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Welcome to part two of machine code generation. So, in the part one of the lecture we 

considered the main issues in a machine generation and I also gave you a sample of 

generated code.  
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So, today we will continue looking at the samples and other material, so this is the 

sample, a code that we saw last time. There is a function F 1 which has action code 

segment 1 and then a call to another function F 2, another piece of code segment 2 and 

then halt, whereas function F 2 has just a piece of code and then it returns. The activation 

record for both the functions F 1 and F 2 are shown here. So, the activation record takes 

48 bytes for F 1 and 76 bytes for F 2, because we do not have any jump sub routine 

instruction. We really store the return address and then you know jump to the sub routine 

itself. So, because of that we require a slot in the activation record of the collie to store 

the return address as well. 
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Here is the code that is generated with the machine code for function F 1, so the code for 

action code segment 1. So, that is here, now it is time to call the function F 2, so to begin 

with we store the return address, so remember there is no need to you know allocate 

activation records it is static allocation. So, the activation records have already been set 

up in memory and they are permanent. So, the activation record for F 1 spans the 

addresses 600 to 647 and the activation record for F 2 spans the addresses from 648 to 

723. 
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So, this is just a replica of this picture return address data array a variable x variable y.  
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So, you can see that and similarly, this as well, so before we jump to the sub routine the 

return address which is this particular address. The address of action code segment 2 that 

is moved actually it is moved into location 648 which is the slot to store the return 

address in the activation record of F 2. Then the parameter is actually pushed or moved 

into location 652, so that is corresponding to parameter 1 here and then we execute a 

simple jump instruction. 

So, when we go to function F 2, we execute the code and now use the return address, 

which is given on the activation record at location 648. So, indirect jump will take us 

back to this particular address 264, so here we execute action code segment 2 and then 

halt. So, this is the scheme when we do not have any jump subroutine instruction and it is 

static allocation. 
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So, let us see what happens with jump subroutine instruction, the address code is three 

address code is the same. It is just that this activation record does not have a slot for 

return address here, so the number of bytes required is 44 here and 72 here. 
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What about the code itself, the machine code, now it is slightly simpler, so this would be 

you know action code segment 1. 
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So, here suppose we and I have also change a little bit in the F 2, so there is no parameter 

either just to simplify the code. 
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So, here we execute action code segment 1 and now since the return address is 

automatically stored on the hardware stack when we execute the jump subroutine 

instruction, there is no reason to store it. So, we execute JSR 400, which automatically 

stores the address 248 on the hardware stack. 



So, we go to this particular address a start executing it and then we say return. It 

automatically picks up the return address from the stack and returns to this particular 

address 248, activation record formats remains the same except that there is no space for 

the return address otherwise there is not much change. 
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Now, the other varieties dynamic allocation and no jump subroutine instruction, so there 

is code for function F 1, then action code segment 1 call F 2 action code segment 2 and 

return and F 2 has action code segment 3. Then there is a recursive call to F 1 action 

code segment 4 another recursive call to F 2 itself and then action code segment 5 and 

return. So, the return address is stored here because we do not have a jump subroutine 

instruction and there is local data and other information all the other a temporary sets 

etcetera stored here. So, we require 68 bytes here and 96 bytes here, so there is also a 

parameter in the function F 2. 
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Now, we need to set up activation records when we call functions, so we must initialize 

the stack pointer say some value 800 that is where the stack may begin. So, let us move 

that into the stack pointer so that it is a valid address. So, this is a address at which the 

stack begins, now the code for F 1, it has code for the action code segment 1. Now, this 

part is the allocation of the activation record add 96 to SP. So, that means we increment 

the stack pointer by 96, so thereby allocating you know 96 bytes for the activation record 

of F 2. 

Now, we move 258, which is the return address to the first location on the stack pointer 

move the parameter to the next location and then execute a jump. So, except for this part 

the rest of it is the same, of course, there is a minor difference, we use the stack pointer 

with indirect addressing in order to access the information on the activation record or put 

something into the activation record. 

So, all the information is access to SP, so that is why the indirect addressing scheme is 

required once we jump to 300 that is the code for F 2. So, this has code for the action 

code segment 3, now there is a recursive call, so the size of the activation record here the 

size of the activation record for F 2 was 96, the size of the activation record here for F 1 

is 68. So, 68 is added to SP thereby allocating the activation record for F 1 on the stack 

the rest of it is similar the return address and there is no parameter. 



So, jump to 200, so again you know the action would come to this point when the code 

executes, so once the code completes it there is a return using the SP. So, indirect SP, so 

that is precisely what brings us to you know the return point, so that is 258. So, that is the 

this is the point, so we when we execute, sorry not this point here, so from here we the 

return address would be 364, so 364 is the place where we return after we call to F 1 is 

completed. So, at this point we must de allocate the activation record, so subtract 68 

from SP, so that brings us back to the original position. Now, the code for segment four 

is you know present. 

(Refer Slide Time: 09:14) 

 

Then, there is another recursive call, so please see that there is recursive call F 2 again. 
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So, again the stack allocation of the activation record happens return address is pushed 

on to the stack the parameter is also pushed on to the activation record and a jump to 300 

that is this code itself happens. So, this is how the recursive call you know takes place, so 

the point time trying to make is that there is no difference between the recursive call and 

non recursive call. The activation records are created in both cases dynamically rest of it 

is simple you know whenever there is a return from sub routine it comes back and so on 

and so forth. 
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Finally, dynamic allocation with jump sub routine instruction the only difference is there 

is no return you know slot, there is no slot to store the return a address. 
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Rest of it is the same, so we have to allocate the activation record now the size is slightly 

less and then we jump sub routine to 290 that is the address of F 2. So, this implies the 

return address is stored on the hardware stack and then the control goes here. So, even 

for the you know for example, the recursive call to F 1 it just allocates activation record 

and jumps to 200 using JSR instruction. 

Similarly, when we have a recursive call to F 2, we again allocate another activation 

record move the parameter and then jump to the beginning of F 2 itself using the JSR 

instruction. So, JSR return automatically takes care of you know returning to this 

particular address following the place where we called because the return address is 

stored on the activation in the hardware stack. 
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So, that is about the instructions which are really going to be generated for various types 

of intermediate code. Now, let us begin our discussion on the code generator itself what 

is the design that we are op for a code generator and there are at least two simple code 

generators that we are going to discuss the scheme. For example, it treats each quadruple 

as a macro, so if you take the quadruple A equal to B plus C as a generic quadruple plus 

need not stand for the plus operator it could be plus minus star slash any one of these. 

So, the code generated would be either this or this, so the point is every time we want to 

do an operation on an operand. We will load it into a register do the operation store it 

back into that memory location so that no registers are presumed to be news in any 

particular translation scheme. So, here load a equal to you know A equal to B plus C says 

load B into R 1 load C into R 2 add R 2, R 1 and store R 1 to A. 

So, after the code is executed both R 1 and R 2 are free, similarly if you use this scheme 

load B comma R 1 add C comma R 1 and store R 1 comma A the register R 1 will be 

free after the entire sequence is executed. So, the advantage of doing this is we do not 

have to perform any register location and we can simply write a macro for each one of 

the quadruples. The macro will be expanded by and whenever we instead of you know 

the code for a equal to b plus c will be just that call to the macro corresponding to the 

quadruple. 



So, the final output would be a sequence of macro calls, it should be expanded by the 

macro assembler and the machine code would be generated the difficulty, here is 

inefficient code repeated you know loads store of registers. So, every time since we load 

the value from the register to the location rather load the register from the location. It 

implies load and again and again, so we are not reusing the value which is already 

present in a register in some other quadruple. So, this is very inefficient, but very simple 

to implement, so if we are looking at a proto type compiler, then the first cut code 

generator could be based on macro. So, slowly gradually as the A code is the compiler 

debug, you know we could start designing a better code generator. 
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Then, scheme B is slightly more complicated, so here we track the values which are 

present in registers and try to reuse them. So, the basic rule is if any operand is already in 

a register take advantage of it. So, this also makes the code generator a little more 

complicated, we require to track the value at registers when and make sure that we know 

when it changes values and so on and so forth for that purpose we use register 

descriptors and address descriptors. 

So, these are two data structures that we apply a register descriptor actually tracks 

register and variable name pairs. So, for each register it says which are you know 

variables that contain the value at the same time you know. So, if a single variable can be 



present in different registers, then that is also possible, so many registers can contain the 

value of a single variable or a single register can contain the values of multiple variables. 

We try to avoid the first situation that is many registers containing the same value of the 

same variable make by making sure that we use the same register. Whenever there is a 

need to use it, so the other situation is what we need to worry about that is a single 

register containing a values of multiple names you know if there are all copies. 

So, we need to track this and make sure that whenever that variable name occurs the 

same register is used. So, pairs of this kind or stored in the register descriptor for each 

register, what are the variable names that it can correspond to the in some way the 

inverse of that would be with a variable name. What are the locations corresponding to it 

so it is possible that a single variable name may have its value in multiple locations. It 

will be definitely in memory, but it may also be in register and if it is a stack machine it 

may be on the stack as well. So, it is necessary to track such pairs as well and in the 

process of code generation these two data structures would be repeatedly updated. 
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So, the basic principle is to leave the computed result in a register as long as possible, so 

what does that mean. So, we try to use a different register whenever we need an extra 

register and if there are no registers only then we see. Now, it is time to empty a register 

and store its value back in the memory location corresponding to it. So, every variable 

has what is known as a home location corresponding to it, so the home location will be 



updated whenever the register corresponding to it cannot be allow to keep the value 

anymore the other point. When we need to empty a register would be the end of a basic 

block, so I already a mention that the register will have to be empty. 

When the register is needed for another computation, but at the end of the basic block 

also we need to empty the register the reason is our code generation scheme is a basic 

block oriented scheme. It does not look at any other basic block when it is generating 

code for a particular basic block. So, at the end of the basic block it is stores all the 

registers back into their home locations and then you know make sure that the register set 

is vacant empty for the next basic block. So, at the end of the basic block do we have to 

store, you know register into its home location in other words do we have to generate 

instructions to store every register into its home location not necessarily. 

For example, we use the concept of livens to help us in this in making this decision we 

will discuss livens in great detail later during data flow analysis, but for a basic block the 

definition is very simple a variable is live at a point. If it is used later end of course, if it 

is used in other basic blocks then it is also live, but we will not bother about such a usage 

because it requires data flow analysis to track such usage. Suppose, we know that data 

flow analysis has been performed livens analysis has also be in performed. So, at the end 

of the basic block, we know which variables are going to be used in other basic blocks 

and which variables will not be use definitely in other basic blocks. 

If this information is known to us I am now talking about something, which we have not 

yet discussed livens is available by data flow analysis that is the assumption here. Then 

we can make a sophisticated decision, so on exit from a basic block we need to store 

only those live variables that are not in their memory locations already. So, if you look at 

the address descriptor it will tell you where the variable has its value is it in the home 

location also or is it just in a register. If it is only in a register, then you know when we 

need to generate a instruction to copy the register value to its home location but if it is 

also in its home location. 

Then, we do not have to generate such an instruction that is one the second is what if the 

variable is not live at all if the variable is not live. Then it will be not use further, so 

whether it is in a register or home location it really does not matter. So, we do not have 

to generate any instruction to store it back into their home location. If the livens 



information is not known to us, then we must assume that all variables are live at all 

times. So, this is you know most pessimistic assumption which leads to bad code, but 

under certain circumstances we may have to leave with this assumption. 
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Let us take an example, here is a quadruple A equal to B plus C as I said plus is a generic 

operator if B and C are in registers and in say R 1 and R 2. So, B is in R 1 c is in R 2. 

Now, we can possibly generate an instruction add R 2 comma R 1 which brings the result 

into R 1 cost of course, is one because it uses only registers when is this legal according 

to the scheme that we are using. We need to keep the value of a variable in a register as 

long as possible, so this scheme this instruction is legal only if B is not live after the 

statement, so B is in R 1 and now we are over writing B rather R 1. 

So, the value available in R 1 is lost if the value of R 1 is going to be use later, we would 

possibly have not you know updated its home location. So, generating this instruction 

when R 1 B is still live rather then would be incorrect this is legal only if B is not live. 

Otherwise, if we are force to empty the register R 1, we will have to generate instruction 

to move the contents of for R 1 to the home location of B. 

Then, use the a register R 1, so we will see that also a little later, so this is you know that 

means we need to check where to generate rather where to store the result the second 

possibility is r one contains B, but C is in memory well you could simply add C comma 

R 1. So, generate this instruction cost is slightly higher than the previous one that is cost 



two that is understandable because C is in memory, but the result is in R 1 again this is 

legal only if B is not live after the statement. 

So, that is another thing that we need to keep in mind third possibility is we load C into 

R 2 then add R 2 comma R 1. So, again the cost is even higher and the result is in R 1 

again this is live legal only if B is not live after the statement, but this could be attractive 

if the value of C is subsequently used, so it can be now taken from R 2 itself because we 

loaded it into R 2. 
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So, the examples are supposed to give you some idea of the complexity involved in code 

generation that is we need to check the address and the register descriptor at various 

points in time. We also require some extra information called the next use information to 

make an inform decision about which register to uses etcetera. So, next use information 

is used both in code generation, and our local register allocation, which we are going to 

discuss very soon. So, what is the definition of the next use information, so the next use 

of a in quadruple i is j. 

So, in other words we have a quadruple i which defines a value for A, so there is an 

assignment A equal to something and then we have you know several other quadruples 

before quadruple j which uses A. The most important point here is control flows from i 

to j, but there are no more assignments to A. So, the value of a is not changed, then the 

value computed here is used in this quadruple. 



So, we say that next use of a in quadruple i is j, so we have to compute the a next use 

information, we will see how to use it a little later. Obviously, we need to check for this 

condition and then attach information about the next use of i to the quadruple to the 

quadruple i, so in computing, next use we assume that on exit from the basic block all 

temporaries are considered non live. 

So, this is a correct decision because we do not reuse temporaries across basic blocks we 

generate new temporaries whenever necessary all programmer defined variables and non 

temporary variables are suppose to be live. So, we did not perform any livens analysis 

data flow analysis and that is the reason why we are resuming this. So, then each 

procedure and or function call is suppose to start a new basic block, I already discussed 

this in the you know basic block discussion lecture on basic blocks, so otherwise we 

have a problem of killing all the quadruples in the basic block. 

So, this is best you know sent to a different basic block next use is computed in a 

backward scan on the quadruples in a basic block starting from the end. I will give you a 

example to explain the procedure and of course, the next use information is stored in the 

symbol table so for that particular variable the next use information is also attached.  
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So, here is the example for computing next use, so here this is a simple basic block it is 

the same dot product example it is just that the quadruple. Some of them are in a 

different shape prod equal to prod t 6 instead of you know some temporary equal to prod 



plus t 6 and temporary equal to prod equal to temporary A. Similarly, here so this is 

slightly already improved version in other words local optimization has been applied and 

some code rewriting has also been done to take care of such possibilities. 

So, we start from here this quadruple it uses i, there is no writing into i it only reads i, so 

along with the variable i in the symbol table we attach the information the first fields 

says live or not live. The second fields says what is the last use of that variable and the 

third field says either next use or the number of the quadruple or says no next use. 

So, in this case the variable i is a programmer define variable, so it is live even after exit 

from the basic block the last use of the variable i is eleven self-quadruple and then there 

is no next use of the variable because the basic block ends here. So, when then we go to 

the previous quadruple i equal to i plus 1, so here i is used on left hand side and also the 

right hand side. So, when we say i is live that means it must be used it is being assigned 

here and the assigned value must be used later it is indeed being used later. So, the 

variable is live this can be in ford very easily by looking at the symbol table for i we are 

updating it. 

So, I was actually live and of course, it will be live even now because it is a programmer 

define variable and the last use was 11. So, if the last use information was 0, then this 

would have been the first definition of i, but the last use information says 11. So, i value 

which is defined here will be used in 11, so that is why this is the variable is live the last 

use is ten so that is the self-quadruple, the right hand side. Then the next use is 11 that is 

this quarter pal, so we have updated the information of this, so how did we say new 11 

that was picked up from l u 11 and copied into this place. 

Then this quadruple I will explain just this to show you the procedure prod equal to prod 

plus t 6. So, there are two variables prod and t 6 for prod, it is live because it is a 

programmer defined variable which is defined here. Then you know possibly use later 

the last use of the variable is 9. So, that is right hand side part which is here and there is 

no next use for the variable within the basic block because this is the last definition and it 

is not used again the variable t 6 is a temporary. 

So, this is the first use of that variable and there is no next use again, so this is not live 

and then from you know when I say first use when we are in the scanning process. It is 



not live, because there are no more uses here last use nine, that is this basic block and 

there is no next use of t 6 within the basic block itself. 

So, this continues so let us look at this quadruple at address 5 it is t 3 equal to t 2 bracket 

t 1 indexed assignment. So, t 3 is now you know is defined here, so then you know it is 

the livens end here right because its being defined here and then the last use is 0 because 

it is defined here and then the next use is 8 that is because t 3 is being used here. So, 

from this definition the usage is up to this point so that is the next use 8, sorry that is the 

next use 8. 

So, we say last use is 0 because t 3 is defined here, so the whatever value it had is 

destroyed where as in this case there was a usage here that is why the last use of set as 9. 

So, whenever it is a defined definition t 6 equal to t 3 star t 5 l u will be 0, so here also 

then here also and here also here as well here as well the next use information tells you 

where that particular variable will be used. So, t 2 and t 1, so t 2 is not live because you 

know it is not used anymore and then last use was 5. So, that is this itself and then there 

is no next use for t 2, similarly for t 1 it is not live last use was self-quadruple, but there 

is a next use in quadruple 7. 

So, that is this use, so this can be picked up from the symbol table for t 1 itself, so the 

symbol table for t 1 here since last use seven, so that would have picked up and copied 

here. So, this is the way in which we compute the next use information by doing a 

backward traversal of the quadruple array. 
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So, now we have the next use information already computed, now we are ready to 

discuss the algorithm for code generation. So, we as already mention we deal with one 

basic block at a time and we assume that there is no global register allocation. There is a 

local register location, which is called, we are going to discuss that in a few more 

minutes. So, here is the code generation algorithm for each quadruple A equal to B op C 

do the following first of all we need to find a location to perform the operation B op C 

say that is l. 

How we find l, this is returned by the function call garter, it could be a register or it could 

be a memory location, but a preference is always given to a register. We will see details 

of GETREG later so let us assume that allocation either a register or a memory location 

has been returned by GETREG and that is where the operation B op C will have to be 

perform now where is B, B is in a place B prime. If we look up the address descriptor for 

B, it will tell us where B is to begin with when the generate code for the first quadruple 

in the basic block. 

All these descriptors are empty, so the variable B will not even be found anywhere you 

know, it will be only in the home location that is the only thing we can say. So, always at 

the beginning all the variables will be in their home locations and all the register would 

be empty, but as we go on generating code very soon. We will see that some of the 



variables will be found in registers, so we find the place B prime or the location B prime 

where B is present and obviously we prefer the register for B prime. 

If it is already available both in memory and register suppose B prime is not in l, so l is 

the place where we perform B op C. So, we generate the instruction load B prime comma 

l, so its moves the contents of B prime to the location l and gets it ready to perform the 

operation op along with another variable C the same thing will have to be done to C as 

well. 

So, we need to answer the question where is C we find the place C prime using the 

address descriptor for C and the same ruled holds prefer a register if it is available. Now, 

we are ready to generate the instruction op C prime comma l, so c prime is the place 

where C is present l is the place where B is present. If it was not present, we have moved 

it and now the location l will also have the result after the execution of this instruction. 

So, that is the translation which is generated for A equal to B op C, but after this we have 

still not you know done anything to the descriptors, so the descriptors for l and a must be 

updated. 

So, if l was a register we have to update the register descriptor if l was allocation we 

must update the address descriptor the same holds for a as well. So, remember we there a 

is not in the picture anywhere here we have not generate any instructions to move the 

result into a not yet that is why this updating the register descriptor for A becomes very 

important assume that l is a register most of the time it is. So, let us assume that l is a 

register, now some register are contains the value at execution time after this instruction 

is executed, so that is the value of A. 

So, we are going to associate R with a in both the descriptors in the register descriptor, 

we will say R and A are associated and in the address descriptor. We will say A and R 

are associated, so the remember A’s home location is not updated it is now just present in 

a register. 

So, we must keep in the mind we want to empty the register will have to move the 

generate an instruction to move the value of the register into the home location for a the 

second updating that we need to do are the book keeping that we need to do. If B or C B 

and or C have no next uses, so next uses is available in the symbol table. So, if there is 

no next use that means we must update descriptors to reflect this information so that 



there is no need to you know keep the values of B and C in the registers that they are 

supposed to correspond to, so we can discard that value. 
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So, what is left is to discuss the function GETREG, so its finds the location l for 

computing a equal to A op C first op possibility if B is in a register say R and R holds no 

other names. This is important if R corresponds to many variables, then we cannot return 

the register R because we would we destroying more than one variables. 

So, we do not do that secondly B has no next use and B is not live after the basic blocks, 

so that means the value of the B will be used in this instruction and then it is useless so in 

such a case if b is available in a register. We can very happily used that register to store 

the final result also this is the best possible situations. So, return R, suppose this is not 

possible failing one return an empty register if available, so we will have a stack of rather 

a set of registers available. So, return one of the empty registers, but if we have used up 

all the registers then two is also not possible. So, failing two if A has a next use in the 

block that means a will be used again or if B op C needs a register. 

So, you cannot do without a this operation op cannot be done without a register for 

example, op is an indexing operators so we have a equal to B square bracket C. So, in 

such a case the op is an a indexing operator which can be executed only using a register. 

So, in both cases we must compulsorily assign a register to l and there are no registers 

which are free. So, we must use a heuristic to find an occupied register and then empty it, 



so what possibilities exist in empty you know in finding an occupied register one 

possibility is a register whose contains are referenced furthest in a futures. 

So, the basic block has many instructions and A, at particular point, you know the 

register that we want to free may be used only much later. So, we can say may be there 

will be a free register at that time, so let us not worry too much and free that registers, so 

this is the heuristic to find an occupied register another possible heuristic is the number 

of next uses is the smallest. So, look at all the registers see which one has the smallest 

number of next uses smallest number of next uses. So, then you know we can realize that 

particular register which has a smallest number of next uses. 

So, that means if we realize that register which has a smallest number of next uses the 

number of loads for that particular variable will be kind of minimum. So, these are the 

two popular heuristics which are used in local register location, so we are found a 

register now, but it contains some valid value. So, we must spill it by generating an 

instruction move R comma MEM, where MEM is the home location for the variable in 

R, so and that variable obviously should not be already available in MEM. Then there is 

no need to generate this instruction, then obviously we must update the register and 

address descriptors to say that this value which was corresponding to this R is you know 

now will hold a different variable and so on and so forth. 

If A is not used in the block or no suitable register can be found then return a memory 

location for l. So, this is possible provided the architecture permits, you know memories 

operands also as instructions in the case of risk architectures. You cannot have any other 

instruction accept load and store with memory operands, so we must compulsorily use a 

register, then we use when we whatever op operation is to be performed, if there is not 

the case, then we return a memory location. 
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Here, is a simple example of how to generate code for a small basic block the variables t 

U and V are temporaries they are not live at the end of the basic block w is a programmer 

defined variable or non temporary and it is live at the end of the basic blocks. We have 

two registers available to us, so at the end of the basic block, we must store w back into 

its home location. So, the end we can ignore the values of t U and V which are present in 

registers at the end of the basic block. 

The first quadruple is A T equal to A star B the basic block, you know we are just at the 

beginning of the basic block. So, both the registers are free, they do not contain any 

value so obviously the only possibility is to generate a return the register R 0 that is an 

empty register because neither A or nor B or in registers. So, because we returned R 0 

and it does not contain a we generate A instruction load A comma R 0. Then mult B 

comma R 0 assuming that you know memory instructions R possible, now the register 

and address descriptors operandly read R 0 contains T and T in R 0. 

So, T is in R 0 and R 0 contains t the next instruction is U equal to a plus C, now we 

destroyed A. So, here a was loaded into register R 0, but then we destroyed R 0, sorry 

not A. Now, we need to load it again from the memory location corresponding to A to 

the register R 1 because R 0 which contain t has a next use, it will be use later. So, we do 

not want to realize R 0 and there is an empty register, we will realize R 1 A was not 

present in any register neither was C. 



So, we realized R 1 since a was not present in R 1, we moved A into R 1 by this 

instruction this was generated and then add C comma R 1 that is the operation. Now, the 

descriptors read as usual R 0 contains T and T in R 0 from the previous instruction and 

then now R 1 contains U and U in R 1. So, now we have run out of registers no more let 

us see what happens v equal to t minus u fortunately t is in a register and t is not live at 

the end of the basic block it is a temporary. 

So, we can use the register of t as the register for the result, so that is R 0, so sub R 1 

comma R 0 puts the value of v into the register R 0. So, this is the instruction which is 

generated, now the descriptors are updated to reflect these R 0 contains V U in R 1 V in 

R 0 R 1 contains U. So, this is what it iterates the last instruction in the basic block is W 

equal to V star U, so v is in a register that is R 0, U is in the other register that is R 1, so 

that information is obtained from the descriptors automatically. 

So, this addressed shift tells us that it is, so happened that both V and U can be dispensed 

it at the end of the basic block. So, we do not need those registers, they are not live at all, 

so we can the register of we can be used to store the value of W. So, mult r 1 comma R 0 

is generated, now R 0 will contain the result and it assign the which is actually going to 

contain the value of W. So, the descriptors now reflect that as well at the end of the basic 

block since W is live we must generate in instruction to store R 0 into its home location 

W. So, that is restored so that ends the goes basic block code generation, so this is how 

we generate code. 
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So, let us see better schemes of code generation, now the basic block code generation 

that we discussed does not guarantee any optimality. So, it simply says whenever 

something is available in a register let us try to keep it in the register as long as possible 

so there is some reuse, but the literature also explain you know carries descriptions of 

what are known as optimal algorithms. So, we are going to discuss two of these one is 

the Sethi Ulman algorithm which is somewhat restricted and the other is the dynamic 

programming based algorithm which is more general. 

So, let us begin our discussion on this Sethi Ulman algorithm, the Sethi Ulman algorithm 

generates the shortest sequence of instructions for a particular machine model and it 

possibly provably optimal. So, with respective to the length of the sequence, so the 

optimality is with respective to the number of instructions that the algorithm generates 

for a particular program. Again, this is at the basic block level and the basic block is 

assume to be an expression tree. So, if it is a dag it does not work, so we need to break 

the dag into trees and then apply the Sethi Ulman algorithm on each tree separately. 

So, what is the machine model that is used here the machine model says all the 

computations are carried out in registers. So, in other words computation itself cannot 

use any registers, but there are some exceptions. So, instructions are always of the form 

op R comma R or op M comma R, so this is the these are the only two possibility as for 

as the instructions are concerned. 



So, but the major most of the major competition are all carried out in registers, so this op 

can only be a load or store. So, we cannot really have a plus or minus or star as this 

particular op it has to be this op. So, we will have to do that it always computes the left 

subtree into a register and then reuses it immediately. 

So, this is very important the left sub tree must be computed into a register and then 

reuses it immediately this is required even for the proof of correctness and optimality 

etcetera. So, we will see how to you know liberal make the instruction formats a little 

more liberal later, but in this case they must be of the form of op R comma R op M 

comma R. There are two phases in this particular algorithm, the first phase is called the 

labelling phase and the second phase is called as the code generation phase. 
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What is the labelling phase, the labelling phase is very important it tries to it computes 

the minimum number of registers required to evaluate the tree with no intermediate 

stores to memory. 
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So, let me show you a picture, so if you take this particular tree expression tree, the 

labelling algorithm computes a number called you with value two as the min reg value of 

this particular tree. The implication is you require two and definitely not more or not less 

than two registers to evaluate this tree and how there will be no stores into memory 

locations at any one of the descend ends of this particular tree. Every result will be stored 

in a register itself. 
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So, this is the significance of this particular labelling algorithm. 
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So, what does it say it says a if n is the leftmost child of its parent then the label of that 

node is 1, otherwise label is 0 and for internal nodes. It takes if i 1 is not equal to l 1 is 

not equal to l 2, then label of n is the max of l 1 comma l 2 and if they are equal its 

simply increments by its 1, so l 1 plus 1 if l 1 equal to l 2. 
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Let me explain the algorithm with this example. So, we have this tree so for this parent 

this is the left most leaf, so this becomes A 1 this becomes A 0, similarly this is the left 

most child, so this becomes A 1 this becomes A 0. 



Similarly this is the left most child this becomes a one this becomes a zero again this 

becomes A 1 this becomes A 0 this are the leaves for this parent this l 1 is not equal to l 

2. So, the max is one similarly, for this it is one and for this also it is one for this parent l 

one equal to l 2, so this is l 1 plus, so this is 2 and for this parent again l 1 not equal to l 

2. So, this is max, so this is 2, so 2 is the min reg value, let see how the code really 

evaluates this tree. So, this is very simple I can load this value into a registers, so it value 

goes into A goes into R 0, that is instructions and then this can be in memory. 

So, I can say op of this R 0 comma B, then the result will be in R 0, similarly this result 

will be computed into R 1. Now, I have 0 result in R 0 and R 1 and the final result of n 

three will be in R 0, I can compute this in R 0. Now, the register R 1 is free, so I take that 

here, I will compute E into R 1, then n 4 into R 1 by op R 1 comma F and then finally, R 

1 and R 0 contain these two operands. So, this result can be computed into R 0 by op R 0 

comma R 1. So, this the way I can compute the tree into a register without intermediates 

stores into memory locations with just two registers will stop here and continue the 

lecture next time.  

Thank you. 


