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Welcome to part two of the lecture on runtime environments. So, we saw the need for 

runtime support and the parameter passing methods in the last part. Today we will 

continue with the rest of the topics on storage allocation, etcetera. 



(Refer Slide Time: 00:34) 

 

So, programming languages the implementation usually distinguishes between code and 

data. And even in the language specification you know we have code which uses the 

variables, whereas the data which declares the variables; these are all different, and when 

we compile the program the code that is produced is actually just machine instructions 

and in 99.9 percent of the cases it does not have any embedded data in it. So, it is a good 

idea to keep both the data, and the code separate even when the program executes on a 

machine. The reasons for this are many actually. For example the code area does not 

grow o R shrink in size as the execution proceeds. Whereas the data area can grow o R 

shrink in size, but when can the code area change?  

Well, if you consider java, which has dynamic loading of classes, and of course, it also 

has another facility to produce classes during runtime using reflection and then creating 

objects of that particular class. So these features of java actually increase the code size, 

because once you produce a class o R load class which did not exist before. The methods 

of that class will also be loaded, and that means more code is added to the existing 

program. Memory area of course, can be allocated to code statically, and the reason is; in 

general if we do not use java o R any other languages similar to that the code size does 

not change. And we can say now; the code will be placed in a particular area and it will 

never be shifted out of that area. And we will not consider java in this lecture. 
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We will consider java, and object oriented languages sometime later. Of course, as I 

already mentioned the data area of a program may grow o R shrink in size during 

execution. And that is precisely what we are going to discuss in the rest of this lecture. 

We have 2 types of storage allocation; 1 is the static allocation, the other is dynamic 

allocation. So, what exactly is static allocation? The compile R says here is the data, and 

now it makes the decision regarding storage allocation of for this particular data by 

looking at the program text. It has no other consideration; I will give you an example of 

this you know in few minutes. 

And, what about dynamic allocation; in this case, the storage allocation decisions are 

made only when the program is running. In the static case; the compile R itself makes the 

decision and nothing is left to the run time system. And there are 2 types 2 possible 

allocations. 1 is the stack allocation, other is the heap allocation. So, names local to a 

function o R procedure are allocated space on a stack that would be stack allocation. 

Whereas, in the case heap allocation; usually this is not used for the names but this is 

used for dynamic data structures such as symbol table etcetera, etcetera. And this is used 

for data that may live sometimes even after a procedure call returns, of course; it can be 

used within a procedure also. 

But the data structure being separate from the stack allocation given to variables etcetera, 

the data structure can live even after the procedure which created the data structure 



actually terminates. For example, in the symbol table structure that is used by compilers; 

many stages, o R phases of the compile R modify, o R use the symbol table. And it is 

created at different places in the compiler, but it leaves as a global data structure. So, 

heap allocation requires a memory manager. And garbage collection is also required 

whether it is explicit o R automatic that is up to the language and runtime system. So, we 

will study this a little later. 
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So, let us come back to static data storage allocation. Here, is a memory map of the of a 

particular program; there are main program variables then procedure P 1, and it is you 

know it is variables, procedure P 2 it is variables, procedure P 4 it is variables, and so on 

and so forth. As I said the code is separate; so these are just the data areas, and all this is 

in main memory. So, what is being shown here is that the addresses from this point to 

this point are occupied by the main program variables, from here to here it is occupied by 

the variables of P 1. From here to here it is occupied by the variables of P 2, and from 

here to here by the variables of P 4. 

So, these addresses are fixed, they are not going to change at any time. The compile R 

allocates the space for all the variables both local and global of all the procedures at 

compiled time itself. The characteristics of this are; there is no stack o R heap allocation. 

So, there is no overhead in accessing; the variables there is no need to create what is 

known as activation record as we will see later. So, the overheads are very less, the 



languages which have such static data allocation are Fortran 4 and Fortran 77, which are 

very old programming languages. Then, the advantage is because the addresses are all 

known at compile time, accessing the variables is very fast. And the disadvantage of this 

scheme is you cannot implement recursion using static allocation. I will simply tell you 

why. 

Say suppose, procedure P 1 calls itself now, the data area of P 1 is fixed. The same area 

will be used by the second instance of P 1 which being recursively is called the original 

instance of P 1. And the second instances are both alive at the same time; but the data 

area being simple single. The second instance of procedure P 1 will over write all the 

data which was probably created by the first instance. So, this implies that we really 

cannot use recursion profitably; like for example, in the case of factorial the values of the 

factorial for smaller numbers will be overwritten by the higher numbers. So, this is the 

problem that we have here. So, rather any other Fibonacci o R any other number, you 

know when you write a recursive program; as the recursion goes deeper and deeper the 

old data would be destroyed. And the new data will be written over that and thereby no 

useful work gets done. 
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So, what exactly is dynamic data storage allocation? The compile R allocates space only 

for the global variables at compile time. It does not allocate any space for the variables of 

procedures at compile time; they will all be allocated only at runtime. So, the implication 



of this is that there is either a stack o R heap necessary to create the space for all these 

variables. And the languages which use such data storage allocation are C, C plus plus, 

java, Fortran 8 o R 9, etcetera, etcetera. The access to variables is a bit slow compared to 

the static allocation simply because the addresses are now accessed through a stack o R 

heap pointer. And of course; the biggest advantage is that recursion can be implemented 

in this case. 
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So, this is how the schema would be, in the case of dynamic storage allocation. Here, is 

the main program, which calls the function R, R calls Q and then Q call R again. They 

what is shown here are the, what are known as activation records, which are nothing but 

data areas for the various activations of the functions o R procedures. So, the variables of 

main R all stored here, variables of R all stored here. Similarly, for Q and this is the 

second instance of the function o R procedure R. And you can observe that the variable 

space for this second instance and the first instances are different, there by useful work 

can be done by both the instances. 

So, the currently active procedure is at the top of the stack here. So, if there is a sort to 

begin with we have allocation only for the global variables, and main. When main calls 

R the data space for R is created and then when it calls Q the space for Q gets created. 

And then when there is a recursive call to R another space for gets created and so on and 

so forth. And as the procedures terminate, so when R terminates the space for R will be 



released, and the picture would be you know base will be here, and next will be here. 

Similarly, when Q returns the space of first space required by Q use by Q will be 

returned. And similarly, the space of R as well, and finally; when the main program 

terminates all the space will be released by the runtime system. 
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So, I kept mentioning the activation record more than once. Basically, an activation 

record has space for all the variables temporaries, you know the machine status, the 

function result, and the return address, apart from what is known as static and dynamic 

links. So, let me explain some of these now, and we will postpone a few others late R to 

other to a late R point in time. Another important thing is the position of the fields which 

are shown here, are only notional it is not necessary that the same layout is used by all 

compilers. For example; you know saved machine status, and you know the, could 

possibly be at the beginning return address would also be at the end. 

The function result could possibly be somewhere here. So, it is possible to change the 

location of these fields without affecting either the efficiency o R speed of the program 

itself. So, we know very well what exactly the return address is; it is required by the 

program to return to the caller. We will postpone the discussion of static and dynamic 

link, which is used to access global variables from the current procedure. The function 

result; so we already saw in the case of intermediate code generation that the address of 

the function result, the variable which is going to contain the function result. You know 



the address of that variable will be passed as a parameter implicit parameter, and that is 

what it is put here. 

So, the address of this variable actually belongs to the callers address space. These are 

the actual parameters then there is a lot of space for local variable and temporaries used 

by the function. And finally of course; saved machine status, and space for local arrays. 

The question that arises is why is the space for local arrays at the end, instead of being 

somewhere here? Suppose there are local variables which are arrays, why was the space 

not allocated among these variables, and why is it being push to the end. Well the same 

is true for parameters as well; if there are array parameters why are they not being 

allocated here, and why are they being allocated here. The answer is the local variables o 

R parameters which are non arrays; we will all require known amounts of space. 

Therefore, the offsets for the various variables and parameters can be computed very 

quickly and very easily by the compiler. Whereas, the size of the arrays can possibly 

vary, you know if it is a parameter and the size of the array is not being supplied. Then, it 

is best left to the end of activation record, because we will know the space for this array 

only after we enter the procedure. You know the caller calls the procedure only then the 

size of that array will be known. Otherwise when we compile the procedure the size of 

the array will not be known. So, and of course; making it more uniform among these is 

the other reason. But technically speaking; including the unless the size of the array is 

unknown at compile time, including it within the space for local variables, o R 

parameters does not make any difference as far as the compile R is concerned. 
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So, there is you know little more on the variable storage offset computation. We saw 

how this could be done during the, you know the other lectures. For example, the 

compile R should compute the offsets at which the variables and constants will be stored 

in the activation record. So, I showed you this picture; so here are the local variables and 

if there are several variables here, we should know at which position these variables will 

be placed on the stack. So, with respect to the beginning of the activation record, which 

is denoted as zero, the offsets of all the variables and temporaries will be computed. So, 

the variables are usually stored in the activation record in the declaration order. So, this 

is something I already mentioned, they can be computed during semantic analysis of the 

declarations. 
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I want to show you a little more than what we did in the semantic analysis stage, for the 

variable storage allocation for other offset computation. Here is a program procedure 

called int example; so it returns int as its result. It has 2 parameters then it has 3 you 

know variables a b c, each of size 10 so 10 10 and 10. Now, for this particular beginning 

it is very easy to compute the offset, because a begins at 0. Obviously b will have an 

offset of 10, and c will have an offset of 20. Let us assume that in the c style; there are 

blocks in between not procedures just you know the blocks compound blocks. So, the 

block B 2 will have 3 variables d e and f. These are possibly arrays so they have sizes 

100 180 and 40 respectively. 

And, now the last variable was given offset of 20 here, its size was 10. So, it is only 

correct that the offset of the variable d here is 30 then 130, no 30 plus 100 and 130 plus 

180 would be 310. So, this is the offset information as far as B 2 is concerned. B 2 ends 

here, and another block B 3 begins at this point. So, the variables of this block and this 

block have nothing to do with each other. In fact I cannot access the variables of the 

block B 2 from within the block B 3. Therefore, there is nothing wrong in reusing the 

space that was given to the variables of B 2 for the variables of B 3. So, that is what we 

are trying to do. 

Now, how do we do that the offsets began here at 30. So, we will also begin the 

overlapping block offset at 30 here. The sizes are 20 20 and 10 for the variables of B 3. 



So, the offsets are appropriately computed as 30 50 and 70. Within B 3 there are 2 more 

overlapping blocks B 4 and B 5 which again share the same storage area. So, for B 4 the 

offsets begin at 80, because this is 70 and plus 10 would give you 80. And the other 2 are 

150 and 300, because 80 plus 70 and 150 plus 150. This B 5 also begins its offset at the 

same value 80 and then of course; 80 plus20 is 100 100 and plus 50 is150. 

The storage is overlapped for these 2 blocks. And of course; the storage is overlapped for 

this block and this blocks these 2 inclusive of within B 3. So, what is the maximum 

storage that is required for the entire function and its variables? So, this is very easy to 

compute, the storage required would be the storage required for B 1 then the maximum 

of the storage required by this and this. So, B 2 and followed by you knows the B 3 

within B 3 we have B4 and B 5. So, again we have a max of B 4 and B 5. 

So, B 3 plus max of B 4, B 5 and that overlaps with B 2. So, if you replace the values as 

given here, we really get 300 and 50. This is much more than, the total space that is 

required by the program; if we simply add up all the sizes of all the variables. So, you 

can do that here you know this is 30. So, 320 plus 30 is 350 then plus 50 is 400 plus 240 

is 640 and plus 100 would be 740. So, instead of that we are really using only 350 here, 

so this is the advantage of you know recognizing the fact that data blocks can you know 

overlap. 
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So, this is just another explanation of the same phenomenon. So, we have B 1 30 and B 2 

320, the space here overlaps with B 1. So, B 1 remains the same within that instead of B 

2 equal to 320 we have B 3 and B 4. Other possibilities we have B 1 B 3 and B 5, these 

actually happen at various points in time. So, for example; after B 1 begins you know its 

data area will always be present in memory. The area of B 2 comes into existence when 

B 2 executes, and it vanishes once B 2 terminates. The area for B 3 begins at the same 

offset here as B 2, and the same thing happens with B 4 and B 5. B 4 starts and then 

terminates so; the same area is used by B 5. And finally, when B 3 terminates all the area 

would be released and then B 1 terminates the program terminates. 
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So, now let us look at activation records with nested procedures. So, if there is no nesting 

of procedures for example; here let us assume that main R Q and R are all at the same 

level as in C. So, the allocation of activation records and deallocation of activation 

records is very simple I already explained it. As that calls sequence progresses the 

activation records created, and as the sequence strings and the procedures written the 

activation records are returned to the storage pool. Whereas, if we have nested 

procedures; 1 language which has such nested procedures is Pascal. It is necessary to 

know even though Pascal is not used in practice any more. 

It is definitely necessary to know the implications of nesting procedures within other 

procedures. So, for example; here is a main program R T S T within that we have 



declared a procedure P, within P we have declared another procedure Q. And this is the 

end of the procedure Q, Q and R are at the same level then we have the body for R here. 

And this procedure P has its body here, begin R end and finally, we have the body for the 

main program R T S T begin P end. Now, the program control begins at the main 

program so P will be called and when P begins execution, the body of P begins 

execution. 

So, in this R will be called so when procedure R is called it calls Q in turn and then when 

Q is called it calls R in turn, and this recursion will go on for a while. And finally, you 

know this procedure R will terminate without calling Q and that would make Q also 

terminate. And finally, P will terminate and the program ends. So, this is the call 

sequence that we have assumed for our example. R T S T calls P, P calls R, Q calls R 

calls Q, Q calls R again and then the recursion ends. And the entire sequence drops 

down. In such a scenario it is not enough to simply link the activation records, and hope 

for the best. It is necessary to do something more than that. 

Activation records are created at procedure entry time and are destroyed at exit time as 

before. But the difficulty arises when we want to access the variables which are in 

various procedures, which have been invoked. So, let us understand the scope of the 

variables in such a scenario; for the main program the variables would all be declared 

just after the program statement. So, the main program can access all the variables 

declared within itself. But it cannot access any variables which are hidden within the 

procedure P or Q or R. So, these are actually insulated from the program R T S T. 

So, we can only call the procedure P, and when procedure P starts executing; it will have 

its own variables just after the procedure statement. But again it cannot access any 

variables of procedure Q, or procedure R. The same thing holds as far as procedure Q 

and R it you know, Q cannot access the variables of R, and R cannot access the variables 

of Q. But when we are executing program the procedure P; we can access not only the 

variables of P, but also the variables of the main program. So, this is 1 level above it 

because P is nested within the program R T S T. 

Similarly, when Q is executing it can access the variables within Q it can access the 

variables within P in which it is nested and of course, it can also access the main 

program variables in R T S T, because P is nested within R T S T. The same is true for R 



as well variables of R variables of P and variables of program R T S T. But R cannot 

access the variables of Q, and Q cannot access the variables of R. This must be 

remembered when we construct the activation records as we go along. 
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So, we call the procedure P; so an activation record for P is created. Now, let us 

understand how the variables are accessed from the procedure P. If the local variables of 

procedure P are being accessed then the top of the activation record which is available in 

the register base can be used to access the variables within the data area and activation 

record of P. We know the offsets of the various variables and parameters within P within 

the activation record. So, base plus that offset will give us the address at which the 

variable or parameter is situated. But what about the variables of the main program R T S 

T? It is not possible to do that using the base pointer, but we need to maintain extra 

information on the previous enclosing procedures activation record. 

So, this is maintained in what is known as a static link chain S L chain. The D L chain 

simply you know chains all the activation records in order to maintain a stack structure 

nothing more than that really. So, when we want to access the variables of R T S T the S 

L you know field of the activation record has to be put into a register, and the contents of 

that activation of that register will now point to the beginning of the activation record for 

R T S T. So, we must now consider this particular value and then access the variables of 

R T S T using the offset. 



So, in other words we have we need an indirect addressing mode here. So, rather double 

indirection; the first level of indirection we must move the contents of the static link into 

a register and then use the contents of that register as an address. So, we require 2 levels 

in order to access the variables of R T S T. whereas, to access the variables of P we 

already know the activation record address in base. So, only 1 level of indirection will be 

required. Now, P calls R so you can see that R is nested within the procedure P. So, we 

can access the variables of R the procedure that of the procedure P and also the program 

R T S T. 

So, as usual the variables of R can be accessed very easily using the base pointer. And 

then using 1 level of indirection using the static link, we can access the variables of P, 

and using 2 level of indirection we can access the variables of R T S T. Every time even 

though the pointer points to the middle of this activation record; it is actually giving us 

the beginning of the activation record, the address of the beginning of the activation 

record from where all the offsets are measured. So, we must go from here to this 

activation record access the static link in that activation record, take that and go to this 

activation record and access the variables within R T S T. So, 2 level of indirection will 

be required. This is correct because I can access the variables of R and then P and also 

the R T S T. 
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Now, Q calls R so as rather we call P then R then R calls Q. So, the activation record for 

a Q gets created but from within Q, I cannot access the variables of R. I can only access 

the variables of Q variables of P and variables of R T S T. So, making the static link 

point to the activation record of R would be a mistake. Because we can now, access the 

variables of R also using the static link available in Q to be correct the static link of Q 

should point to the activation record of P. Just like the static link of R pointed to the 

activation record of P. 

So, now I can access the variables of Q directly using base variables of P using 1 level of 

indirection using static link. And using 2 static link indirections I can access the variables 

of R T S T also. All this logic link traversal must also be translated to instructions in 

machine code. So, at runtime these instructions will be executed the static link fields will 

be moved into appropriate registers and then the variables will be accessed at runtime. 
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The last call in our chain Q calls R, so R is created again we cannot link the static link of 

R to the activation record of Q. And we cannot even link it to this R, because these 2 R s 

are very different. They are 2 instances of the recursive invocations; it should actually 

point to the activation record of the P. Exactly like this point it to the activation record of 

P. So, now we can access and then 1 traversal will give us the variables of P, and 2 

traversals will give us the variables of R T S T. So, this is how the static link chain is 



used in order to access the variables, which are global to this particular any 1 of the 

procedures. 

So, we must allow observe rather we must also discuss how exactly we fill up this static 

link chains. So, as the call chain progresses; you know say it is fairly easy to understand 

that the creation of activation record takes place after the Cali assumes control, because 

the exact size of the activation record will be known to the Cali function. It will not be 

known to the caller. Cali functions can possibly be compiled even separately. So, the 

total area within the, for the variables of the function its temporaries will not be known to 

the caller. Callers will only the size of the parameter list and nothing else. So, the 

complete creation of the activation record really happens in the Cali code. 

Now, something else must also happen during the callers, while the caller code executes. 

What exactly is that? The level or the nesting level of the caller that information is lost 

once the control to the Cali is actually handed over. You know so if we handover the 

control to the Cali from where did we come, and what was the nesting level of that 

particular procedure. This information will not be available anymore. The creation of the 

static link actually depends on both the caller and the Cali. So, let us understand how this 

can be done. 

So, we have this call chain here; let us consider somewhere here in the middle, you know 

P 2 calls P calls R, the level of P 2 is indicated as 2 here, P is indicated as 2 here, level of 

R is indicated as 3 here. The formula which is used you know here is L 1 minus L 2 plus 

1. So, what exactly does it show; it says we must skip L 1 minus L 2 plus 1 records 

starting from the callers activation record, and establish the static link to the activation 

record that is reached. So, let us understand what this is and then I will tell you what 

exactly the code that is going to be generated is. So, 2 minus 3 plus 1 is 0. So, this is just 

the formula L 1 minus L 2 plus 1. So, we are really here P calls R. Now, we want to 

establish the static link of R, the static link of P has already been filled let us assume that. 

So, this is the caller, P is the caller and R is the Cali. Starting from the callers activation 

record; we must now skip 0 activation records, because L 1 minus L 2 plus 1 is 0; that 

means we stay at P. So, the activation record which is reached after we skip L 1 minus L 

2 records is P itself. Therefore, it is correct to establish the static link of R to point to P 

itself. Now, let us understand what happens when R calls Q. So, the next level R calls Q; 



so this. So, the level of R is 3, the level of Q is also 3 so 3 minus 3 plus 1 is really 1. So, 

the formula tells us that starting from the caller which is R we must skip 1 activation 

record. 

Now, we point to now we actually come to P, and it says the static link of Q must now be 

established so that it points to P. So, while the code generator is generating code the 

number of half’s that must be done. You know must also be translated into instructions; 

so if we say we want to skip 1 link here, it implies that you know we read the activation. 

The static link of within the activation record of R and then takes the contents of that. So, 

that will give us the beginning of the activation record, and that is to be used as the 

activation rather the static link of this particular Q. 

So, instructions must be generated to move this value into the static link field of the 

activation record. The offsets for all these fields are already known; so it is not they are 

all with respect to base pointer. So, the bases add base register will also be known, and 

therefore, generating these instructions is quite straight forward. So, let me you know 

state again so we really have to skip L 1 minus L 2 plus 1 records starting from the 

callers activation record, got to that particular record and then you know make that as the 

value of the static link for the Cali. So, from here we skip 1 and this is the static link 

value for Q. Similarly, from the caller we skip once, and that is the static link value for R 

etcetera. 
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Now, the release of the activation records happens in the reverse order. So, we return 

from R so the activation record for R is released to the storage pool. 
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Then, we return from Q and the R of Q is returned. 
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Similarly, for R and P as well; once the main program terminates the storage required by 

the main program will also be returned to the storage pool. 
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So, what we have used so far, you know in our discussion was actually utilized the static 

link and the dynamic link. The static link was used to access the global variables in the 

various activation records. And the dynamic link was used to maintain the stack of 

activation records. This task can also be carried out using another data structure called as 

the display stack of activation records. So, instead of you know using a static link what 

we do here is to maintain a list of you know, a stack of pointers which point to the 

activation records of procedures which are right now executing. 

For the same program that we saw here; the sequence is R T S T calls P, P calls R, you 

know R calls Q, Q calls R so this was the sequence we trace there. So, let us trace the 

same sequence here as well. So, to begin with the display stack contains a pointer to the 

activation record of R T S T alone. Now, there is no need for the static link, we have 

pointers of all the activation records of maintained on this stack. However, the dynamic 

link is definitely necessary to maintain the stack structure do the allocation and 

deallocation etcetera. R T S T calls P so the activation record pointers of R T S T and P 

are both on the stack; that of P is pushed on to this stack. P calls R. Now, we have 3 

activation records which are present and R P and R T S T are also all 3 are on the stack. 

So, remember the most recent procedure which is activated its activation record pointer 

is on the top of the stack. Now, R calls Q so situation changes here; justifiably so 

because it is not correct to push the activation record of pointer Q on top of R here. The 



implication of that would be the variables of all these would be accessed from all the 

other procedures as well. 

So, the display stack structure must reflect the scope of the various functions and 

procedures appropriately. So, when we say R P and R T S T here the implication is the 

control within R can access the variables of R, the variables of P and also the variables of 

R T S T, and this reflects correctly the scope structure of the nesting of the program. So, 

you can see here R here, and P here, and R T S T here. So, when Q is called from R we 

must replace the pointer of R with the pointer of Q so we have only Q P and R T S T 

which again reflects in the nesting structure properly. So, Q P and R T S T so then what 

happened to the pointer R the pointer R was actually stored within the activation record 

of Q ok. 

So, it would be unsaved once we return from Q. So, from Q we call R so again the 

activation record of Q is saved in the sorry; the pointer to the activation record of Q is 

popped from the stack. It is saved in the activation record of R, and the activation record 

pointer of R is pushed on to the stack so this is the stack structure which is very similar 

to the static link structure of the previous scheme. So, once we return the pointer of R is 

popped and the pointer of Q is unsaved from the activation record of R. The same thing 

happens when we return form Q, Q is popped and the pointer for R is unsaved, the same 

thing you know once we come here there is nothing to unsave the pointer of R will be 

thrown away. 

And, here we return to the main program the pointer of P will be thrown away. So, once 

R T S T completes the display stack becomes empty. Here also the formula which can be 

used to pop a certain number of pointers from the stack and then display stack and you 

know save them in the activation record, the formula is the same pop L 1 minus L 2 plus 

1 records of the display of the caller and push the pointer to the activation record of the 

Cali. L 1 is the caller and L 2 is the Cali. So, let us do that here to here. 

So, this R and this is Q so 3 minus 3 plus 1 is 1. So, we have popped 1 pointer from the 

activation from the display stack of at this stage so R goes away and we push the 

activation record pointer of Q on the stack, this R will be saved. So, the same thing holds 

here, as well both are at the same level. So, 1 pointer is popped here and the other pointer 



is pushed on to the stack. So, the popped pointers are stored in the activation record of 

the caller, and are restored to the display of after the Cali returns. 
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So, that brings us to the next concept in runtime environments. So, we have so far we 

have studied you know activation records, how the activation records are really you 

know allocated de allocated etcetera. So, in the just to add 1 extra point when we have a 

C like structure for the programming language; that is no nesting of any procedures 

within another. The situation is very simple, because no procedure can access the 

variables of another procedure. They are all similar to Q and R. So, there is no need for 

you know the static link structure at all. We access either the variables of the self 

procedure o R the global variables. Global variables are all in a particular static area. 

And, the local variables of the currently active procedure are in the activation record. So, 

I do not need any static link I only need 2 links; 1 to the beginning of the activation 

record, and another to the static area containing the global variables. The dynamic link 

structure of course, will be required to take care of the stack allocation and deallocation. 

So, far what we have seen is actually the static scope for a programming language. So, 

let us understand the terms static scope, the languages which we have seen far C, C plus 

plus, Pascal, java they all have what is known as static scope. 

A global identifier refers to the identifier with the name that is declared in the closest 

enclosing scope of the program. And it uses the static o R unchanging relationship 



between the blocks in the program text. Static scope is also called as lexical scope. So, 

the nesting structure which is shown by the program like here. This is the 1 which is used 

by the static scope you know scheme. So, procedure Q is nested within P, procedure P is 

nested within R T S T. So, and as I already explained the variables are accessed from Q, 

the variables which can be accessed from Q R itself. And then those after procedure P 

and those after procedure program R T S T. 

So, this nesting structure which is fixed and does not change you know dictates which 

variables can be accessed at various points in time. And that is information since it does 

not change can build into the code which is produced in the form of static links etcetera. 

There is another concept know as dynamic scope. So, functional programming languages 

actually use dynamic scope quite routinely. A global identifier refers to the identifier 

associated with the most recent activation record. And it uses the actual sequence of calls 

that are executed in the dynamic execution of the program. And both schemes are 

identical as far as the local variables are concerned. Now, it is time to take an example 

and understand what is dynamic scope? Because the text itself does not make it very 

clear. 
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So, here is a concocted program which looks like a C program. But it is definitely C, 

because C does not have dynamic scoping. So let us understand there are 2 variables x 

and y. Then, there is a function g which takes 1 parameter and returns x plus z. And 



another function f which has a parameter y, another parameter another variable x, x is y 

plus 1. And it calls g y star x and returns that as value. So, here in the main program we 

call y equal to f 3. So, let us understand what happens if this were to be a simple C 

program, f is called so y becomes 3 and then here is the local variable x. So, x equal to y 

plus 1 will produce 4 y was 3. Now, we call g with y star x 4 into 3 is 12. So, we go to g, 

z is 12 and x which is here actually refers to the global variable x here. So, very this is 12 

and this 1. So, we return 13 as the value, and 13 is returned to the main program as well 

and that is assigned to y. 

This is the normal scheme as far as static scope is concerned in C. Dynamics so this is 

the activation record structure. Here, is the outer block main program x is 1 and y is 0 to 

begin with then we call f with 3 so the parameter y has 3 value and the integer variable x 

will have a value 4 at the time of calling g, because it is assignment is already over. We 

call g with 12 so the variable z gets parameter z gets value 12. Now, if we had assumed 

C like structure; the x here always refers to the global variable, right. But if we assume a 

dynamic scope a non C like scheme the dynamic scope clearly says; the global identifiers 

clearly refers to the identifier associated with the most recent activation record. So, in 

other words; when we are in g here there is no problem, when we are in g the global 

variable x is 1 of the occurrences of x. And the local variable x within f is another 

occurrence of x, f has not terminated. 

So, this value is very much alive you know when we have created this activation record; 

there is this instance of x within the activation record for f. And this instance of x within 

the activation record for the main program. Dynamic scope says start from the current 

block keep going upwards in the list of activation records; find the activation record 

which is very closest to z and contains an instance of the variable that we want. So, in 

this case as we go upwards; it is the local variable of f x which is the local of f that is 

relevant to us this is called dynamics scope. So, the value of x which is relevant at this 

point here is 4 instead of being 1, because it is the variable x within the function f. So, 

this beak this is 4 and this is12, so we really return the value 16, this is dynamic scope. 
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Let us take another example; here is a variable R global variable 0.25 then there is a 

procedure void show which prints R then there is another function small which has a 

local variable R and assigned a value 0.25. And then show in the main program we have 

2 sequences show small print f, show small print f. Let us see what is printed? Show is 

called so within show the value of R is obviously the global variable, because it has no 

global variables within itself, and there is no other function which is active. So, 0.25 is 

printed out and then we call small. So, there is a local variable R here and then show is 

called. But static scope says look at the static structure of the program so this variable R 

is not visible within show, it is again 0.25 which is printed out. Then you know we know 

we come the second line which is similar again 0.25 and 0.25 is printed out. 

If we assume dynamic scoping for sure there is no difference because there is only 1 

global variable which is visible, but once small is called this R is becomes visible. So 

this show now has a choice of either this R or this R this is the most recent activation 

record containing the variable R. So, it is 0.125 which is relevant to this show as well. 

So, this R is printed out as 0.125 the same is true for the second 1 as well. So, in dynamic 

scoping when we have a choice the most recent activation record is used and it is the 

value the variable which is present in that record is actually utilized. So, let me stop here, 

we will continue with the implementation of dynamic scope in the next lecture.  

Thank you. 


