resource constraints in a scheduling problem relate to the 

availability of limited availability of shared resources. 
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So, what is exactly the formulation of the problem as such, so the basic block is 

modelled as a digraph G equal to V comma E. So, the nodes V and the edges E have to 

be explained, now the nodes are nothing but you know micro operation sequences. So, M 

O S and the edges are nothing but the precedence constraints that we already mentioned 

of course we are also going to use other notation. Now, for example r is the number of 

resources in our formulation there is also a label on the node every node has a label. 

So, what is that label the label is a resource usage function row V of i for each step of the 

M O S associated with the node V. So, I said there are many micro operations within 

each sequence right, so each of these micro operations require some resources. So, row V 

of i for each i, you know will actually tell us the resources use for that particular micro 

operation if there are 5 micro operations in an M O S then I will range from 1 to 5. 

So, we are going to mention the resources required for each of these micro operations for 

this row V of i of course we also need the length l v of the node that is nothing but the 

number of steps in the micro operation sequence. So, there is a label on the edge as well 

this is the execution delay of the instruction and that will be denoted as d of E. So, for 



example the load instruction requires a 2 cycles multiply instruction requires 3 cycles, so 

these are the delays associated with the M O S the problem is to find the shortest 

schedule sigma.  

So, this schedule is actually a mapping from v to n, so in other words the this n is nothing 

but the time, so we are going to assign each node to a timeslot such that for all the edges 

in the graph the precedence constraint is satisfied. So, sigma v minus sigma u greater 

than or equal to d E, I am going to explain it very soon and the resource constraint is also 

satisfied. So, I will explain this also very soon, now once the schedule is found the length 

of the schedule is nothing but maximum of sigma v plus l v. So, take all the nodes find 

this sum and take the maximum, so that is going to be our schedule.  
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So, if you consider the precedence constraints say this is the node u this is the node v and 

between these two nodes is a delay d. So, this is the label on this particular edge the node 

u has been assigned a number sigma u that is its schedule the time step node v has been 

assigned a number sigma v which is its time step at which it can execute. So, this simply 

says this delay d must be less than or equal to sigma v minus sigma u, so this is quite 

understandable it simply says that once sigma u is completed. 

So, that will once u completes and that will happen only after sigma u plus d steps right, 

because once u is initiated it requires these steps to time steps to compute. So, sigma u 



plus d is equal to sigma v that is the earliest that sigma v can start, so that is what this 

says sigma v greater than or equal to d plus sigma u.  

So, of course it may have to start later than this, you know minimum value of sigma u 

plus d because of resource constraints. But, that is, now let us understand the resource 

constraints, so what we have shown here is a table on this side is then you know M O S 

sub step. So, each M O S sub step actually micro operation executes in one cycle, so we 

can say that this is also time in, you know the units are time units and on this side are the 

nodes which have been assign the time units again.  

So, let us assume for our example that sigma of v 1 is 0 in other words node v 1 starts the 

instruction at node v 1 starts its execution at time step 0 then it has 4 micro operations in 

it. So, at time step 0, the first you know micro operation executes and it requires one 

resource let us assume that there is only 1 type of resource. So, it requires one resource 

unit one unit of resource in the second micro operation sequence which starts at micro 

operation rather at time step 1.  

So, this is 0, so this is 1 it requires again 1 unit of resource the micro operation sequence 

number 2 rather 3 starts at time unit 2 and it requires 2 units of resource. So, the at time 

step 3 we have the fourth micro operation which requires 2 units of resources, suppose 

just for the sake of example we assume that node v 2 or the instruction at node v 2 has 

been scheduled at time step 1. Then for the various it has 5 micro operations in it and 

each of these require 2, 3, 1, 1 and 2 resources respectively, similarly v 3 has been 

scheduled at 2.  

So, its micro operations require 3, 1 and 2 resources respectively, finally if v 3 is 

scheduled at 3 and its micro operations require 1, 2, 3 and 2 resources respectively. Now, 

if you look at the total number of resources available in the machine, let us say it is 5 

there is only one resource that is necessary for execution and it is available in you know 

5 units. So, when we start this at this point there are no other instructions which are 

executing so we have requirement of one resource and there are 5 of them.  

So, this can execute well at this point the previous step has completed and again we 

require only one resource out of 5 and this resource has been released after its 

completion. So, this can also execute and, now when this particular instruction you know 

number v 1 is executing in its time its second micro operation.  



Now, we have already begun the second instruction and that is executing its first micro 

operation, so in some you know actually whenever we look at the diagonal they 

correspond to the same time step. So, this is time step 1 micro operation 0 and this is you 

know, this is micro operation 0 and time step 1, so these two are actually in the same slot 

of time. So, this requires 2 resources, so at the at time step 1 we have a requirement of 2 

plus 1, 3 resources which is still because we have 5 of them.  

Similarly, if you continue at time step 2, we have the node v 3 which is executing its 

micro operation step 1 or a micro operation 1 v 2 is executing its micro operation number 

2 and v 1 is executing its micro operation number 3. So, the resource requirements of all 

these three have to be added up because if this is the same timeslot of 2, so 2 plus 3, 5, 5 

plus 3, 8. So, we require eight units of resource what we have available is only 5, so 

actually speaking such a schedule is not possible let us just for the sake of the example 

continue.  

So, at this point we have v 3, this is micro operation 0, this is micro operation 1 and 

along this diagonal we have 1 plus 2 plus 2 which is fine you know. So, we require 5 

units of resources and that is available in fact even at this point we have 1 plus 1, 2 plus 

1, 3 plus 2, 5, so this is also, but unfortunately this required more than what is available, 

so this schedule does not work, so we may have to introduce some you know dummy 

instructions in between without rather the nop instruction. So, at these points in order to 

make sure that the resource constraints are taken care of and schedule comes you know is 

proper. 
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So, that is what has been said here, so this sigma really adds up the various resource 

requirements of the various micro operation sequences at in the various states of their 

execution. So, that is what this minus operation is really doing, so this gives you the 

entire resource requirement for the whole machine with many instructions operating at in 

different states. 
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So, the list scheduling algorithm is stated here, so the purpose is to find the shortest 

schedule v to n such that precedence and resource constraints are satisfied if there are 



any holes they are filled with nop. So, function list schedule takes a dependence graph 

this is a actually this is a topological order in sorting algorithm really. So, there is a 

queue called ready which is used by this algorithm the ready queue consists of all the 

root nodes of v which do not require anything to execute. 

So, these are the top level nodes in the dag, so as I said this is a topological sort, so we 

start from those nodes which do not require anything to any do not have any precedence 

require. So, you know constraints that is there are no incoming nodes for this particular 

root, these root nodes, so those are the only ones which can be executed in. So, you know 

to begin with right it does not mean that all the nodes in ready queue will be assign. So, 

the same timeslot not necessarily we have to check many other conditions of resource 

constraints as well. 

So, the schedule to begin with is empty and we continue till the ready queue is empty we 

get the highest priority node in the ready queue. So, how to assign priorities is the next 

thing that we need to understand we will do that in a few minutes then for this particular 

node v which we have picked from the ready queue.  

But, we want to find a slot timeslot to schedule it, so to do that there are two things to do, 

first is find the lower bound for the timeslots of v which satisfy precedence constraints. 

So, this is a function which is in the next slide, so we will see that v, schedule, sigma, so 

it takes these parameters the node the partial schedule which has been obtain so far. So, 

of course you know rather these sets schedule that has been a set of schedule nodes and 

then sigma is the schedule itself that is the mapping from the nodes to the timeslots.  

So, this gives you this function gives you the lower bound on the time at which it can be 

the node v can be you know scheduled. So, it does not mean that this is the place this is 

the timeslot at which we are going to schedule v we still have to check the resource 

availability. So, sigma v the slot at which v will be schedules is obtained using the satisfy 

resource constraints function which takes v. Then the set of schedule nodes the partial 

schedule sigma and also l b as parameters, so depending on the resource constraints 

which we have mentioned.  

Here, you see in this we already mention the resource constraints here the function 

satisfy resource constraints we will assign a particular slot for v, so it could be l b it 

could be l b plus 1 l b plus 2 etcetera. But, definitely something will be found for this, so 



the schedule, now is you know gets v as an extra member because we have already 

scheduled v at sigma. Now, the ready queue losses v, but then we also add all the nodes u 

which are actually now eligible to be scheduled. So, u is not yet already scheduled that is 

number 1 not of u in schedule and we have all the edges as w, u such that w is scheduled, 

so we take all the… 

(Refer Slide Time: 47:14) 

 

Now, I will show you a picture here, so this is you know currently scheduled node, now 

it has been assigned a slot. So, these w are all the already schedule nodes, these 2, now 

the ready queue will lose v of course, but then it has other possibilities of you know 

actually to be taken care of. So, u 1, u 2 and u 3 are 3 nodes which are emanating from v 

and whose other predecessors w 1 and w 2 have already been scheduled.  

Whereas, the successor x 2 still has another node x predecessor x 1 which is not yet 

scheduled, so this is not yet ready to be schedule. But, u 1 and u 2, u 2 and u 3 have all 

their predecessors already schedule this and of course this, so this has only this 

predecessor this has this and of course this. So, these two have already been scheduled 

this is just now scheduled, so u 1 and u 2 and u 3 will all be added to the ready queue. 
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So, that is what this says so this is done for the entire ready queue 1 at a time and then 

we return sigma. 
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Now, let us look at the constraint satisfaction functions satisfy precedence constraints, so 

this you know simply considers sigma u plus d u, v for all the schedule nodes and fix the 

maximum. 
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So, let us see what it means, so this is the precedence constraint satisfaction, so we are 

here right and u 1, u 2 and u 3 have already been scheduled. So, their schedule timeslots 

are 10, 25 and 18 the delays for the u 1, u 2 and u 3 those instructions are 2, 4 and 3, so 

the earliest that we can schedule v is 10 plus 2 or 25 plus 4 or 18 plus 3 the maximum of 

these. So, obviously it is 25 plus 4 which is 29, so until you know that is because even 

though these 2 complete, earlier u 2 does not complete earlier than 29 cycles and that is 

the minimum at which v can be scheduled. 

(Refer Slide Time: 49:45) 

 



So, that is what this satisfy precedence constraints really tells us what does satisfy 

resource constraints tell us, so let us look at the picture again. 
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So, the same picture that we had used before you know we had a problem here, these two 

are not present, these two dummy slots were not present, and this row was actually 

present at this point. So, we had 3 plus 3, 6 plus 2, 8 as resource requirements, now to 

take care of the resource constraints we have actually made these 2 dummy slots there 

are nop instructions here. So, now the resource constraint of 5 is satisfied, so here any 

diagonal, now has only 5 or less, so this is 5, so this is 2 plus 1, 3 that is it and this has 3 

plus 1, 4.  

So, here this has 2 plus 1, 3 plus 1, 4, this has 2 plus 2, 4, this has 3 and this has 2, so this 

schedule with blanks here is a proper schedule and this is precisely what the resource 

constraint satisfaction function checks. So, it checks at this point whether the total 

resource requirements are satisfied if not it increments the counter to by 1 and checks 

again, so it did that for these two found that only 4 is a feasible slot. 
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So, that is precisely what it is doing it is trying from l b to infinity and checks this 

inequality and then returns the slot at which resource constraints are satisfied. So, we are 

definitely certain that we will find some slot because you know even though we do not 

reorder every instruction has a finite amount of time requirement. So, every instruction 

must finish after a few cycles and after that we will definitely have get a slot to assign to 

this particular v. We will stop here and continue with this part in the next lecture. 

Thank you. 


