
Principles of Compiler Design

Prof. Y. N. Srikant

Department of Computer Science and Automation

Indian Institute of Science, Bangalore

Lecture - 25

Machine code generation Part – 2

 (Refer Slide Time: 00:21)

Welcome to part two of machine code generation. So, in the part one of the lecture we

considered the main issues in a machine generation and I also gave you a sample of

generated code.

(Refer Slide Time: 00:34)

So, today we will continue looking at the samples and other material, so this is the

sample, a code that we saw last time. There is a function F 1 which has action code

segment 1 and then a call to another function F 2, another piece of code segment 2 and

then halt, whereas function F 2 has just a piece of code and then it returns. The activation

record for both the functions F 1 and F 2 are shown here. So, the activation record takes

48 bytes for F 1 and 76 bytes for F 2, because we do not have any jump sub routine

instruction. We really store the return address and then you know jump to the sub routine

itself. So, because of that we require a slot in the activation record of the collie to store

the return address as well.

(Refer Slide Time: 01:41)

Here is the code that is generated with the machine code for function F 1, so the code for

action code segment 1. So, that is here, now it is time to call the function F 2, so to begin

with we store the return address, so remember there is no need to you know allocate

activation records it is static allocation. So, the activation records have already been set

up in memory and they are permanent. So, the activation record for F 1 spans the

addresses 600 to 647 and the activation record for F 2 spans the addresses from 648 to

723.

(Refer Slide Time: 02:31)

So, this is just a replica of this picture return address data array a variable x variable y.

(Refer Slide Time: 02:37)

So, you can see that and similarly, this as well, so before we jump to the sub routine the

return address which is this particular address. The address of action code segment 2 that

is moved actually it is moved into location 648 which is the slot to store the return

address in the activation record of F 2. Then the parameter is actually pushed or moved

into location 652, so that is corresponding to parameter 1 here and then we execute a

simple jump instruction.

So, when we go to function F 2, we execute the code and now use the return address,

which is given on the activation record at location 648. So, indirect jump will take us

back to this particular address 264, so here we execute action code segment 2 and then

halt. So, this is the scheme when we do not have any jump subroutine instruction and it is

static allocation.

(Refer Slide Time: 03:47)

So, let us see what happens with jump subroutine instruction, the address code is three

address code is the same. It is just that this activation record does not have a slot for

return address here, so the number of bytes required is 44 here and 72 here.

(Refer Slide Time: 04:12)

What about the code itself, the machine code, now it is slightly simpler, so this would be

you know action code segment 1.

(Refer Slide Time: 04:24)

So, here suppose we and I have also change a little bit in the F 2, so there is no parameter

either just to simplify the code.

(Refer Slide Time: 04:36)

So, here we execute action code segment 1 and now since the return address is

automatically stored on the hardware stack when we execute the jump subroutine

instruction, there is no reason to store it. So, we execute JSR 400, which automatically

stores the address 248 on the hardware stack.

So, we go to this particular address a start executing it and then we say return. It

automatically picks up the return address from the stack and returns to this particular

address 248, activation record formats remains the same except that there is no space for

the return address otherwise there is not much change.

(Refer Slide Time: 05:18)

Now, the other varieties dynamic allocation and no jump subroutine instruction, so there

is code for function F 1, then action code segment 1 call F 2 action code segment 2 and

return and F 2 has action code segment 3. Then there is a recursive call to F 1 action

code segment 4 another recursive call to F 2 itself and then action code segment 5 and

return. So, the return address is stored here because we do not have a jump subroutine

instruction and there is local data and other information all the other a temporary sets

etcetera stored here. So, we require 68 bytes here and 96 bytes here, so there is also a

parameter in the function F 2.

(Refer Slide Time: 06:10)

Now, we need to set up activation records when we call functions, so we must initialize

the stack pointer say some value 800 that is where the stack may begin. So, let us move

that into the stack pointer so that it is a valid address. So, this is a address at which the

stack begins, now the code for F 1, it has code for the action code segment 1. Now, this

part is the allocation of the activation record add 96 to SP. So, that means we increment

the stack pointer by 96, so thereby allocating you know 96 bytes for the activation record

of F 2.

Now, we move 258, which is the return address to the first location on the stack pointer

move the parameter to the next location and then execute a jump. So, except for this part

the rest of it is the same, of course, there is a minor difference, we use the stack pointer

with indirect addressing in order to access the information on the activation record or put

something into the activation record.

So, all the information is access to SP, so that is why the indirect addressing scheme is

required once we jump to 300 that is the code for F 2. So, this has code for the action

code segment 3, now there is a recursive call, so the size of the activation record here the

size of the activation record for F 2 was 96, the size of the activation record here for F 1

is 68. So, 68 is added to SP thereby allocating the activation record for F 1 on the stack

the rest of it is similar the return address and there is no parameter.

So, jump to 200, so again you know the action would come to this point when the code

executes, so once the code completes it there is a return using the SP. So, indirect SP, so

that is precisely what brings us to you know the return point, so that is 258. So, that is the

this is the point, so we when we execute, sorry not this point here, so from here we the

return address would be 364, so 364 is the place where we return after we call to F 1 is

completed. So, at this point we must de allocate the activation record, so subtract 68

from SP, so that brings us back to the original position. Now, the code for segment four

is you know present.

(Refer Slide Time: 09:14)

Then, there is another recursive call, so please see that there is recursive call F 2 again.

(Refer Slide Time: 09:18)

So, again the stack allocation of the activation record happens return address is pushed

on to the stack the parameter is also pushed on to the activation record and a jump to 300

that is this code itself happens. So, this is how the recursive call you know takes place, so

the point time trying to make is that there is no difference between the recursive call and

non recursive call. The activation records are created in both cases dynamically rest of it

is simple you know whenever there is a return from sub routine it comes back and so on

and so forth.

(Refer Slide Time: 09:57)

Finally, dynamic allocation with jump sub routine instruction the only difference is there

is no return you know slot, there is no slot to store the return a address.

(Refer Slide Time: 10:11)

Rest of it is the same, so we have to allocate the activation record now the size is slightly

less and then we jump sub routine to 290 that is the address of F 2. So, this implies the

return address is stored on the hardware stack and then the control goes here. So, even

for the you know for example, the recursive call to F 1 it just allocates activation record

and jumps to 200 using JSR instruction.

Similarly, when we have a recursive call to F 2, we again allocate another activation

record move the parameter and then jump to the beginning of F 2 itself using the JSR

instruction. So, JSR return automatically takes care of you know returning to this

particular address following the place where we called because the return address is

stored on the activation in the hardware stack.

(Refer Slide Time: 11:13)

So, that is about the instructions which are really going to be generated for various types

of intermediate code. Now, let us begin our discussion on the code generator itself what

is the design that we are op for a code generator and there are at least two simple code

generators that we are going to discuss the scheme. For example, it treats each quadruple

as a macro, so if you take the quadruple A equal to B plus C as a generic quadruple plus

need not stand for the plus operator it could be plus minus star slash any one of these.

So, the code generated would be either this or this, so the point is every time we want to

do an operation on an operand. We will load it into a register do the operation store it

back into that memory location so that no registers are presumed to be news in any

particular translation scheme. So, here load a equal to you know A equal to B plus C says

load B into R 1 load C into R 2 add R 2, R 1 and store R 1 to A.

So, after the code is executed both R 1 and R 2 are free, similarly if you use this scheme

load B comma R 1 add C comma R 1 and store R 1 comma A the register R 1 will be

free after the entire sequence is executed. So, the advantage of doing this is we do not

have to perform any register location and we can simply write a macro for each one of

the quadruples. The macro will be expanded by and whenever we instead of you know

the code for a equal to b plus c will be just that call to the macro corresponding to the

quadruple.

So, the final output would be a sequence of macro calls, it should be expanded by the

macro assembler and the machine code would be generated the difficulty, here is

inefficient code repeated you know loads store of registers. So, every time since we load

the value from the register to the location rather load the register from the location. It

implies load and again and again, so we are not reusing the value which is already

present in a register in some other quadruple. So, this is very inefficient, but very simple

to implement, so if we are looking at a proto type compiler, then the first cut code

generator could be based on macro. So, slowly gradually as the A code is the compiler

debug, you know we could start designing a better code generator.

(Refer Slide Time: 14:25)

Then, scheme B is slightly more complicated, so here we track the values which are

present in registers and try to reuse them. So, the basic rule is if any operand is already in

a register take advantage of it. So, this also makes the code generator a little more

complicated, we require to track the value at registers when and make sure that we know

when it changes values and so on and so forth for that purpose we use register

descriptors and address descriptors.

So, these are two data structures that we apply a register descriptor actually tracks

register and variable name pairs. So, for each register it says which are you know

variables that contain the value at the same time you know. So, if a single variable can be

present in different registers, then that is also possible, so many registers can contain the

value of a single variable or a single register can contain the values of multiple variables.

We try to avoid the first situation that is many registers containing the same value of the

same variable make by making sure that we use the same register. Whenever there is a

need to use it, so the other situation is what we need to worry about that is a single

register containing a values of multiple names you know if there are all copies.

So, we need to track this and make sure that whenever that variable name occurs the

same register is used. So, pairs of this kind or stored in the register descriptor for each

register, what are the variable names that it can correspond to the in some way the

inverse of that would be with a variable name. What are the locations corresponding to it

so it is possible that a single variable name may have its value in multiple locations. It

will be definitely in memory, but it may also be in register and if it is a stack machine it

may be on the stack as well. So, it is necessary to track such pairs as well and in the

process of code generation these two data structures would be repeatedly updated.

(Refer Slide Time: 17:23)

So, the basic principle is to leave the computed result in a register as long as possible, so

what does that mean. So, we try to use a different register whenever we need an extra

register and if there are no registers only then we see. Now, it is time to empty a register

and store its value back in the memory location corresponding to it. So, every variable

has what is known as a home location corresponding to it, so the home location will be

updated whenever the register corresponding to it cannot be allow to keep the value

anymore the other point. When we need to empty a register would be the end of a basic

block, so I already a mention that the register will have to be empty.

When the register is needed for another computation, but at the end of the basic block

also we need to empty the register the reason is our code generation scheme is a basic

block oriented scheme. It does not look at any other basic block when it is generating

code for a particular basic block. So, at the end of the basic block it is stores all the

registers back into their home locations and then you know make sure that the register set

is vacant empty for the next basic block. So, at the end of the basic block do we have to

store, you know register into its home location in other words do we have to generate

instructions to store every register into its home location not necessarily.

For example, we use the concept of livens to help us in this in making this decision we

will discuss livens in great detail later during data flow analysis, but for a basic block the

definition is very simple a variable is live at a point. If it is used later end of course, if it

is used in other basic blocks then it is also live, but we will not bother about such a usage

because it requires data flow analysis to track such usage. Suppose, we know that data

flow analysis has been performed livens analysis has also be in performed. So, at the end

of the basic block, we know which variables are going to be used in other basic blocks

and which variables will not be use definitely in other basic blocks.

If this information is known to us I am now talking about something, which we have not

yet discussed livens is available by data flow analysis that is the assumption here. Then

we can make a sophisticated decision, so on exit from a basic block we need to store

only those live variables that are not in their memory locations already. So, if you look at

the address descriptor it will tell you where the variable has its value is it in the home

location also or is it just in a register. If it is only in a register, then you know when we

need to generate a instruction to copy the register value to its home location but if it is

also in its home location.

Then, we do not have to generate such an instruction that is one the second is what if the

variable is not live at all if the variable is not live. Then it will be not use further, so

whether it is in a register or home location it really does not matter. So, we do not have

to generate any instruction to store it back into their home location. If the livens

information is not known to us, then we must assume that all variables are live at all

times. So, this is you know most pessimistic assumption which leads to bad code, but

under certain circumstances we may have to leave with this assumption.

(Refer Slide Time: 21:48)

Let us take an example, here is a quadruple A equal to B plus C as I said plus is a generic

operator if B and C are in registers and in say R 1 and R 2. So, B is in R 1 c is in R 2.

Now, we can possibly generate an instruction add R 2 comma R 1 which brings the result

into R 1 cost of course, is one because it uses only registers when is this legal according

to the scheme that we are using. We need to keep the value of a variable in a register as

long as possible, so this scheme this instruction is legal only if B is not live after the

statement, so B is in R 1 and now we are over writing B rather R 1.

So, the value available in R 1 is lost if the value of R 1 is going to be use later, we would

possibly have not you know updated its home location. So, generating this instruction

when R 1 B is still live rather then would be incorrect this is legal only if B is not live.

Otherwise, if we are force to empty the register R 1, we will have to generate instruction

to move the contents of for R 1 to the home location of B.

Then, use the a register R 1, so we will see that also a little later, so this is you know that

means we need to check where to generate rather where to store the result the second

possibility is r one contains B, but C is in memory well you could simply add C comma

R 1. So, generate this instruction cost is slightly higher than the previous one that is cost

two that is understandable because C is in memory, but the result is in R 1 again this is

legal only if B is not live after the statement.

So, that is another thing that we need to keep in mind third possibility is we load C into

R 2 then add R 2 comma R 1. So, again the cost is even higher and the result is in R 1

again this is live legal only if B is not live after the statement, but this could be attractive

if the value of C is subsequently used, so it can be now taken from R 2 itself because we

loaded it into R 2.

(Refer Slide Time: 24:46)

So, the examples are supposed to give you some idea of the complexity involved in code

generation that is we need to check the address and the register descriptor at various

points in time. We also require some extra information called the next use information to

make an inform decision about which register to uses etcetera. So, next use information

is used both in code generation, and our local register allocation, which we are going to

discuss very soon. So, what is the definition of the next use information, so the next use

of a in quadruple i is j.

So, in other words we have a quadruple i which defines a value for A, so there is an

assignment A equal to something and then we have you know several other quadruples

before quadruple j which uses A. The most important point here is control flows from i

to j, but there are no more assignments to A. So, the value of a is not changed, then the

value computed here is used in this quadruple.

So, we say that next use of a in quadruple i is j, so we have to compute the a next use

information, we will see how to use it a little later. Obviously, we need to check for this

condition and then attach information about the next use of i to the quadruple to the

quadruple i, so in computing, next use we assume that on exit from the basic block all

temporaries are considered non live.

So, this is a correct decision because we do not reuse temporaries across basic blocks we

generate new temporaries whenever necessary all programmer defined variables and non

temporary variables are suppose to be live. So, we did not perform any livens analysis

data flow analysis and that is the reason why we are resuming this. So, then each

procedure and or function call is suppose to start a new basic block, I already discussed

this in the you know basic block discussion lecture on basic blocks, so otherwise we

have a problem of killing all the quadruples in the basic block.

So, this is best you know sent to a different basic block next use is computed in a

backward scan on the quadruples in a basic block starting from the end. I will give you a

example to explain the procedure and of course, the next use information is stored in the

symbol table so for that particular variable the next use information is also attached.

(Refer Slide Time: 27:54)

So, here is the example for computing next use, so here this is a simple basic block it is

the same dot product example it is just that the quadruple. Some of them are in a

different shape prod equal to prod t 6 instead of you know some temporary equal to prod

plus t 6 and temporary equal to prod equal to temporary A. Similarly, here so this is

slightly already improved version in other words local optimization has been applied and

some code rewriting has also been done to take care of such possibilities.

So, we start from here this quadruple it uses i, there is no writing into i it only reads i, so

along with the variable i in the symbol table we attach the information the first fields

says live or not live. The second fields says what is the last use of that variable and the

third field says either next use or the number of the quadruple or says no next use.

So, in this case the variable i is a programmer define variable, so it is live even after exit

from the basic block the last use of the variable i is eleven self-quadruple and then there

is no next use of the variable because the basic block ends here. So, when then we go to

the previous quadruple i equal to i plus 1, so here i is used on left hand side and also the

right hand side. So, when we say i is live that means it must be used it is being assigned

here and the assigned value must be used later it is indeed being used later. So, the

variable is live this can be in ford very easily by looking at the symbol table for i we are

updating it.

So, I was actually live and of course, it will be live even now because it is a programmer

define variable and the last use was 11. So, if the last use information was 0, then this

would have been the first definition of i, but the last use information says 11. So, i value

which is defined here will be used in 11, so that is why this is the variable is live the last

use is ten so that is the self-quadruple, the right hand side. Then the next use is 11 that is

this quarter pal, so we have updated the information of this, so how did we say new 11

that was picked up from l u 11 and copied into this place.

Then this quadruple I will explain just this to show you the procedure prod equal to prod

plus t 6. So, there are two variables prod and t 6 for prod, it is live because it is a

programmer defined variable which is defined here. Then you know possibly use later

the last use of the variable is 9. So, that is right hand side part which is here and there is

no next use for the variable within the basic block because this is the last definition and it

is not used again the variable t 6 is a temporary.

So, this is the first use of that variable and there is no next use again, so this is not live

and then from you know when I say first use when we are in the scanning process. It is

not live, because there are no more uses here last use nine, that is this basic block and

there is no next use of t 6 within the basic block itself.

So, this continues so let us look at this quadruple at address 5 it is t 3 equal to t 2 bracket

t 1 indexed assignment. So, t 3 is now you know is defined here, so then you know it is

the livens end here right because its being defined here and then the last use is 0 because

it is defined here and then the next use is 8 that is because t 3 is being used here. So,

from this definition the usage is up to this point so that is the next use 8, sorry that is the

next use 8.

So, we say last use is 0 because t 3 is defined here, so the whatever value it had is

destroyed where as in this case there was a usage here that is why the last use of set as 9.

So, whenever it is a defined definition t 6 equal to t 3 star t 5 l u will be 0, so here also

then here also and here also here as well here as well the next use information tells you

where that particular variable will be used. So, t 2 and t 1, so t 2 is not live because you

know it is not used anymore and then last use was 5. So, that is this itself and then there

is no next use for t 2, similarly for t 1 it is not live last use was self-quadruple, but there

is a next use in quadruple 7.

So, that is this use, so this can be picked up from the symbol table for t 1 itself, so the

symbol table for t 1 here since last use seven, so that would have picked up and copied

here. So, this is the way in which we compute the next use information by doing a

backward traversal of the quadruple array.

(Refer Slide Time: 34:11)

So, now we have the next use information already computed, now we are ready to

discuss the algorithm for code generation. So, we as already mention we deal with one

basic block at a time and we assume that there is no global register allocation. There is a

local register location, which is called, we are going to discuss that in a few more

minutes. So, here is the code generation algorithm for each quadruple A equal to B op C

do the following first of all we need to find a location to perform the operation B op C

say that is l.

How we find l, this is returned by the function call garter, it could be a register or it could

be a memory location, but a preference is always given to a register. We will see details

of GETREG later so let us assume that allocation either a register or a memory location

has been returned by GETREG and that is where the operation B op C will have to be

perform now where is B, B is in a place B prime. If we look up the address descriptor for

B, it will tell us where B is to begin with when the generate code for the first quadruple

in the basic block.

All these descriptors are empty, so the variable B will not even be found anywhere you

know, it will be only in the home location that is the only thing we can say. So, always at

the beginning all the variables will be in their home locations and all the register would

be empty, but as we go on generating code very soon. We will see that some of the

variables will be found in registers, so we find the place B prime or the location B prime

where B is present and obviously we prefer the register for B prime.

If it is already available both in memory and register suppose B prime is not in l, so l is

the place where we perform B op C. So, we generate the instruction load B prime comma

l, so its moves the contents of B prime to the location l and gets it ready to perform the

operation op along with another variable C the same thing will have to be done to C as

well.

So, we need to answer the question where is C we find the place C prime using the

address descriptor for C and the same ruled holds prefer a register if it is available. Now,

we are ready to generate the instruction op C prime comma l, so c prime is the place

where C is present l is the place where B is present. If it was not present, we have moved

it and now the location l will also have the result after the execution of this instruction.

So, that is the translation which is generated for A equal to B op C, but after this we have

still not you know done anything to the descriptors, so the descriptors for l and a must be

updated.

So, if l was a register we have to update the register descriptor if l was allocation we

must update the address descriptor the same holds for a as well. So, remember we there a

is not in the picture anywhere here we have not generate any instructions to move the

result into a not yet that is why this updating the register descriptor for A becomes very

important assume that l is a register most of the time it is. So, let us assume that l is a

register, now some register are contains the value at execution time after this instruction

is executed, so that is the value of A.

So, we are going to associate R with a in both the descriptors in the register descriptor,

we will say R and A are associated and in the address descriptor. We will say A and R

are associated, so the remember A’s home location is not updated it is now just present in

a register.

So, we must keep in the mind we want to empty the register will have to move the

generate an instruction to move the value of the register into the home location for a the

second updating that we need to do are the book keeping that we need to do. If B or C B

and or C have no next uses, so next uses is available in the symbol table. So, if there is

no next use that means we must update descriptors to reflect this information so that

there is no need to you know keep the values of B and C in the registers that they are

supposed to correspond to, so we can discard that value.

(Refer Slide Time: 39:50)

So, what is left is to discuss the function GETREG, so its finds the location l for

computing a equal to A op C first op possibility if B is in a register say R and R holds no

other names. This is important if R corresponds to many variables, then we cannot return

the register R because we would we destroying more than one variables.

So, we do not do that secondly B has no next use and B is not live after the basic blocks,

so that means the value of the B will be used in this instruction and then it is useless so in

such a case if b is available in a register. We can very happily used that register to store

the final result also this is the best possible situations. So, return R, suppose this is not

possible failing one return an empty register if available, so we will have a stack of rather

a set of registers available. So, return one of the empty registers, but if we have used up

all the registers then two is also not possible. So, failing two if A has a next use in the

block that means a will be used again or if B op C needs a register.

So, you cannot do without a this operation op cannot be done without a register for

example, op is an indexing operators so we have a equal to B square bracket C. So, in

such a case the op is an a indexing operator which can be executed only using a register.

So, in both cases we must compulsorily assign a register to l and there are no registers

which are free. So, we must use a heuristic to find an occupied register and then empty it,

so what possibilities exist in empty you know in finding an occupied register one

possibility is a register whose contains are referenced furthest in a futures.

So, the basic block has many instructions and A, at particular point, you know the

register that we want to free may be used only much later. So, we can say may be there

will be a free register at that time, so let us not worry too much and free that registers, so

this is the heuristic to find an occupied register another possible heuristic is the number

of next uses is the smallest. So, look at all the registers see which one has the smallest

number of next uses smallest number of next uses. So, then you know we can realize that

particular register which has a smallest number of next uses.

So, that means if we realize that register which has a smallest number of next uses the

number of loads for that particular variable will be kind of minimum. So, these are the

two popular heuristics which are used in local register location, so we are found a

register now, but it contains some valid value. So, we must spill it by generating an

instruction move R comma MEM, where MEM is the home location for the variable in

R, so and that variable obviously should not be already available in MEM. Then there is

no need to generate this instruction, then obviously we must update the register and

address descriptors to say that this value which was corresponding to this R is you know

now will hold a different variable and so on and so forth.

If A is not used in the block or no suitable register can be found then return a memory

location for l. So, this is possible provided the architecture permits, you know memories

operands also as instructions in the case of risk architectures. You cannot have any other

instruction accept load and store with memory operands, so we must compulsorily use a

register, then we use when we whatever op operation is to be performed, if there is not

the case, then we return a memory location.

(Refer Slide Time: 44:53)

Here, is a simple example of how to generate code for a small basic block the variables t

U and V are temporaries they are not live at the end of the basic block w is a programmer

defined variable or non temporary and it is live at the end of the basic blocks. We have

two registers available to us, so at the end of the basic block, we must store w back into

its home location. So, the end we can ignore the values of t U and V which are present in

registers at the end of the basic block.

The first quadruple is A T equal to A star B the basic block, you know we are just at the

beginning of the basic block. So, both the registers are free, they do not contain any

value so obviously the only possibility is to generate a return the register R 0 that is an

empty register because neither A or nor B or in registers. So, because we returned R 0

and it does not contain a we generate A instruction load A comma R 0. Then mult B

comma R 0 assuming that you know memory instructions R possible, now the register

and address descriptors operandly read R 0 contains T and T in R 0.

So, T is in R 0 and R 0 contains t the next instruction is U equal to a plus C, now we

destroyed A. So, here a was loaded into register R 0, but then we destroyed R 0, sorry

not A. Now, we need to load it again from the memory location corresponding to A to

the register R 1 because R 0 which contain t has a next use, it will be use later. So, we do

not want to realize R 0 and there is an empty register, we will realize R 1 A was not

present in any register neither was C.

So, we realized R 1 since a was not present in R 1, we moved A into R 1 by this

instruction this was generated and then add C comma R 1 that is the operation. Now, the

descriptors read as usual R 0 contains T and T in R 0 from the previous instruction and

then now R 1 contains U and U in R 1. So, now we have run out of registers no more let

us see what happens v equal to t minus u fortunately t is in a register and t is not live at

the end of the basic block it is a temporary.

So, we can use the register of t as the register for the result, so that is R 0, so sub R 1

comma R 0 puts the value of v into the register R 0. So, this is the instruction which is

generated, now the descriptors are updated to reflect these R 0 contains V U in R 1 V in

R 0 R 1 contains U. So, this is what it iterates the last instruction in the basic block is W

equal to V star U, so v is in a register that is R 0, U is in the other register that is R 1, so

that information is obtained from the descriptors automatically.

So, this addressed shift tells us that it is, so happened that both V and U can be dispensed

it at the end of the basic block. So, we do not need those registers, they are not live at all,

so we can the register of we can be used to store the value of W. So, mult r 1 comma R 0

is generated, now R 0 will contain the result and it assign the which is actually going to

contain the value of W. So, the descriptors now reflect that as well at the end of the basic

block since W is live we must generate in instruction to store R 0 into its home location

W. So, that is restored so that ends the goes basic block code generation, so this is how

we generate code.

(Refer Slide Time: 49:36)

So, let us see better schemes of code generation, now the basic block code generation

that we discussed does not guarantee any optimality. So, it simply says whenever

something is available in a register let us try to keep it in the register as long as possible

so there is some reuse, but the literature also explain you know carries descriptions of

what are known as optimal algorithms. So, we are going to discuss two of these one is

the Sethi Ulman algorithm which is somewhat restricted and the other is the dynamic

programming based algorithm which is more general.

So, let us begin our discussion on this Sethi Ulman algorithm, the Sethi Ulman algorithm

generates the shortest sequence of instructions for a particular machine model and it

possibly provably optimal. So, with respective to the length of the sequence, so the

optimality is with respective to the number of instructions that the algorithm generates

for a particular program. Again, this is at the basic block level and the basic block is

assume to be an expression tree. So, if it is a dag it does not work, so we need to break

the dag into trees and then apply the Sethi Ulman algorithm on each tree separately.

So, what is the machine model that is used here the machine model says all the

computations are carried out in registers. So, in other words computation itself cannot

use any registers, but there are some exceptions. So, instructions are always of the form

op R comma R or op M comma R, so this is the these are the only two possibility as for

as the instructions are concerned.

So, but the major most of the major competition are all carried out in registers, so this op

can only be a load or store. So, we cannot really have a plus or minus or star as this

particular op it has to be this op. So, we will have to do that it always computes the left

subtree into a register and then reuses it immediately.

So, this is very important the left sub tree must be computed into a register and then

reuses it immediately this is required even for the proof of correctness and optimality

etcetera. So, we will see how to you know liberal make the instruction formats a little

more liberal later, but in this case they must be of the form of op R comma R op M

comma R. There are two phases in this particular algorithm, the first phase is called the

labelling phase and the second phase is called as the code generation phase.

(Refer Slide Time: 53:10)

What is the labelling phase, the labelling phase is very important it tries to it computes

the minimum number of registers required to evaluate the tree with no intermediate

stores to memory.

(Refer Slide Time: 53:24)

So, let me show you a picture, so if you take this particular tree expression tree, the

labelling algorithm computes a number called you with value two as the min reg value of

this particular tree. The implication is you require two and definitely not more or not less

than two registers to evaluate this tree and how there will be no stores into memory

locations at any one of the descend ends of this particular tree. Every result will be stored

in a register itself.

(Refer Slide Time: 54:06)

So, this is the significance of this particular labelling algorithm.

(Refer Slide Time: 54:12)

So, what does it say it says a if n is the leftmost child of its parent then the label of that

node is 1, otherwise label is 0 and for internal nodes. It takes if i 1 is not equal to l 1 is

not equal to l 2, then label of n is the max of l 1 comma l 2 and if they are equal its

simply increments by its 1, so l 1 plus 1 if l 1 equal to l 2.

(Refer Slide Time: 54:45)

Let me explain the algorithm with this example. So, we have this tree so for this parent

this is the left most leaf, so this becomes A 1 this becomes A 0, similarly this is the left

most child, so this becomes A 1 this becomes A 0.

Similarly this is the left most child this becomes a one this becomes a zero again this

becomes A 1 this becomes A 0 this are the leaves for this parent this l 1 is not equal to l

2. So, the max is one similarly, for this it is one and for this also it is one for this parent l

one equal to l 2, so this is l 1 plus, so this is 2 and for this parent again l 1 not equal to l

2. So, this is max, so this is 2, so 2 is the min reg value, let see how the code really

evaluates this tree. So, this is very simple I can load this value into a registers, so it value

goes into A goes into R 0, that is instructions and then this can be in memory.

So, I can say op of this R 0 comma B, then the result will be in R 0, similarly this result

will be computed into R 1. Now, I have 0 result in R 0 and R 1 and the final result of n

three will be in R 0, I can compute this in R 0. Now, the register R 1 is free, so I take that

here, I will compute E into R 1, then n 4 into R 1 by op R 1 comma F and then finally, R

1 and R 0 contain these two operands. So, this result can be computed into R 0 by op R 0

comma R 1. So, this the way I can compute the tree into a register without intermediates

stores into memory locations with just two registers will stop here and continue the

lecture next time.

Thank you.

