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So, in the last lecture we discussed the requirement for code optimization, types of 

optimizations, and we also discussed the procedure for building a control flow graph. 

Today we will continue with our discussion on value numbering and its use in local 

optimizations. 
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To do a bit of recap, so here is the example that I showed you in the last lecture. This is a 

basic block containing ten intermediate codes statements and this is the directed acyclic 

graph corresponding to this basic block. The most important feature of this directed 

acyclic graph is that it can enable several optimizations. For example, here is 4 star a 

which is actually a constant, because a is constant. So, this constant propagation and 

constant folding can be performed using the directed acyclic graph representation. It 

cannot be so easily performed using the quadruple representation. 

Here, is a you know here is an expression i star j and here is another expression e star j, 

but both are equivalent because e receives the value of i in during this execution. So, t 3 

and t 1 are identical in value at all times and we can use t 1 instead of t 3 and delete 

quadruple number 8. So, this is called common sub expression elimination and this can 

also be performed using the directed acyclic graph representation. 
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But as I explained in the last lecture it is you know useless to try and build the directed 

acyclic graph using link data structures. 
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Because, every time we want to locate some node you will have to start from top of the 

directed acyclic graph and search the entire graph as such so, this is a waste of time. 
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The technique that is normally used is called value numbering. So, what we really do is 

we assign numbers to expressions in such a way that two expressions receive the same 

number. If the compiler can prove that they are the equal for all possible program inputs. 

We use hash tables then you know hashing technique rather in this value numbering 

optimization. And we assume that there are quadruples with binary or unary operator. 

So, there are 3 table hash table, value number table and name table. So, and the value 

numbering technique can be used to eliminate common sub expression do constant 

folding and constant propagation in basic blocks. We can also take advantage of the 

commutativity of the operators, addition of 0, multiplication of by 1 etcetera. 
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So, here are the 3 you know data structures that we are going to use in our technique. 

The first one is the hash table entry so the table will have records of this type, the first 

field in the record would be the expression itself and the second field would be the value 

number. So, what we do is you know compute a hash value for the expression using a 

suitable hashing function. 

The hashing function must have you know must take it into consideration not only the 

two operands of the expression, but also the operator itself the type of the operator. And 

once we get a hash value we search the hash table and at that particular hash value we 

insert the expression and also a unique number called the value number itself. So, value 

number is nothing but, a unique number assigned to each expression. So, we are going to 

assign a value numbers using a counter. 

The second table entry is the valnum table entry so this is the valnum table and the 

record structure is shown here. So, this is indexed by the hash value of the name so there 

is name and then the value number. So, the difference between these two is that this 

stores expressions and this store names. So, we cannot use the same hashing function for 

both expressions and names and that is the reason why we are using two different tables 

and two different hashing functions. 

The third table is the name table its entry is shown here. So, the entry has one field 

known as the name list another field known as the constant value and the third field is 



known as the constant flag. So, the this table is used to store the constant values of 

certain names so, if there is more than one name which actually stores the same value 

then it is formed in to a list. So, as I have written here the first name on the name list is 

the defining occurrence and it replaces all other names with same value number with 

itself or its constant value. 

So, if there are 5 name here we really need to use only one of them in all places and the 

other 4 can be deleted from the program. If there is any computation associated with that 

name that can also be deleted along with it. So, if the name does not have a constant 

value associated with it then the cons flag will be false and the constant value field does 

not have any relevance. If it indeed has a constant value then this will be set to true and 

the constant value can be read from this field. 
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So, let us understand the algorithm using a you know an example program. So, let us 

assume that this is the high level language program that is given to us so, a equal to 10 b 

equal to 4 star a, c equal to i star j plus b, d equal to 15 star a star c, e equal t I and then 

again c equal to e star j plus i star a. So, when we generate intermediate code you know 

for this sequence it obviously it will be split into many instructions. For example, we 

may have a equal to 10 then b equal to 4 star a as it is. 

So, now the i star j goes into a temporary and then we have c equal to t 1 plus b, then 

again 15 star a goes into another temporary and d becomes t 2 star c. Then e equal to i 



remains as it is t 3 is e star j, t 4 is i star a and c becomes t 3 plus t 4. So, we have these 

10 quadruples in our basic block so let me explain how the value numbering technique is 

applied on this program. So, we start with the first quadruple so remember that there are 

three tables. The first one is the hash table for expressions, the second one is the name 

table for names. 
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The third one is rather the second one is the valnum table for names and third one is the 

name table for constants. 
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So, this is a equal to 10 so the quadruple after value numbering remains the same what 

we do is enter this a into the valnum table and also the name table because this is a 

constant. And the effect of that is seen in the second quadruple itself as soon as we have 

4 star a you know and of course, I forgot to mention one thing a is a new name that we 

have encounter. So, as soon as we enter it into the hash table we are going to generate a 

new value number for it and assign that particular value number. 

So, when we have b equal to 4 star a the first thing we do is search for a in the valnum 

table it is indeed found there. And then you know by using its value number we can 

search the name table and find the value to be a constant that is 10. So, immediately we 

know that 4 star a can be computed at compile time itself you know it does not vary 

during execution. So, 4 star a can be computed as 40 and the quadruple can be rewritten 

as the b equal to 40. 

Now, b is a new name so we generate a new value number for it enter it into the valnum 

table and assign it a new value number. So, this is the second thing that happens then we 

have the third one i star j. Similarly, i is you know i and j are new names and they need 

to be entered into the appropriate entries into the table, i star j is a new expression so we 

need a different value number for the expression also. So, the important thing is the name 

t 1 and the expression i star j will be assigned the same value number. So, whenever we 

find t 1 we know it is i star j and whenever we find a i star j we know that it is t 1 itself 

rather we can use t 1 for that i star j. 

Now, this quadruple remains the same the next one is c equal to t 1 plus b so t 1 is 

already in the tables, b is also present in the tables we find that b is a constant it is from 

the name table. So, we can rewrite the quadruple as c equal to t 1 plus 40 and this new 

quadruple is now hashed into hashed and then entered into the hash table. The same 

thing happens with t 2 equal to 15 star a so, a is found as constant. So, it can 15 star a 

becomes 150 and the quadruple is rewritten, t 2 star c become as 150 star c, e equal to i 

remains the same. 

The important thing here is e and i now get the same value number i had the same some 

value number before so, now e also gets the same value number. Now, when we search 

for e star j in the quadruple t 3 equal to e star j the value number of e is the same as the 

value number of i and value number of j already exist. So, in fact we end up hashing e 



star j into the same slot as i star j because the value number of e is same as the value 

number of i. 

That means, this particular you know once the value number is the same the expression 

remains same. So, essentially we can rewrite this t 3 quadruple as t 3 equal to i star j. In 

fact, even we can delete this quadruple because all occurrence of t 3 can be replace by t 1 

you know because t 1 is also i star j then t 4 becomes i star a which is i star 10. And 

finally, we have another occurrence of c defining occurrence t 3 plus t 4. The old c is not 

relevant anymore so, this c is given a new value number and entered to the tables and 

instead of t 3 we are going to use t 1 and t 4 remains as it is. 

So, 5 this particular t 2 equal to 150 is not necessary anymore because it is only use of t 2 

was only in d equal to t 2 star c and once we have expanded t 2 to 150 this quadruple is 

unnecessary. This of course, is a common subexpression i star j has already being 

computed so, we do not have to compute i star j again and we can use t 1 place of t 3 we 

have already done that. So, quadruple number 8 can also be deleted so this is how we 

catch common subexpressions. 

And this code is red code because we never use the value of t 2 again we can eliminate 

such red code and eliminate common subexpressions as well. And in the mean while we 

have all this has been possible because we propagated the value of a to these quadruples. 

it was prorogated to this place and this place. And of course, this place and here for 4 star 

a and 15 star a we also did constant folding that this evaluation of the expression at 

compile time. 



(Refer Slide Time: 13:26) 

 

So, what I have written is the record of what I just now explained so a equal to 10. So, a 

is entered into the valnum table with a V n of say 1 and into the name table with a 

constant value of 10. Then b equal to 4 star a so, a is already found in the valnum table it 

is constant value is 10 in the name table. So, as I already explain we have performed 

constant propagation so we have evaluated 4 star a so that means, we have performed 

constant folding. 

Now, b is enter in the valnum table now a new value number say 2 is given to it and into 

the name table with a constant value of forty, t 1 equal to i star j. So, as I already said i 

and j are entered into the tables i star j is entered into the hash tables and t 1 is entered 

into the valnum table with the same V n as i star j. 
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Similar, actions continue till e equal to i now e gets a same value number as i. So, in e 

star j, e you know we have e and i with the same value number so e star j is nothing but, i 

star j, i star j has already being entered into the tables so we have got a common 

subexpression when we search for e star j. So, from now on t 3 it can be replaced by t 1 

and this can be deleted. So this of course, t 3 plus t 4 already exist and have new value 

numbers so t 3 plus t 4 is entered into the hash table. The assignment is to see so c gets a 

different value number and the old c should be killed so quadruples are e numbered after 

the deletions. 
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So, let me show you the tables after we have completed all this operations so i star j was 

entered into the hash table you know let us begin here. So, a got a value 1 b got a value 2 

then we had i star j so a and j got the value of 3 and 4. Then i star j was entered into the 

table with a value of 5 so t 1 was assigned i star j so it gets a value of 5. Then we had c 

so it got a value of 6 which is the same as t 1 plus 40 then I will explain 11 very shortly. 

So, t 2 gets a value 7 and this 150 star c gets 8 and d also gets the same value because it 

was an assignment. Then observe that e has the same value number as i so e has the same 

value as the 3 which is the i’s value number, t 3 has the same value number as t 1 so that 

is 5 and finally, t 4 has the value number 10. So, i star 10 has the value number 9 and t 1 

plus t 4 has the value number 11. So, this is how the value number table is used for the 

various optimizations. 
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Now, so I mentioned that it is possible to exploit the commutatively of operators. So, in 

other words if you have an expression i plus j in the hash table or let us say j plus i in the 

hash table and we try searching for the other. So, we search for an expression i plus j it 

fails then try searching for the j plus i may be j plus i was already present in the table and 

the i plus j was not present. But, plus is commutative so whether we use i plus j or j plus i 

the value remains the same. And therefore, we can conclude that i plus j and j plus i are 

equivalent in all cases. 



So, searching for one of the two forms and then using the value number of that particular 

expression, which was found in the hash table will not change in the value or rather 

result produced by the program. So, they can be deemed as the equivalent and given the 

same value number. So, we do not even have to enter it into the hash table so we because 

we always search both i plus j and j plus i in this hash table, if one of them is found we 

assume that there is an equivalence. 

If there is a quadruple i plus 0 it can be replaced with the quadruple x equal to i. And 

similarly, the quadruple j star 1 can replaced with j so the assignment becomes y equal to 

j. So, in both these types of replacements the value number of x becomes the value 

number of y and value number of i becomes the value number j. So, quadruple whose 

left hand side variables are used later can be marked as useful all other unmarked 

quadrupled can be deleted at the end. 
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So, I also mentioned that c gets a new value number 11 because it was assigned again the 

old value of 6 is not used anymore. So, such value numbers you know the names are 

killed and then reused. So, the value number 6 should never be used again so it should be 

the value 11. So, that is how you know there could be the possibilities of i and j getting 

changed you know so and then we recompute the value of i star j. So, in such cases the 

second occurrence of i star j cannot be the same as first occurrence. 



So, as soon as there is an a there is some you know i star i and j are changed so we need 

to make sure that we do not use the old value of a i star j. So, that is another thing that we 

need to keep in mind when we are using the value numbering technique. Of course, a 

sometime it happens automatically as soon as the value the variable i is resigned the 

value, the old value number of i is thrown away. So, we will never hash into the same 

location as the old value of hash value of i star j. So, that is in some sense automatically 

taken care of if we do this killing for the old value of c. 
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The next important thing is how to handle array references, scalar variables do not pose 

this problem, but consider the assignment of arrays. So, we have the first quadruple x 

equal to a i and then we have another quadruple following it a j equal to i. So, it is not 

necessary that these two are in the same you know immediately after one another. There 

could be other quadruples between 1 and 2 which have nothing to do with either x or a.  

So, in that sense this is the next quadruple which is relevant to this first statement, a j 

equal to y suppose i and j are the same. So, then this quadruple really is a i equal to y that 

means, the old value of a i has changed. So, when we take another quadruple z equal to a 

i and suppose i and j were the same we really cannot use the old value of a i which is 

available in x. So, in other words we cannot replace the above sequence by x equal to a i, 

a j equal to y and z equal to x. 



So, we are trying to do common sub expression elimination here by not using a i by 

rather using reusing the value of a i which is present in x, but this is illegal because most 

of the time we do not know whether i can be equal to j or not equal to j. If we definitely 

know that i and j cannot be the same then we can use this sequence, but if we have no 

idea whether i and j are equal or not equal then it is not possible to rewrite the sequence 

in this fashion. 

So, the effect is when a j equal to y is processed during value numbering all the 

references to array a so far are searched in the tables and are marked as killed. So, there 

could be many such references in above this as soon as we get a j equal to y this is an 

assignment to a. So, there will be many references to a of i, a of k, a of l etcetera, etcetera 

above this a j equal to y. All these references will have to be killed they cannot be reused 

anymore because we do not know whether j equals any of those index values which have 

occurred earlier. 

So, in this sense the x equal to a quadruple will also be killed, once it is killed the 

automatically z equal to a i will not replace it as will not be replace by z equal to x. So, 

as I already mentioned the fresh table entries have be made for z equal to a i. And unless 

we know i is not equal to j we cannot really do this common subexpression elimination. 
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A similar, problem arises when we handle pointers and also procedure calls so, first let 

us look at pointer references. So, there is x equal to star p and then after a couple of 



statements which do not affect x or p we have star q equal to y. So, suppose p and q 

could be pointing to the same object so in that case, we really in effect have star p equal 

to y which implies that the object p is pointing to has changed. Therefore, even though x 

stores the object pointed to by p we cannot say z equal to star p becomes z equal to y 

rather z equal to x. 

So, in this sequence is illegal that is because in most cases we have no idea whether p 

and q are pointing to the same object or are not pointing to the same object. If pointer 

analysis has been carried out then the result of that pointer analysis may affirmatively 

say p and q do not point to the same object. So, in such a case this sequence can indeed 

be replaced by this sequence otherwise we cannot. So, if we do not know whether p and 

q point to the same object as soon as you process star q equal to y, all the table entries 

created so far will have to be killed. 

So, p and q can point to any object in the basic block because we have no idea what p 

and q point to so we must assume that it can point to any object in the basic block. So, 

every one of the entries in the table up to this point will have to be marked as killed. That 

means, the table is automatically emptied and when we use when we process z equal to 

star p. The killed quadruples are not used for common subexpression elimination, fresh 

table entries have to be made for z equal to star p. 
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And of course, as I already said if we know that apriori which objects p and q point to. 

Then table entries corresponding to only those objects need to be killed we do not have 

to kill all the objects, all the statement and all the objects in the table. Procedure calls are 

handled in a similar way they also have similar side effects. 

For example, if we did not analyze the program the analysis called dataflow analysis we 

need to assume, that a procedure call can modify any object in the basic block how can 

this happen. Suppose, we have a call by reference parameters and we change them call 

by reference parameters when they are changed the originals also get changed. So, the 

variables which are accessed in the basic block will also or anywhere else you know with 

the same name as the call by reference parameter will get changed. 

Similarly, if there are global variables within procedures and the global variables are 

changed within the procedures. They will also affect the other variables of the basic 

block because global variables may be used anywhere in the program they will also be 

used in the basic block. So, all these will affect the variables in the basic block, why are 

we looking at only the basic block. The reason is the value numbering technique restricts 

itself to the basic block so it is affect will not percolate to other basic blocks. 

So, we do not have to worry about we after not detecting common subexpressions across 

basic blocks at this time. So, we do not really have to worry about the effect of all these 

beyond the basic block, but if the procedure call can be separated into a different basic 

block. Then this problem automatically gets eliminated because we do not consider 

effects across basic blocks. If that is not so, if the procedure call is in the mid stuff a 

basic block then all the table entries created so far for that basic block will have to be 

marked as killed. And no common subexpressions can be detected and used. Therefore, 

usually we make a procedure call into separate basic block along with its parameter 

valuation and so on. 
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Now, having done this local optimization on basic blocks so is it possible to actually 

processes a sequence of basic block. And say look let me do you know common 

subexpression elimination value numbering etcetera on these extended blocks. It is 

indeed possible, but before that we will have to define what we mean by an extended 

basic block. 

A sequence of basic blocks b 1, b 2 etcetera are b k such that b i is the unique 

predecessor of b i plus 1. So, if we have b 1 and b 2, b 1 must be the unique predecessor 

of b 2, b 2 must be the unique predecessor of b 3 etcetera, etcetera and b 1 is either the 

start block or has no unique predecessor. So, then you know it must be the start block or 

it should have no unique predecessor so we will see what that really means. 

Extended basic blocks with shared basic blocks can be represented as a tree, I will show 

you an example of doing this as well. And shared blocks in extended blocks require 

scoped versions of the hash table, name tables and valnum tables. The new entries must 

be purged and changed entries must be replaced by old entries. So, we use a preorder 

traversal of extended basic block in order to perform the value numbering. So, now let 

me give you an example of extended basic blocks and then continue. 
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Here, is a flow graph so there are many basic blocks start then b 1 b 2 b 3 b 4 b 5 b 6 b 7 

b 8. So, let us form extended basic blocks from this particular flow graph. So, we start at 

the first basic block and then we go to the next basic block, which it leads to which is b 1 

and now start and b 1 are indeed in the same extended basic block. Now, let us try going 

to b 2 unfortunately b 2 does not have a unique predecessor in b 1 it also has another 

predecessor which is b 7. So therefore, we cannot include b 2 into the same extended 

basic blocks as start and b 1. 

So, that is why we have separated start and b 1 into a different you know extended basic 

block. Now, we again begin at b 2 we go to b 3, b 3 has a unique predecessor b 2 then we 

go to b 5, b 5 has a unique predecessor b 3 we go to b 7, b 7 unfortunately has other 

predecessors as well. So, our search for extended basic block must blocks which can be 

included in the extended basic block stops here. So, we have b 2 b 3 and b 5 as another 

extended basic block so it is listed here. 

So, if we take the other path we have b 2 then b 3 then b 6 again it has a unique 

predecessor b 3, but we cannot go to b 7 for the same reason that it has many 

predecessors. So, b 2 b 3 and b 6 will be another extended basic block then we have b 2 b 

4 and we cannot include b 7 because of the same reason that it has many predecessors. 

So, b 2 and b 4 will form the will form a separate extended basic block finally, b 7 and 

stop will form the last extended basic block. So, we have 5 such extended basic block out 



of which start comma b 1, b 7 comma stop do not share blocks with any others. So, these 

two are separated as two different extended basic blocks now the other three share 

blocks. 

For example, b 2 is shared and then b 3 is shared so we can actually represent these you 

know these extended basic blocks using a tree structure. So, b 2 b 3 b 5 is 1 extended 

block, b 2 b 3 and b 6 is another extended block so they share not only b 3 they also 

share b 2. And b 2 is shared between these two extended basic blocks and also this b 2 b 

4 extended basic block. So, these this forest of trees represents the set of extended basic 

blocks that can be formed out of this flow graph. 

How do we apply you know value numbering on such trees that is our question. 

Applying value numbering on this tree which consist of start and b 1 is straightforward. 

We really can merge all the information in rather quadruples in b 1 with start and apply 

hashing. The same applies to b 7 stop as well, but the middle one is a little more 

complicated. We must perform a preorder traversals starting from the root of the tree so 

we go to we start at b 2. Now, the old value numbering technique can be applied to the 

contents of b 2 absolutely no problem there because it is just one single basic block, after 

the processing of b 2 is complete we go to b 3. 

Now, because b 3 has a unique predecessor b 2 there is nothing wrong in detecting 

common subexpressions using an information and tables available in from b 2. So, b 2 

and b 3 in some sense can be combined together to give you more benefit. So, we apply 

we just extend the hash tables and other tables of b 2 by including the entries of b 3 as 

well, but a word of caution here, we may want to undo this effect a little later as I will 

explain. So, we must keep these entries separated from the entries of b 2. 

So, b 2 and b 3 together now you know detect common subexpressions so there may be 

something here which is reused here, so we do not have to keep that quadruple anymore. 

So, once the processing of b 3 is completed we go to b 5. The same argument holds here 

as well, the quadruples of b 2 and b 3 the tables of b 2 and b 3 can be reused to give 

advantage in b 5 as well. 

So, expressions which are available in b 2 and b 3 can be reused here. So, common sub 

expression detection becomes even more effective. So, we extend the tables of b 2 and b 

3 with the entries of b 5, but I already mentioned that we need to keep them separate. 



Even though virtually a logically they are connected to the tables of b 2 and b 3 we will 

have to mark them as new entries. The reason is once the processing of b 5 is completed 

we go back to b 3 and the preorder traversal now takes us to b 6. 

So, that means the effect of b 5 will have to now be undone, the reason is the effect of b 

2 and b 3 can be seen in b 6. The subexpression of b 2 and b 3 can be still reused in b 6, 

but the tables of b 5 are not useful in processing b 6. Obviously, the control in the control 

flow graph will either go from b 2 to b 3 to b 5 or go from b 2 to b 3 to b 6 it will never 

go from b 5 to b 6. 

And therefore, the tables of b 5 will have to be thrown away the tables of b 2 and b 3 

alone will have to be kept. And if anything has been marked as killed in b 2 and b 3 that 

effect will have to be undone and the tables, which were present just before the entry to b 

5 took place will have to be restored. Now, we can process b 2 b 3 and the entries of b 6 

can take advantage of these. So, we do that and then we the preorder traversal goes back 

winds goes to b 2 and then it will visit b 4. 

Now, it is time to undo the effects of not only b 6, but the effect of b 3 as well. So, the 

entries of b 3 and b 6 will have to be thrown away, the changes which were done to b 2 

because of the processing of b 3 and b 6 will have to be undone. The old table which was 

present just before the entry to b 3 took place will have to be restored. And then we enter 

b 4 process b 4 completely taking advantage of the entries of b 2. So, this is what I meant 

here when we said the shared blocks in extended basic blocks require scoped versions of 

tables. So, these are very similar to the scoped versions of symbol tables which we used 

when we processed blocks nested blocks and nested procedures. 
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So, now the function visit ebb tree for you know does the value numbering on these 

extended basic block trees so, it is quite simple. So, whenever we enter the, enter a 

particular node and function visit ebb tree is called on that node. The new names will be 

entered with a new scope into the tables, when searching the tables we always search 

beginning with the current scope and move to the enclosing scope. 
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In other words, when we are processing b 5 we must search the tables for b 5 first and 

then the tables for b 3 and then the tables for b 2. 
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So, this is very similar to the processing involved in symbol tables for lexically scoped 

languages. Now, so we call value number e dot b so process the block e dot b using the 

basic block version of the algorithm. So, let us assume that this does that now this is 

these two are nothing but the preorder traversal lines. If e dot left not equal to null then 

visit ebb tree on e dot left and then the right one. If e dot right equal to null visit ebb dot 

tree e dot right. 

So, remove the after these two left and right sub trees have been visited we remove the 

entries for the new scope from all the tables and undo the changes in the tables of 

enclosing scopes. So, the main calling routine simply says for each tree t do visit ebb tree 

t. So, we just do this for the all the trees in that forest and that completes the value 

numbering. So, this brings us to the end of the lecture on local optimizations. 
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So, welcome to the lecture on the machine code generation. 
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So, far in the previous lectures we have studied you know lexical analysis, syntax 

analysis, intermediate code generation, semantic analysis. And then we also saw some of 

the simple optimizations which can be local optimizations, which can be done on the 

intermediate code. Now, it is time to understand how machine code can be generated 

from the intermediate code. And after this long session on a machine code generation we 

will move on to the machine independent optimizations and so on and so forth. 



So, in this lecture will first understand the main issues in machine code generation, we 

will look at few samples of generated code. Consider, very simple code generators two 

of them to be very precise. And then we consider the very important topic called optical 

code generation, which in you know in fact generates a best possible code. We study 

three types of optimal code generators, the first one is the classical code generation 

algorithm due to Sethi and Ullman dating back to 1970. 

The second one is the dynamic programming based algorithm again this is this dates 

back to 1976 or so, but it is still in used today. The third is the tree pattern matching 

based algorithm for machine code generation, which uses a dynamic programming and 

also tree patterns. And after this we will understand how to generate code from directed 

acyclic graph. 

The reason is we definitely you know do local optimizations using directed acyclic 

graphs. So, what we get after the optimization of the basic block is still a DAG. So, we 

must know how to generate a machine code from DAGs and then we will look at a 

special class of optimizations called Peephole optimizations, which are carried out on the 

machine code. 
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So, here what exactly is machine code generation, it is a transformation, it is a 

transformation from intermediate code to machine code. So, when we say machine code, 

machine code could be in binary form or it could be in assembly form. This really does 



not matter to us because both assembly code and binary code are equally useful. It is just 

that if we generate assembly code we need to use an assembler to transform the assembly 

code to binary. 

Whereas, if we want to generate binary code directly then we may end of doing all the 

work of the assembler itself. So, in our lectures we will assume that we are generating 

assembly code and not binary. Of course, as usual we will assume quadruples and the 

control flow graph to be available to us so, that we can processes them to generate code. 

So, that is the transformation we talk about intermediate code to machine code. So, in 

this transformation which instructions should we generate? 

The problem is for some of the quadruples it is you know definitely correct to have more 

than one sequence of machine code in this transformation. For example, take a simple 

increment a equal to a plus 1, it increments the value of location a right. So, for this 

quadruple we may actually generate a single machine instruction called increment a, if 

such an instruction exist in the machine. In some machines increment operation cannot 

be carried out on a memory it can be carried out only on registers. So, in some other 

machines there may be no instruction for increment at all. 

So, in such machines we may want to generate load a comma r 1, this is the risk 

architecture style, then either add 1 to r 1 are increment r 1 then store r 1 to a. The reason 

we had to do this was the machine performed all the arithmetic only on registers, the 

only operations from and to memory for the load and store. So, we had to bring the 

operand into the rather the a which is nothing but the operand of the right hand side. We 

had to bring it into a register alter its value and put it back into the location. 

So, one of these you know obviously this decision will be based on the machine. So, this 

is one to many mapping, which mapping is really good for us will have to be chosen by 

the code generator. One sequence actually may be faster than the other sequence in 

certain cases. In this case of course, increment a if you had both options we would want 

to generate increment a because this is just one instruction and much faster than 

executing three instructions. 

So, the implication is there is a cost attached to the execution so, if we are able to take 

care or compute the cost of the instructions which you are generated. Then a rather may 



be generated we may be able to make a decision regarding the sequence that is to be 

generated. 
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The next one, the next issue is in which order should the machine instructions be emitted. 

So, some orders may use fewer registers and or may be faster. So, in such case the again 

the cost implication comes into picture and the number of registers used etcetera comes 

into picture. The compiler would like to evaluate these possibilities and a do it is best. 

The next issue would be which registers are to be used in the machine code that is 

generated. 

So, optimal assignment of registers to variables is very difficult to achieve. In fact, the 

problem is very famous it is called as the register allocation problem. So, this will say 

certain variables it will the allocation algorithm will decide on which variables should be 

placed in registers and which variables need not be placed in registers. So, optimal 

assignment of such registers is such you know registers to variables is a very hard 

problem n p complete. So, there are heuristics which can be used for that purpose we will 

study these heuristics at a later point in time, should be optimized for memory, time or 

power. 

So, we already mentioned in the lecture on optimization that we can optimizes the space, 

the time or energy it power consume by the program, is the code generator easily retarget 

able to other machines. The problem is code generation is very tricky and very difficult. 



So, if you are able to actually write a specification of the machine for which we want to 

generate code. And the code generator can be produced automatically from the 

specifications of the machine that is the best scenario. So, in such a case we simply have 

to you know have a code generator for which you know processes the different machine 

specifications. And then easily we can generate code generators for any type of machine. 

So, in the absence of that we will end of writing machine code generators for each one of 

the machines by hand. 
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So, let us look at some of the samples of generated code. To begin with have I listed 

actually the more complicated types of statements here, straight forward quadruples such 

as a equal to b plus c are very easy to handle. So, let us look at the more complicated one 

such as involving arrays and pointers and conditional statements and so on. So, this is a 

quadruple b equal to a i so the first the of course, this means we will have to take the i’th 

element of the base address a, from the base address a. 

So, remember this a i does not mean it is a single dimensional array, we have already 

understood how to translate you know multidimensional array references to single 

dimensional memory reference. So, this a really can be the base address of the starting 

address of a multidimensional array. It need not be the starting address of a single 

dimensional array, but for our purpose it really does not matter at this point it is a 

sequence of bytes. And we simply want to take the you know appropriate byte from 



starting from the address a and appropriate 4 or 8 bytes from the starting address a and 

then put it into b. 

Let us see how the machine code for this looks like so, we load i into the register r 1 and 

then we multiply the value of i by. The reason is we are assuming that every entry in the 

array a corresponds to four bytes so we say r equal r 1 equal to r 1 star 4. Then we use 

indexed mode of addressing so, starting from the base address a this is the index a of r 1 

comma r 2. So, take the contents of a plus r 1 and put it into r 2 finally, store r 2 into b. 

So, we have to generate four instructions just for this one intermediate code. 

The same is true for x j equal to y as well, we have load y comma r 1 so no problem load 

j comma r 2 so that is left hand side part. Then multiply r 2 by 4 so, that takes us to the 

appropriate place within the array where we can load y and then store r 1 comma x of r 2. 

So, x of r 2 gets r 1 so this is the indexed assignment. So, this is the sequence of 

instructions generated for just one intermediate code here. 

Similarly, x equal to star p translates to load p comma r 1, p is a pointer an address. And 

then with a you know this is nothing but indirect addressing 0 r one implies address of 

contents of contents of r 1 goes to r 2 and we store r 2 to x, star q equal to y is similar. 

So, load y comma r 1 and load q r 2 and store r 1 comma 0 r 2 so, again this is the 

indirect mode of addressing. If you have if x less than y go to l then you know we load x 

1 x into r 1, we load y into r 2 compare r 1 and r 2 and branch on less than 0 to l. So, this 

is the sequence which appropriately you know performs gives you the same effect as if x 

less than y go to l. 
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Now, let us look at a slightly more complicated scenario involving activation records 

static allocation, dynamic allocation, subroutine jump etcetera, etcetera. The three 

address code has say code for this is the code for function f 1 so, this is these are the two 

functions that we have. So, within the code for function f 1 we have some action code 

segment a number of instructions in intermediate code and then there is a procedure call. 

So, in this example we are concentrating on the procedure call and activation records 

etcetera the rest of the intermediate codes are not very important to us at this point. So, 

there is a call f 2 so we are calling this function f 2, action code segment 2 after the 

return we execute this piece and then halt, code for function 2 has an action code 

segment and then a simple return. So, we are looking at static allocation and we assume 

that there are no jump subroutine instructions in the machine instruction set so, we will 

have to actually do a jump. 

So, because we have to do a jump we also need to store the return address in the 

activation record itself. So, the activation record is a static activation record in other 

words, it will never change. You know the same static the activation record is used for 

all invocations of the function f 1 and f 2 no recursion is possible which static allocation. 

So, this does not create a problem for us. 

So, here is the first one in the offset 0 starting from the top we store the return address 

then we have a data array a we have the variable x and variable y. So, totally 48 bytes are 



needed for this f 1. Similarly, for f 2 we require 76 bytes return address there is a 

parameter as well then another an array and a variable m. 

(Refer Slide Time: 54:39) 

 

So, here is the code that may be generated by a compiler code for function f 1 so, say we 

start from address 200 then there is the code for segment 1. Now, we it is time to call a 

the function so we have you know move hash 264 comma 648, 264 is nothing but the 

address of the return address where we need to return. Then the parameter is moved into 

the location 652, which is the place for the parameter. Then we have a jump this is the 

call to this you know this 400 is the function. 

And then we have in this function when we want to return we take the return address 

from the stack and then jump at 648, 648 stores the return address. So, we come back to 

this action code segment for 2 execute it and then we halt. So, and here is the activation 

record format for f 1 600 to 647 and then the action activation record for f 2 648 to 723. 

So, we will stop the lecture here and continue in the next class. 

Thank you. 


