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Welcome to part 5 of the lecture on Machine Independent Optimizations. Today, we will 

continue our discussion on control flow analysis. 

(Refer Slide Time 00:33) 

 

So, we defined dominators in the last part, so and we were discussing the natural loop 

structure which is defined by a back edge, so just to do a bit of recap edges whose heads 

dominate their tails are called back edges. So, if there is an edge from a to b, b is the 

head and a is the tail, so given a back edge n to d the natural loop of the edge is the node 

d plus the set of nodes that can reach n without going through d again. 

So, the property of the header is that you know of course, the rather the head is that d is 

the header of the loop, so it is a single entry point to the loop that dominates all the nodes 

in the loop and at least one path back to the header exists, so that the loop can be iterated. 

Let us now consider the algorithm to find the natural loops structure based on this 

definition. 
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This is a fairly straight forward algorithm, it uses a stack, so let us say the back edge 

under consideration is n to d to begin with the stack has been initialized to empty and the 

set of nodes in the loop has been initialized to d, because that is the header. Once we 

initialize the loop to d, it ensures us that we do not look at the predecessors of d which is 

you know we should not be doing that otherwise we would be going outside the loop. It 

calls the function insert n which just checks whether the node that is passed as a 

parameter is in the loop set. 

So, if it is not in the loop set it is added to the loop set and then it is pushed on to the 

stack, the reason we do this is to trace the predecessors of each of the nodes, which are 

on the stack. So, now to begin with we have inserted n, so that has also been added to the 

loop and it has been pushed on the stack. So, to begin with we have only n on the stack, 

so while stack is not empty do pop it and for each predecessor of m do insert p, so we go 

on doing this until the stack becomes empty. So, let us understand this algorithm with an 

example. 
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So, here we have many back edges, so the back edges are 7 to 4, 10 to 7, 4 to 3, 10 to 3 

and 11 to 1. So, let us just take one of the back edges and understand how the loop can 

be computed. So, let us say we take the back edge from 7 to 4, why is it a back edge that 

is because 4 dominates 7, that can be easily checked here 4 dominates 7, in the algorithm 

we put 4 into the loop which is the header of this loop corresponding to the back edge 7 

to 4. 

So, there is always a back edge to which a natural loop corresponds, so we are 

considering tracing the loop structure of 7 to 4, so we add 4 to it and then we do an insert 

on 7 which is also added to the loop and it is also pushed on to the stack. So, inside the 

you know while loop, which keeps popping nodes from the stack we first pop 7, so then 

we look at the predecessors of 7, so these are the two predecessors of 7. So, let us say we 

add we go to 5, so 5 is not in the loop, so we add 5 to the loop structure and we also push 

5 on to the stack then we look at 6 we also push 6 on to the stack and we add it to the 

loop. 

But once we reach pop 5 and then we find that it is already added to the loop structure, 

so nothing is done nothing is done for 6 as well, but then from 7, 5 and 6 are not the only 

predecessors, we also have another predecessor which is 10. So, we actually add 10 also 

to the loop and it is pushed on to the stack and once it is popped its predecessor is 8, so 8 



is put into the loop and again pushed on to the stack, but nothing more can be added from 

8 because 7 and 8 are already in the loop. 

So, we get 4, 5, 6, 7, 8, 10 as the loop structure of the back edge 7 to 4, so 4, 5, 6, 7, 8, 

10, so this is the loop structure of the back edge 7 to 4. So, let us consider the back edge 

10 to 7 and see what happens, so we add a 7 to the loop, we add 10 to the loop and also 

push it on to the stack, when we pop 10 its predecessor is 8, so we add that to the loop 

and push it on to the stack and for 8, there are no other nodes to be added because 8 itself 

has been added to the loop. 

So, 7 and 8 and 10 happen to be the happen to be nodes in the loop corresponding to 10 

to 7, so far it is, but the most unintuitive result is for the loop from 4 to 3. So, we start 

with 3 add it to the loop, then we add 4 to the loop structure and once we add 4 the only 

predecessor of 4 is 7 in this case. So, we add 7, 6, and 5 to the loop structure the 

predecessor of 7 is 10, so we add 10 and 8 also to the loop structure. 

So, for this tiny you know seemingly single loop, we have added 3, 4, 5, 6, 7, 8 and 10, 

the reason why this is correct even though it looks unintuitive is once we start from 3, we 

can not only go to 4 and go back to 3, we can actually go to 4, then 5, then 7, then we can 

traverse 7 to 4 and then 4 to 3. Remember, that to reach the node number three we will 

have to traverse the back edge, if we do not do that then the this must be the only way 

reach 3, otherwise it is incorrect. 

So, for example, we can therefore, go to 4, 5, 7, 8 and 10, but then we can also reach 3 

via the other back edge, but that is not considered as a part of this loop, for reaching 3 for 

the loop corresponding to the back edge 4 to 3, we must always traverse the back edge 4 

to 3. So, we go down to 10, then we go to 7, then we go to 4 and then to 3, so this is how 

the entire loop structure this entire thing is added to the loop structure for 4 to 3. 

So, now, it is easy to see you know the loop structure for 10 to 3; obviously, we would 

add 3, then 10, then 8, gets added 7, gets added 5 and 6 and 4, all these get added to the 

loop structure automatically, because they are all and for the back edge from 11 to 1, the 

entire flow graph would be all the nodes in the flow graph would be added to the loop 

structure. 



Let us change the back edge structure a little bit, so instead of the back edge from 7 to 4, 

we actually change it to become the back edge from 7 to 3, now the loop structure of 10 

to 3 does not change, 11 to 1 does not change nor does the loop structure of 10 to 7 

changes. The two loops which change are 4 to 3 and 7 to 3, 7 to 3, now we add three then 

we add 7, we add 5, we add 6, then we add 10, 8, so this is going to be our loop structure 

so for. 

Of course, we also add 4, so 3, 4, 5, 6, 7, 8, 10 becomes the loop structure for 7 to 3, but 

for the back edge 4 to 3 there is a drastic cut, so we add 3, then we add 4 to the loop, 

there are no other you know predecessors of 4 apart from 3, so the loop structure is just 

this particular small loop 4 to 3, 3 to 4 and 4 to 3. So, by the back edge you know when 

we change the loop structure, we have changing we are changing the back edge and once 

we change the back edge the number of nodes in the loop also get changed. So, this is the 

implication of the back edge on the loop structure. 
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So, the next you know concept that we need to learn is the depth first numbering of 

nodes in a control flow graph why is this important, in the case of data flow analysis we 

know that we can visit the nodes of the control flow graph in any order, but I also 

mentioned that you know visiting the nodes in the depth first search order actually gives 

us fewer number of iterations compared to any other visit order. 



So, to understand the d f s order, let us actually understand how to do the d f s numbering 

itself, we are really going back to the data structure course. So, this is a depth first search 

on the graph just that the numbering of the nodes is going to be slightly different. So, d f 

s num takes the node as a parameter, then it marks the node n as visited, as in any depth 

at first search. 

So, for the for each node s adjacent to n, so is exactly the same as in the depth first 

search, if s is unvisited then we add the edge n to s to the depth first search tree t, so we 

are constructing the d f s tree and then we call d f s number. So, remember that we have 

not yet numbered the nodes, so after all the nodes adjacent to n have been visited, we 

come out of this loop. 

And then number depth first num n as i to begin with i has been initialized to the number 

of nodes of the control flow graph and then once we do this we decrement i. So, this is 

the way it gets numbered now a node gets numbered after all its dependents, descendants 

or dependents get numbered the initial call on d f s num is through the entry node of the 

control flow graph. 
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So, let us understand this algorithm with an example, so here is the same simple control 

flow graph that we had before, so we start our depth first search numbering from the 

block b 0. So, the counter has been initialized to 9, because we have 8, so that is because 

if we start the numbering from 1, then we have 9 nodes, if we start the numbering from 



0, then we have you know 0 to 8 again 9 nodes, but the numbering is going to be 

different. 

So, let us assume that the numbering happens from 1, so we have initialized the counter 

to nine this is the number of nodes in the control flow graph, so we start our depth first 

search from b 0; its only neighbor is b 1, so this is visited. The next neighbor is b 2, that 

will also be visited then we visit you know say b 3 and then we visit b 5 and then we visit 

b 9, there are no more in the you know adjacent nodes for 9, everything has been taken 

care of. 

So, because this is the next node which is adjacent, but we have already visited it, so 

node b 7, gets the number 9, then we return to b 5, that would get its we have exhausted 

the adjacency list of b 5, so it gets the number 8, then we go to node number b 3. Now, 

there is one more neighbor to be visited that is node number b 6, so we visit that and then 

we find that all its neighbors that is only this has been visited already, so we number this 

as 7 and then we return to b 3, that now has exhausted all its neighbors, so it gets the 

number 6. 

Then, we return to b 2, we still have to visit b 4 and b 8, before we actually number b 2, 

so we go to b 4, then we go to b 8, so this has no neighbor. So, this gets the number 5, b 

4 gets the number 4, then we return to b 2 which gets the number 3, then b 1 gets 2 and b 

0 gets one, so this is the ordering in the depth first search numbering scheme. 
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If, we apply the same algorithm to this example, we start with the node number one. So, 

the numbering actually that already shows the depth first search numbering, but it is 

possible to number the nodes in a slightly different order also. So, in this example 

suppose we had chosen to from here after visiting 3 instead of going this way, if we had 

chosen this path we would have come to b 4 and then b 8. 

So, this node would have been numbered 9, then this would have been numbered 8 and 

then we would have gone further to this part of the node this part of the graph. So, the 

order in which we visit the nodes will also change the depth first search numbering a 

same is true here, so we start here then we go to 2, then we go to 3, 4, then we visit say 6, 

then we visit 7, 8, then we visit 10 and 11 no more. 

So, this gets the number 11, this gets number 10, we go back and then visit this gets 9, 

this gets 8, this gets 7, then we go back to 6 and then this will be this will cannot be 

numbered right now, so visit this give it 5 and then 4, then 3, then 2 and 1, whatever has 

been marked as marked in purple it corresponds to the d f s tree, it is a spanning tree. So, 

these are the tree edges, then the back edges are also called as retreating edges and 

whatever is neither a tree edge nor a cross you know would be cause called as a cross 

edge, so this is a cross edge here. 
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Now, what exactly is an inner loop, so let us understand the inner loop there are unless 

two loops have the same header, they are either disjoint or one is nested within the other, 



so this is a simple property. So, if, but if they have the same header then they need to be 

neither nested you know nor disjoint I will give you an example of this, but otherwise 

assuming that this is not so we check whether the loops you know, whether the nesting 

can be checked very simply, by testing whether the nodes of a loop a or is A, subset of 

the nodes of another loop B, so if it is a subset then there is nesting. 

Similarly, if the loops have no common nodes then the loops are disjoint, but when the 

loops share a header neither of these may hold, I will show you an example of this, and if 

this happens loops share a header and neither nesting nor disjointness is a property, we 

will have to actually combine the loops and transform it. 
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So, let us take this a this big example, so we have many loops here 7 to 3, 10 to 7, 4 to 3, 

10 to 3 and 11 to 1, so if you look at it 7, 8, 10 is a subset of this set, the loop structure of 

7 to 3, so 10 to 7 is nested within 7 to 3. Even, though it does not appear so this is 10 to 7 

and this is 7 to 3, so even though it does not appear so it is indeed nested, similarly is 7, 

8, 10 is nested in 10 to 3 and 11 to 1, as well that is you know visible. 

Then 4, 3 is nested in 7, 3 it is nested in 10, 3 and it is nested in 11, 1 as well, now it is 

also correct that 4 to 3 and 10 to 7 are disjoint loops, so these two have no nodes in 

common, so they are disjoint loops. Suppose, we had a structure such as this so here for 

example, we have a loop which is this, there is another loop which is this, so for in the 



loop structure, the loop corresponding to the back edge C to A is A, B, C and the loop 

corresponding to D to A is A, B, D you cannot say that one loop is nested in the other. 

And you cannot say that the two are disjoint because they still share a node, in such a 

case we actually want to transform this to this type of a control flow graph by adding a 

dummy edge. So, once we add a dummy edge we see that and we can shift the two back 

edges to rather combine the two back edges into one and make it edge from E to A, so 

once we do that the for the back edge E to A, the entire loop becomes a single loop.  

So, here also you know there are difficulties of that kind, for example 10 to 3, of course, 

there is no structure of this kind which appears, but nesting and disjointness definitely 

happen to be the case. So, this type of sharing headers but neither being disjoint nor 

being nested is not true in this case. 
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We also need to understand the concept of a preheader, this will be required the 

algorithm for loop invariant code motion suppose, we have a loop structure with a header 

they and there are many paths coming into this header it is usually convenient to make 

the header get just one input by actually separating all other inputs to go into a preheader. 

So, the semantics of this and this are the same it is just that the loop has now become 

very clean, there is only one input from the outside and the rest of the edges are all only 

the back edges, so whereas, here there are number of inputs coming from outside. 
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The next thing which is very important is to understand the convergence of a data flow 

algorithm, I promise this in the last part of our lecture. So, what can we say about the 

number of iterations that the data flow algorithm iterative data flow algorithm takes, so 

let us say we are given a depth first spanning tree of a control flow graph. So, we know 

how to construct the depth first tree, we do the depth first numbering automatically we 

get the depth first tree. The largest number of retreating edges on any cycle free path in 

the spanning tree is the depth of the control flow graph, so let us understand that and then 

continue. 
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So, here the depth of the control flow graph is 2 that is because when we take the 

spanning tree which is shown in the picture and we consider the sequence of back edges 

10 to 7, and then 7 to 3, this is the maximum number of back edges which can be 

traversed in the tree. All others would be just this is just one and this is again just one, so 

whereas, here we have two back edges which can be traversed, so this is the depth of the 

control flow graph in this case. 
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Whereas, in this case the control flow graph has a depth of 3, so the reason is we go from 

10 to 7, then we go from 7 to 4 and then from 4 to 3, so the depth of this control flow 

graph is 3, what has the depth of the control flow graph got to do with the convergence 

of the algorithm. It is here, the number of passes needed to for the convergence of the 

solution to a forward data flow analysis problem is 1 plus the depth of the control flow 

graph, so this is the basic result. 

So, once we know the depth of the control flow graph, we can say that this is the number 

of iterations needed for the convergence and this convergence; this bound can actually be 

achieved, if we traverse the control flow graph using the depth first numbering of the 

nodes. Any other order may actually take a few more iterations, one more pass is needed 

to determine no change and actually therefore, the bound becomes 2 plus depth of CFG 

and for a backward data flow analysis problem the same bound holds, but we need to 



reverse the depth first search you know rather we need to consider the reverse of the 

depth first numbering of the nodes. 

So, instead of doing the traversal in the depth first search order, we do it in the reverse 

order, any other order will still produce the correct solution, but the number of passes 

may be more than what is actually predicted. So, that is about some fundamentals 

regarding control flow analysis, so now we are ready to discuss the algorithms for 

machine independent optimizations.  

So, we are going to consider a few optimizations which are very common the first one; 

obviously, would be the global common sub expression elimination and when we do this 

we will also need copy propagation and constant propagation is a very simple algorithm. 

So, we will look at that also and loop invariant code motion is something very different 

which is an application of the dominator relationship. 
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So, we have already seen global common elimination a few times, but we did not discuss 

the algorithm formally, so let us do that first, it needs available expression information, 

so we know how to compute the available expressions you by data flow analysis. So, that 

would be a forward flow problem with the, you know confluence operator being 

intersection. 



So, basically for every statement S which is of the form X equal to Y plus Z, such that Y 

plus Z is available at the beginning of S s block, so the statement S is in a particular 

block, so the you know rather Y plus this is in a particular block and we want to make 

sure that Y plus Z is available at the entry of this particular block. Only, then we can 

actually do some replacement and we must also make sure that neither Y nor Z is defined 

prior to S in that particular block. 

So, S this is defined, but before that we should not have any definitions of either Y or Z 

otherwise Y plus Z which is reaching the entry point of this block you know will not be 

useful within the block and we cannot do any elimination of the common sub expression 

because Y and Z have changed their value. So, in such a case if these conditions are met 

we search backwards from S s block in the control flow graph and find the first block in 

which Y plus Z is evaluated, so we actually have to do this for all the paths which go 

backwards from S. 

So, we need not go through any block that evaluates Y plus Z, we just have to go until Y 

plus Z is evaluated that is it and that makes sure that Y plus Z is available, so availability 

is already satisfied now, we are finding the blocks in which Y plus Z is evaluated. So, 

once we find these blocks, so we are actually going to replace you know this rather, we 

are going to create a new variable u and replace each statement W equal to Y plus Z by u 

equal to Y plus Z and W equal to u, we saw this already this is just a formal statement of 

that and then we replace S by X equal to u. 
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So, this we repeat for every predecessor of the block S and we have already seen that 

repeated application of GCSE may be required to catch deep common sub expression; 

they perform deep common sub expression elimination. So, let me again show you the 

same example, so here is Y plus Z, assume that Y plus Z is available at the entry point of 

this basic block, so these are the three paths emerging out of S. 

So, along each path we go up to the block which evaluates Y plus Z here, here and here, 

then create the same temporary u equal to u and then insert u equal to Y plus Z, u equal 

to Y plus Z and u equal to Y plus Z and of course, k equal to u, l equal to u and m equal 

to u, so now this statement can be replaced by x equal to u. So, we have eliminated the 

common sub-expression here you know this is it is evaluated only once here and then 

reused. 

So, what we mean by a deep common sub-expression is one which surfaces only after 

one round of GCSE and one round of copy propagation, so we have seen this example 

before, so briefly let us see what it does, so we have x plus y and x plus y here. So, first 

round of GCSE makes this u equal to X plus Y and this as c equal to u, then a round of 

copy propagation actually you know makes u star Z visible as a common sub-expression. 

So, we can eliminate that also by the same algorithm and thereby improve the efficiency 

of the code. 
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So, this is what we mean by a deep CSE, deep CSE as ACS rather common sub-

expression and deep common sub-expressions, actually surface only after one round of 

GCSE and copy of propagation. On the running example, there are many places where 

GCSE is possible, so here is i minus 1 and here we have 4 star j and then we have you 

know this 4 star t 6 which will surface later.  

So, 4 star j has been eliminated you know and then we have other expressions which are 

possible, so j plus 1 is possible here and so on and so forth. Then so after 1 round of 

GCSE, we get this we have still not studied copy propagation defer applying copy 

propagation to the stage after studying this algorithm for copy propagation. 
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So, the next algorithm that we want to understand is the copy propagation algorithm, this 

is a very important algorithm and it is nontrivial to solve, the purpose of copy 

propagation is to eliminate copy statements of the form X equal to Y. So, what is this 

copy propagation we have a large number of uses of X, lets say neither X nor Y change 

in before, we reach the usage of X, so in such a case we can replace all these uses of X 

by the variable Y. 

So, thereby we have actually you know eliminated this copy statement, if X is not used 

later after all these copy propagation has taken place, then we can eliminate the copy 

statement X equal to Y, to do this there are two major conditions which need to be 

checked. The first major condition is the use definition chain of use u of X must consist 

of S only, so here in other words S is the only definition of X reaching u. So, there is a 

usage of X, so this copy must be the only definition of X reaching u, if there is one more 

then; obviously, we do not know which value is valid at u. 

So, we cannot actually replace X by this Y whereas, if this is the only copy which is 

reaching this u, then we can replace the use of X here by Y, this is fairly straight forward 

to do we can use the use definition chain of that is that can be constructed using the 

reaching definitions. The second condition is more complex on every path from S to u 

including paths that go through u several times, so cycles are for u, but they do not go 

through S, a second time. 



So, definitions cannot be gone through a second time, there are no assignments to Y, so 

if there is an assignment to Y then the value of Y changes, so we cannot reuse it this 

ensures that the copy is valid. So, again this is the reason why we cannot go through the 

definition a second time, but we can go through the usages any number of times, that is 

not an issue and the value of Y must not change, the value of X should also not change, 

but that will be automatically taken care of when check this. 

So, we will see that now to check the second condition is nontrivial, so we need to 

formulate a new data flow problem, so let us, formulate the problem of reaching copies 

as we can call it. So, this problem we again define c gen and c kill and c gen is the set of 

all copy statements X equal to Y in B, such that there are no subsequent assignments to 

either X or Y within B after the statement S. 

So, this is generation of copies which copies reach the end of the basic block B, so this is 

very trivial almost if a copy X equal to Y has to reach the end of the basic block then 

neither X nor Y must be modified within the block after this copy. So, what is the c kill 

set, it is a set of all copy statements X equal to Y and S is not in B, so very similar to the 

reaching definitions and available expressions problem.  

So, there is a you know an assignment to either X or Y assigned a value in B, so an 

assignment to either X or Y not necessarily copy just assignment to either X or Y, so this 

X or Y assignment kills the copy involving X or Y. So, if there is a copy involving X and 

Y, then assignment to either X or Y in the basic block B will be killed. So, we are 

considering the copy statements all over the program, but the assignments within the 

basic block. This is what we did in the reaching definitions and available expressions 

problem as well, let u be the universal set of copy statements in the program. 
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So, what is the c in of a basic block, c in of a basic block is a set of all copy statements X 

equal to Y, reaching the beginning of the basic block along every path such that there are 

no assignments to either X or Y following the last occurrence of X equal to Y on the 

path. So, this is something intuitive we just want to make sure that when a copy 

statement reaches the beginning of the block either X or Y have not been assigned a 

value on that path. 

So, the same is true for c out, so it is the set of all copy statements X equal to Y reaching 

the end of the basic block, along every path such that there are no assignments to either 

X or Y following the last occurrence of X equal to Y on the path. So, after the copies 

statement we should have no modification of either X or Y, so that is the meaning of 

both c in and c out, here are the data flow equations for computing the reaching copies. 

So, just like the available expressions problem the confluence operator is intersection and 

this is a forward flow problem, because out is being computed in terms of in and because 

of the confluence being intersection. We have the same initialization as in the available 

expressions problem, c in of B 1 is phi permanently and c out of B is u minus c kill or B 

not equal to B 1, so initialization is using the universal set. So, we could have also have 

set c in of b equal to u, so for b not equal to B 1, but this is also fine. 

So, now c out of B is simple, so take all the copies which are generated in the block and 

then the copies which come in to the block through at the entry point remove what is 



killed in the block. So, that is what c out B is this is very intuitive just like the reaching 

definitions and available expressions problem and in the case of c in, it is an intersection 

of all the copies of the predecessors. 

So, again this is intuitive because the same copy must reach the input point via all the 

predecessors of the basic block B, so I will show you in the example that mere format of 

the statement being X equal to Y will not make the copy the same, it may be a different 

copy, so let us see how to actually do the copy propagation. 
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So, we have computed the reaching copies for each of the basic blocks, so for each copy 

statement X equal to Y, we use the definition use chain which is nothing, but a link list 

of you know linking a definition to all its uses. So, determine those uses of X that are 

reached by S, so to compute that d u chain, it is a different problem very similar to the 

live variable analysis and that is left as an exercise. 

So, using the du chain determine those uses of X that are reached by S, so this is just to 

make the you know checks easy that is all, so we look at all the uses of X, these are the 

potential places where replacement by y can be made. Then for each use u of X found in 

1, we need to check several conditions u d chain of u consists of S only, so this implies 

that S is the only definition of X that reaches the block. So, I already mentioned this if 

there is more than one definition reaching the use u then we are not sure whether it is the 

copy or the other definition.  



So, we cannot get rid of you know X in this usage u, S is in the c in of the basic block 

where B is the block to which u belongs, the usage u, so this make sure that no 

definitions of X or Y appear on this path from S to B, so this was taken care of in the 

definition of in itself. So, that is why this is a restatement of a repeated statement the 

same property no definitions of X or Y occur within be prior to u found in 1, so this is 

within the basic block this is across the basic block, so both have to be made sure off. 

If S meets the conditions above then remove S, replace all uses of X found in 1, above by 

Y, so we have to be very careful here we must make sure that every usage of X satisfies 

these properties, even if one of them does not then we cannot get rid of this copy. Only, 

when all usages of X satisfy these properties we can replace those usages by Y otherwise 

we cannot get rid of the copy statement. 
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Here is an example of copy propagation adapted from the book, so we have S 1 which is 

a copy statement X equal to Y, S 2 is another copy statement p equal to q, S 3 is not a 

copy statement, S 4 is a copy statement X equal to Z, S 5 is a copy statement X equal to 

Z. So, here I want to emphasize that that copy X equal to Z in the block B 2 and the copy 

X equal to Z in the block B 3 are two different copies; they are not the same even though 

their form is similar. 

The assignment to X happens in both, the right side is the same, but these two copies are 

not the same, so once we have two different statements, then the two are different copies. 



Unfortunately, the copy propagation algorithm is not powerful enough to capture, the 

effect of these two copies being the same. Even though in this case they are indeed the 

same our algorithm cannot capture this effect, then S this S 6 is not a copy statement, S 7 

is also not a copy statement, but S 8 is. 

So, to compute the gen and kill I have not shown it here, but it is very trivial, so here X 

equal to Y and p equal to q are both generated by this basic block and when we consider 

the kill look at X equal to Y, so all the copies involving X are killed by this copy, so this 

is killed, this is killed, so and that is it these two are killed. So, that is similarly for others 

as well.  

So, we will not worry about the gen and kill because it is very simple to compute them 

lets understand what the structure of c in and c out are, so this basic block has no 

incoming statements. So, c in of B 1 is always phi, in the case of c out; obviously, S 1 

and S 2 reach this point, so they are included in the outset. For B 2 c in is nothing but the 

outset of B 1, so that would be S 1, S 2 and c out will we actually have X equal to Z. 

So, this is a copy which goes out, so S 2, S 4 is included and since S 4 is assigning to X, 

the this copy X equal Y would be killed, so that is removed from this set. So, we have S 

2and S 4; obviously, statements which are not copies are not included this set for this 

block again c in would be the out of this. So, that is S 1, S 2 and out of this block would 

be; obviously, S 5 is included and it is assigning to X, so this S 1 would be removed, so S 

2 and S 5.  

So, here you can see that S 4 here and S 5 here are being maintained as two different 

copies in this the particular you know block b 4 which has S 6, there is a usage of X here. 

So, since our copy which reaches from here is nothing but X equal to Z and all the 

conditions of the copy propagation are satisfied here X and Z are not modified here they 

are not modified here. So, this X has only this particular copy as the reaching rather the 

defining occurrence. 

So, this X can be replaced by this Z, so this can really become Z plus 6, absolutely no 

problem over that, when we come here this has another X unfortunately, the X which 

comes from here is S 5 and the X which comes from here is S 4, even though these two 

are really the same copies, they are being you know represented as different copies. So, 



since there are two definitions or two copies reaching this usage of X we cannot actually 

replace it by Z. 

Now, there is n equal to p here, p has a you know definition in S 2 and that reaches along 

this path and as well with no modifications to either p or q, so we can replace n equal to 

p, the p in n equal to p by q and this would essentially become n equal to q. So, this is 

how the copy propagation algorithm works and let me stress again that even though 

syntactically these two copies are the same, they are being treated differently by the 

algorithm. 
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On our running example there are many copies here, so for example, there is t 10 which 

can be replaced by t 4 and there is t 12 here which can be replace by t 4 and then there is 

t 14 here which can be replace by t 6, etcetera. 
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So, once we do that we get this and it exposes the next level of common sub-expressions 

which can be eliminated. So, we get this. 
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So, we can now do another copy propagation on this and finally, we get a very 

condensed piece of code.  
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So, that completes our available the copy propagation algorithm, so now, let us move on 

to the next optimization which is simple constant propagation and constant folding. In 

fact, constant propagation you know is very similar to copy propagation it is just that the 

right hand side of the copy now becomes a constant value. So, the algorithm has the 

same flavor as before, but it is not necessary to solve a different you know data flow 

analysis problem here.  

So, we use a statement pile which consists of all the statements in the program, so we 

take one statement at a time and then see what to do it, so while statement pile. So, we 

include all the statements in the program into this, so while statement pile is not empty 

remove these statement, if the statement is not a you know statement of the form X equal 

to c, where c is a constant then we ignore the statement. 

And we actually go to the next statement in the pile, if it is indeed a statement of the 

form X equal to c, then we check all the statements t in the definition use chain of X, so 

that means, we check the X is a definition, because it is of the form X equal to c. We see 

all the usages of X and this d u chain is a very convenient data structure to examine all 

such usages, now if the usage of X in t is reachable only by S, so this can be checked 

using the u d chain, so let me show you what this really means. 
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So, here is a constant definition X equal to 7, let us say there are two usages for this 

definition, one is here u 1 and the other is here u 2, so the d u chain consists of both these 

usages. In the case of u 1, this is the only definition which is reaching this u 1, so we can 

simply replace this X by 7 and also simplify this expression 7 plus 6 as 13, so there is no 

problem with that. 

But, if you consider u 2 there is another definition d 2, X equal to 9 which is reaching 

this X, so is the value of X here is it 7 or is it 9, that cannot be determined at compile 

time. And therefore, we actually do not replace this X either by 7 or by 9, we just leave it 

as it is and if we do that then you know it is not possible to remove either this statement 

X equal to 7 or X equal to 9, so this is what we mean by the statement if usage of X in t 

is reachable only by S.  

So, if it is true then substitute c for X in t, then we simplify the statement t, so I showed 

you this already, here we could have simplified this to 7 plus 6 why should we do this, 

suppose this was Y equal to X plus 6 and now after simplification this becomes Y equal 

to 13, so this is another constant assignment, so now all usages of Y can be actually 

potentially replaced by 13, so that is the reason why we require this simplification of t. 

And after simplification we add it to the statement pile this is again required, because if 

this had become Y equal to 13, this is a new statement which was not present before, so 

we must add it to the statement pile, so that we examine all the d u chain of Y etcetera as 



well. So, the statement pile now gets another extra statement, now the same loop is 

repeated until the statement pile becomes empty. 

So, in this case after the usages of X are replaced by c, then X equal to c possibly 

becomes dead code if there is still you know some usage of X which is not replaced, then 

it is not dead code. Otherwise, it is dead code and a separate dead code elimination pass 

can remove such code, so that is not an issue what have we not done here actually, we 

have not performed what is known as conditional constant propagation. This is only 

simple constant propagation in the case of conditional constant propagation. 

We consider conditions statements and if the conditions evaluate to a constant value then 

we need to choose either the true branch or the false branch at compile time itself, the 

other branch becomes redundant. So, this type of conditional constant propagation is a 

little more complicated than the simple constant propagation and when we consider the 

static single assignment form which is more effective for conditional constant 

propagation. We will consider examples and the algorithm to perform it, thank you, we 

will stop here today and continue the next part. 

Thank you. 


