
Principles of Compiler Design

Prof. Y. N. Srikant

Computer Science and Automation

Indian Institute of Science, Bangalore

Lecture - 2

Lexical Analysis - Part 1

(Refer Slide Time: 00:18)

Welcome to the lecture on lexical analysis. In this lecture we will discuss lexical analysis

in detail what is lexical analysis? Why should lexical analysis be separated from syntax

analysis? What are tokens patterns and lexemes, what are the difficulties in lexical

analysis recognition of tokens? So, for this we require fundamentals of finite state

automata and transition diagrams. And then for specification of tokens we require regular

expressions and regular definitions. And we will study all this and then finally we will

take a look at a very effective tool called LEX for lexical analyzer generation.

(Refer Slide Time: 01:09)

To do a bit of recap this is the block diagram of a compiler. So, the lexical analyzer is the

first component in a compiler it takes a character stream as input, outputs a token stream

which goes into a syntax analyzer. So, this is where the lexical analysis ((Refer Time:

01:34)) I know actually is performed.

(Refer Slide Time: 01:39)

So, let us go to the details. So, what exactly is lexical analysis? The input to a lexical

analyzer is a high level language program. So, may be its written in C, it is written in C

plus plus or java or any other language. But the common feature of all these is that they

are sequences of characters, there is no other distinction between this programs. They are

all sequences of characters, and the output obtained from a lexical analyzer is a sequence

of tokens. So, the tokens go into the parser for syntax analysis the lexical analyzer does a

lot of cleaning on the input for example, its strips off the blanks tabs new line characters

and comments from the source program. Because these are not very important for

parsing you know once the token stream is formed these are not at all important.

So, these are all removed by the lexical analyzer and then the tokens are formed the

lexical analyzer keeps track of numbers the line numbers and associates error messages

with the various lines of a source code. The error messages might have actually you

know a reason because of syntax analysis or semantic analysis or even lexical analysis,

but these errors are all kept track of by the lexical analyzer. And then you know

associated with various numbers source line numbers of the program the lexical analyzer

also performs 2 processor functions for example, hash define and hash include in.

So, hash define defines a macro and hash include includes a file. So, hash define

whatever back cover is define you know the effect of that macro is nothing but replacing

a particular name with a sequence of characters. So, the lexical analyzer actually

performs this expansion wherever that appears it expands that name with the sequence of

characters mentioned in the hash define macro. And then submits that expanded

sequence to the rest of the lexical analyzer hash include simply says now take this

particular file it is also a part of the program. So, perform compilation on it. So, hash

include simply means start reading from a different file. And then do lexical analysis and

parsing etcetera on the rest of the file which is in mentioned in the hash include.

(Refer Slide Time: 04:40)

So, separation of lexical analysis from syntax analysis, I already mentioned this briefly in

the last lecture just to do a recap the first reason is a software engineering reason. It

simplifies design a compiler is a very, very large piece of software millions of lines of

code. So, making it modular is essential and making the lexical analysis as a separate

module helps in, you know reducing the complexity of building a compiler. As I already

mentioned the I O issues are limited to lexical analysis alone. The errors and so on

reading from different files because of hash include etcetera. And it also makes lexical

analysis you know if it is separate it is actually more compact and faster.

You know the parser becomes more compact more you know fast apart from the lexical

analyzer itself being very fast, why? The reason is lexical analysis is based on finite state

automata. These are much easier to implement in the form of tables rather than

implement you know the functions of the lexical analyzer in a push down automata

which uses a stack this will become clear as we go on in the course and study parsing as

well. So, the comments blanks you know need not be handle by the parsers. So, why not

remove them in the lexical analyzer itself? So, that makes the work of parser a little less

a parser is; obviously, more complicated And therefore, keeping track of you know

number of lines of code names comments etcetera you know it is absolutely unnecessary

for the parser. So, the lexical analyzer is a better place to take care of these and this

makes both the lexical analyzer and the parser more efficient.

(Refer Slide Time: 06:49)

Now, let me define tokens, patterns and lexemes and then go on to the operation of

lexical analyzer itself. So, let us take a running example, it is a programming language

statement similar to C float absolute 0 Kelvin equal to minus 273 followed by a

semicolon here as we know a float is a reserve word abs 0 Kelvin is a name. It is a

variable and it could also be seen as a constant it depends on the type of usage that we

want for it and minus 273 is an integer constant. So, now, on this particular running

example we are going to show what are tokens, what are patterns and what are lexemes?

A string of characters which logically belong together is a token for example, the word

float and the word abs 0 Kelvin are separated by a blank and they are; obviously, two

different strings of characters.

So, we can very safely say float is a you know token then abs 0 Kelvin is another token

the equal to assignment is one token the minus sign is another token the number two

hundred and seventy three is one more and then the semicolon is a last token in this

particular sentence. So, once the tokens are identified you know these are actually passed

on to the syntax analyzer. So, the tokens are treated as what are known as terminal

symbols of the grammar specifying the source language this will become clear as we go

on. So, that makes the life of parser a little easier it need not worry about the characters

making up the token float it can it needs to worry only about a some kind of a number

called float that is it. So, internally tokens are going to be represented in the form of

integers and that makes a token stream very efficient. Then what is a pattern? the set of

strings for which the same token is produced is called as a pattern.

So, we are going to define what are known as regular expressions to define these patterns

later, but for the present, let us understand what exactly are patterns. So, in this case the

pattern is said to match each string in the set of a strings that it supposed to match. So,

for example, in for the running example the word float is a pattern on its own. Because

no other string actually matches this particular pattern, but for the identifier or the name

we have a general pattern which says letter. So, we have as pattern here l is letter and

when d is digit and then we have underscore the plus actually is a form of the notation it

the way to read then star is for iteration.

So, let me explain what this pattern is it says letter followed by either letter or digit or

underscore any number of times 0 inclusive. So, we can produce for example, the way

abs 0 abs underscore 0 underscore Kelvin is produced we have a letter then followed by

two more later. So, in this case letter or digit or underscore any number of times is

exercised to produce two more letters. And then it is exercised to produce one underscore

then four letters another underscore and then five more letters. So, this is the sequence

which is actually exercised to produce that particular name. So, that is a pattern for the

identifiers or names then equal to star this equal to and minus sorry equal to and minus

match are patterns which match themselves and nothing else. And finally, for the integer

number constant d plus d is a digit.

So, any number of digits together, but plus says at least 1’s you know the digit is used at

least 1’s. So, the number cannot have 0 number of digits it should have at least one digit.

So, using this pattern 3 times d d d will give us 273 and finally, of course, a semicolon is

a pattern which matches itself. So, these are the patterns. So, the central theme of

specifying lexical analysis would be to come up with a formalism to specify these

patterns which cover the entire programming language the set of programming language

constructs. So, we are going to define regular expressions which can DO this job very

admirably.

Finally, what is lexeme? A lexeme is the sequence of character matched by a pattern to

form the corresponding token. So, another words, this is a pattern and that is actually the

name identifier. So, the character which form this particularly identifier actually are the,

are sum of lexeme. So, the string float, the string abs underscore 0 underscore Kelvin the

string equal to the string minus. And the string 273 are the sequence of characters and

they are called the lexeme corresponding to the tokens.

(Refer Slide Time: 13:12)

So, we have talked about tokens very briefly. So, let us discuss it little more to

understand how tokens are actually used for specifying various the parts of a

programming language. Keywords, operators, identifiers so we will always say

identifiers instead of name then various type of constants, integers constants, floating

point constants. Then literal strings these are string constants, punctuation symbols such

as parentheses bracket commas semicolon and colons etcetera and many more. So, these

are the various types of tokens that are possible in a programming language. And we

need to specify patterns for each one of these tokens a unique integer representing the

tokens is passed by the lexical analysis to the parser. So, as I told you each token is given

a name by the designer.

So, representing; it is very efficient then tokens you know if the number corresponding to

a token does not say everything about tokens. You also need extra attributes extra value

for these tokens. So, let see what is values are required to specify a tokens completely for

names or identifiers. The lexeme of token are the string corresponding to that token or a

pointer to into the symbol table where the lexeme is stored by the lexical analyzer that is

in summary we require the string corresponding to the name. So, that is also to be

accessed in the, you know while doing parsing or semantic analysis also code generation

etcetera. So, that is one of the attributes that we want for that identifier. And then for

integer numbers we want the value of the number similarly for floating point numbers

float num we want the value of the floating point number in the appropriate you know

representation and so on. For strings we need the string itself and the exact set of

attributes are dependent on the compiler designer. So, it is possible for example, here it is

possible that the token contains the string corresponding to the name itself. In the case of

identifier some other designer may say no let me store in the table and provide a pointer

to the symbol table.

(Refer Slide Time: 16:02)

So, that is a description of, what kind of tokens arise in programming languages. And

now, let us also discusses the difficulties in lexical analysis. For example, certain

languages do not have any reserved words. So, in fact, while, do, if, else etcetera they are

reserved in C. But they are not reserved words in programming language P L 1 and in

FORTRAN some keywords are context dependent. So, let us take an example take this

DO 10 I equals to 10.86 DO 10 I is a identifier and DO is not a key word even though

this is supposed to you know its looks like in DO loop in Fortran. Because this is DO 10

I equals to 10.86 now DO 10 I is taken as identifier a name and DO is not separated as

keyword.

But if the statement were to be DO 10 I equals to 10 comma 86 then definitely this is a

DO loop and DO is a keyword. In fact, the tokens for this particular statement would be

DO a reserve word 10 a label name and I another identifier equal to and the integer value

10 a comma and another integer value 86. So, these are going to be various tokens for

this particular statement where as the previous statement we have just one identifier DO

10 I then equal to and then floating point constant 10.86. So, the sequence of tokens for a

statement would be very different depending on a the fact whether it is a you know DO

statement or a different type of assignment statements and etcetera handling such

features requires what is known as a look ahead.

So, here until you know when we see DO 10 I it is not possible to determine that it is a

variable or the DO statement. In fact, we need to go and parse this 10 find whether it is a

comma or a dot if it is a comma then it is a DO statement, but if it is a dot then it is an

assignment statement. And only after reaching this comma or dot can we really

determine the token sequence even for the previous string of strings you know that

previous string. So, whether it would be one variable followed by equal to or it would

have to reserved word followed by a label name and then a int variable. So, and then

equal to.

So, the token strings are going to be very different and the token strings can determined

only after looking at the dot and or a comma which actually the string of characters 1 0

in this case. Then blanks are not significant FORTRAN and can appear in the middle of

identifier, but in C C plus plus and Pascal etcetera it is not. So, blanks actually separate

various tokens lexical analyzer cannot catch any significant errors except for very simple

1’s like illegal symbols etcetera and rest of the errors are called by the parsers. So, if an

error occurs there is very little that the lexical analyzer can do apart from skipping

characters in the input until a well formed token is found. It just keeps skipping

characters skip one character and try to find a token skip another character try to finds

token etcetera and till it succeeds and really finds a meaningful token.

(Refer Slide Time: 19:55)

Now, specification and recognition of tokens. So, regular definitions a mechanism based

on regular expressions are very popular for specification of tokens. So, we will look at

the details of regular definitions and regular expressions in the following lectures, the

regular definitions have been implemented in a tool called LEX. So, if you write regular

expressions then you know automatically the tool LEX produces lexical analyzer. So, we

will discuss regular expressions and then token of specification using LEX regular

definitions and so on. We also use transition diagrams which are nothing but variants of

finite state automata. So, they are used to implement regular definitions and to recognize

tokens. Transition diagrams are used to usually used to model the lexical analyzer before

translating them to programs by hand.

By the way it is possible to write lexical analyzers by hand as well. In the olden days that

is exactly what was really done even today for very small languages for efficiency sake it

is a compiler designer sometime write lexical analyzers and parsers by hand. So, it is not

as if it is very artificial to think of such a situation. So, when we design regular you know

lexical analyzers to be implemented by hand we use transition diagrams to model them.

And then translate these transition diagrams by hand to programs where as LEX

automatically generates optimized finite state automata from regular definitions it does

not require transition diagrams as a method of specification. So, we will first study finite

state automata and their generation from regular expressions in order to understand

transition diagrams and the working of LEX itself. So, now so for we have look that

tokens we know what tokens are and but we still do not know how to specify tokens.

And once we learn how to specify tokens we will see how to translate them to programs.

(Refer Slide Time: 22:29)

In our study of you know token recognizers or lexical analyzers we require to define

languages finite state automata and regular expressions. So, let us go through some of the

definitions and understand them a symbol and a symbol is really an abstract entity. And

we do not really define it, it is assumed to be known to everybody it is like a set for

example, sets are not defined you know mathematically they are just a abstract and

everybody suppose to understand them. So, examples of symbols are letters digits

etcetera what is a string a finite sequence of a juxtaposed symbols that is symbols placed

one after another is a sequence of symbols. So, such a sequence of symbols is called a

string.

So, if we consider the letters a b and c a b c b c a b a there are strings over the symbols.

Now, well it is very easy to see that you can form any number of symbols any number of

strings given these three symbols a b and c infinite. In fact, if you write mod w then you

know mod w is the it is stands for the length of the string w and is actually the number of

symbols in the string epsilon is the empty string and is of length of 0. These become very

important for our formal definitions later on and what is an alphabet it is a finite set of

these symbols in our case most of the time you know we will be using characters as

symbols and set of characters would be our alphabet as appropriate to various

programming languages and what is a language. So, this is not a natural language such as

English and nor is it a programming language such as C or Pascal this is mathematical

entity called a language, and it is defined as a set of strings of symbols from some

alphabet.

So, you take symbols like a b c that is a set of a a b c will become an alphabet and then

you know you can form any number of strings over it. And if you take some of those

strings put them in a set and that set become say language it is not necessary that

languages be either finite or infinite all the time there are finite languages and there are

infinite languages. So, the null set and the set containing the null string epsilon are both

defined as languages that is by definition the set of palindromes over 0 1 is a an infinite

language. Because there are infinite number of palindromes which you can form using

two symbols 0 and 1 the set of strings 0 1 1 0 1 1 1 only 3 strings over the alphabet 0

comma 1 is a finite language why is it called a finite language.

There are only three strings which is a finite number and the set contains only these three

and therefore, it is a finite language. So, if we say sigma is an alphabet then sigma star is

the set of all possible strings over sigma. So, if u take a single symbol 0 then starting

with epsilon 0 0 0 3 0 4 0 5 0 in general 0 to power n with n greater than equal to 0 this

set is an infinite set. And that would be the set of all strings over this sigma which is

nothing but a single symbol alphabet containing 0, but similarly you could define sigma

as 0 comma 1. Then all possible strings are formed using 0 and 1; obviously, this is an

infinite language. So, this is called as sigma star.

(Refer Slide Time: 27:10)

So, having set what sigma star is, sigma star is nothing but all possible strings over a

particular alphabet every subset of sigma star is a language. So, that is the formal

definition of a language. So, you could have finite subsets of sigma star and; obviously,

you can have infinite subsets of the subsets which are infinite sets. So, those are also

possible. So, there are infinite languages and finite languages. So, now, there is a tricky

you know description, the set of languages over sigma star is uncountably infinite, why?

In general if you take a set right and then you define the set of all subsets of that set that

is known as a power set.

So, that would have to DO power n elements if n is a the number of elements in the base

set that is the finite set will have power set of cardinality to do power n. But once you

have, you know sigma star as an infinite set, the number of elements in sigma star is

infinite. The number of subsets of sigma star is also infinite, but it becomes what is

known as uncountable. So, I am I cannot really spend too much time talking about, what

is uncountability, because that is a part of a discrete mathematics. In general set of

numbers like 1 2 3 infinite set of this kind is countably infinite. Whereas, the set of

subsets of you know infinite sets such as sigma star is uncountably infinite. So, in some

sense uncountably infinite is in codes bigger than countably infinite in the mathematical

sense. Each language must have now let us look at this carefully each language must

have a finite representation otherwise we cannot talk about it.

So, a finite representation; obviously, can be encoded by a finite string. So, any finite

representation you know can be encoded in a small string how long that string is that is

up to the representation to decide thus if choose a particular sigma And then each string

of that sigma star can be thought of as representing some language over the alphabet. So,

because you can say each such of each string encodes you know a finite representation

and that becomes you know ah some language representing over this alphabet sigma. So,

it so happens sigma star itself is countably infinite what I said here is set of languages

over sigma star is uncountably infinite. But if you take sigma star it is countably infinite

and the set of languages over sigma star is uncountably infinite that is the bigger thing

than this sigma star. Hence there are more languages than language representations, the

moral of this story is no matter what type of finite representation you come up with for

languages.

So, that it can be they can be processed by machines that is compilers interpreters

etcetera you know this particular representation will have its limitation. In other words

you cannot come up with representations for every language that is possible. There are

more languages than language representations so but that is not going to be a big

disadvantage for us. Because we are there are more than ample languages available in the

representations that we choose and they are more than sufficient for our practical purpose

today. So, we are not really worried by the statement that there are more languages than

language representations. So, the available representations are sufficient to take care of

all the languages that we know of today future. Of course, we have no idea what would

happen now there are what are known as type three or regular languages. So, now, we

will go into classification of these languages these regular languages can be represented

in a finite way using what are known as regular expressions.

So, these languages are infinite, but the representations are finite that is the basic idea of

any representation then there are type two or context free languages again these are

infinite. But then the grammars context free grammars which we are going to study later

form a representation of these languages again grammars are finite objects. So, they are

finite representations then we have context sensitive grammars which represent context

sensitive languages. Again context sensitive grammars are finite representations of

infinite languages and type 0 grammars are finite representations of type 0 languages. So,

here is the hierarchy regular languages are weaker than context free languages context

free languages are weaker than context sensitive languages which are in turn weaker than

type 0 languages. So, this hierarchy of languages is known as the Chomsky hierarchy

based on the, you know to respect the inventor who you know proposed this hierarchy

known Chomsky.

(Refer Slide Time: 33:17)

So, let us look at some examples of the languages. So, sigma let us say is a three symbol

set a comma b comma c and that is our alphabet the first language L 1 the set of all you

know a’s and b’s a to the power m b to the power n that is a number of a’s followed by a

number of b’s, but m and n are not related it is just that m and n are greater than or equal

to zero. So, you would have epsilon then you would have a b then you would have a b

square a cube b 3 etcetera. I just gave examples of strings from this language, but it is an

infinite set with no relationship between m and n that is very important l 2 is a similar

language, but it says a n b n n greater than equal to 0.

So, the number of a’s is equal to the number of b’s and the b’s follows a’s here the

number of a’s and b’s are not related, but the b’s follows a’s. So, the first language can

be represented using regular expressions the second language cannot be represented

using regular expressions, but you need context free grammars. Let us look at the third

language a to the power n b to the power n, c to the power n n greater than or equal to 0.

So, the stings are a number of a’s followed by equal number of b’s followed by equal

number of c’s.

So, the difference between these two is the C part this side only a’s and b’s being equal,

but we here add c’s also which are in equal in number two number a’s and b’s. So, once

you DO that this language fails to be regular it fails to be context free, but is what is

known as a context sensitive language. So, we require context free grammars to represent

L 3 context sensitive grammars to represent L 3 context free grammars to represent L 2

and regular expressions to represent L 1 showing a language which is type 0 is outside

the scope of this course. But you know very, very intricate you need many more

mathematical arguments before we can show that.

(Refer Slide Time: 35:51)

So, I am going to omit it. So, now, what exactly are automata automata are machines. So,

what do these machines really do these machines accept languages and those languages

you know correspond to the once that we have already defined. For example, finite state

automata accept regular languages and they can be specified using regular expressions

pushdown automata accept, context free languages. And they can be specified using

context free grammars linear bounded automata accept, context sensitive languages and

they can be specified using context sensitive grammars. Turing machines accept type 0

languages and they can be specified using type 0 grammars.

So, these are the 4 types of automata which are extremely important in the study of

languages and automata theory for our purpose. We restrict ourselves to the finite of state

automata and push down automata finite state automata are used for regular for lexical

analysis and push down automata are used for parsing. There are many applications of

automata for example; finite state automata have been used extensively in switching

circuit design. Of course, I already mentioned its use in lexical analyzer then the Unix

tools grep and awk.

They perform string processing and are based on finite state machines object oriented

design. For example, UML it uses what are known as state charts they are nothing, but

extensions of finite state automata modeling control applications. For example, an

elevator operation can be easily specified using finite state automata parsers of all types

use push down automata and of course, compilers. You know there are tree automata and

so on which are extensions of the finite state automata which are used in compilers for

code generation and other purposes.

(Refer Slide Time: 38:15)

Let us begin our discussion of the finite state automaton a finite state automaton is said

to be an acceptor or recognizer of regular languages. I have already this, it is a machine

really and it can be programmed. Let us look at the formal definition of a finite state

automaton it is defined as a 5 tuple quintuple first is first component is Q which is a set

of finite set of states. Then there is a sigma which is the input alphabet for this particular

machine. Then we have a delta which is the transition function it requires a little more

explanation and I am going to do that after we run through this definition. Then a one of

the states in Q is designated as the start state and it is represented as q 0 and F is a subset

of q and whatever is in F is a final state.

So, now, let us get back to delta as I said the finite state automaton is a machine. So,

delta tells you how the machine progresses from one state to another on consuming a

particular symbol from the input. So, delta is a transition function it is a mapping

between Q cross sigma and Q from Q cross sigma to Q. So, in other words we write it as

delta of Q comma a equal to q 1 something like that. So, it means when the machine is in

state q and next input symbol is a, the machine changes the state and goes to the state for

which you know which is defined as delta q comma a. So, that is a state which enters.

So, in one move from some state q finite state machine reads an input symbol changes

the state based on delta and gets ready to the read the next input symbol as when I shown

you an example. It will be a very clear an finite state automaton accepts its input string if

starting from start state q naught it consumes the entire input string and reaches a final

state.

So, both these conditions are very important it is not enough if it consumes the entire

input string. but is in non final state. And it is not enough if reaches a final state and there

some more input remaining both must happen and it must start from start state q 0 it

cannot start from some other state. So, in such a case that automaton is set to have

accepted the input if the last state reached is not a final state then the input string is

rejected in other words its reads the entire input. But then enter a non final state then the

input is not a part of the language or rather it is not accepted by the finite state

automaton.

(Refer Slide Time: 41:41)

So, let us a take it as simple example. So, you start from the star here q naught q 1 q 2

and q 3. These are the set of states of the automaton q naught which has the incoming

arrow, hanging incoming arrow is an, is the initial sate. And then there are 2 states q

naught and q 2 which are special which have double circles. So, these are the final states.

So, q naught q 2 set f then the delta function is shown by these arcs and the labels. So,

when the state delta of q naught comma a is q 1. So, in other words the from the state q

naught on input a, the machine goes to the state on q 1 similarly from the state q 1 on

input C it goes to state q 2 etcetera. So, from q naught it goes to a or goes description of

this in the next slide.

(Refer Slide Time: 43:02)

So, as I said it has 4 states q naught q 1 q 2 q 3 sigma is a comma b comma C q naught is

the start state and f is q naught comma q 2. So, you can observe that q naught and q 2 are

the final states the transition function is defined by a table below. So, let us look at it

from q naught we already know on a it goes to q 1 on b it goes to q 3 and on c it goes to

q 3 etcetera. Now, let us look at the machine again and see if some strings is accepted or

rejected let us take the string a b c. So, we start from the start state q 0 the first symbol is

a. So, we go to state q 1, the second symbol is b. So, from q 1 on b the machine actually

stays in state q 1 consumes the b and on the final symbol c it goes to state q 2. So, the

input is exhausted and it has reached the final state.

So, the string a b c is definitely accepted by the automaton. So, you can now see that

single a fired by any number of a’s and b’s followed by 1 c. This set of strings is

accepted by the machine where as any strings which begins with a b or c it enters the

state q 3 from which it is not possible to get out or though if the state remains there. So,

if you consider the string b a c so on b it goes to q 3 and on a stays in q 3 and again on b

C it stays in q 3 so on b a c is starting from the input stay you know with the start state q

naught it ends in q 3 after exhausting the input which is not a final state therefore, the

string b a c is rejected by the automaton. So, the accepted language for this particular set

is the set of all strings beginning with an a and ending with a c. Of course, epsilon is also

accepted simply, because this particular state the start state without consuming anything

will also is final state. So, epsilon the input string with of 0 length is also accepted.

(Refer Slide Time: 45:40)

Another example, so again we have a q naught q 1 q 2 and q 3 as 4 states that is a set q

and the state q naught is start state as usual. But it is not mandatory to make q naught as a

start state all the time even though that is the notation which is used in every text book it

could be q 3 as well. But the designer can use a different notation if he or she desires is

just q naught. So, only q naught is a final state and all others are non final states. So, in

other words if the input you know takes the machine from q naught to some other state

after exhausting the input then the input is not accepted. But if it brings it backs to the

initial state then the input is accepted delta is here.

So, what is the language? So, delta is always shown in the form table in or the form of a

picture, picture is easier to understand. So, we have used pictures in our case the

language accepted is the set of all strings of 0’s and 1’s in which the number of 0’s and

the number of 1’s are even numbers. So, that you can check you know on a single 0 over

here on equal number of 1’s you know I keep circulating between these two states right.

So, for example, 0 and a 0 right and then let us say go through a single 0 and then on a

single one I go here. But then I have to consume another 0 to get to q 1 and finally, I

must consume another one to get back to q 0. So, if I consume only odd number of 0’s

and or odd number of 1’s I will never get back to q 0 I will remain in of the one of the

other state its q 1 q 2 and q 3. So, and therefore, so those strings are not in the set of

accepted strings.

(Refer Slide Time: 47:56)

So, we saw an example of finite state automata. Now, the language accepted by a finite

state automaton is the set of all strings accepted by it. That is starting from the start state

the, you know the string x which is the input string must actually take you to the final

state it must belongs to the final state. So, this notation is an extension of the notation

where second component was a single symbol, but that is a very straight forward

extension. So, we can say delta of q naught comma the string must take you to a final

state. So, this is the language you know all the strings of this kind which take you to the

final state from the start state. Or in the language accepted that by the finite state

automaton and this is what is known as a, this is a regular language or a regular set.

So, this is how defined the regular language one of ways in which we defined the regular

language. Later we will also define regular expressions and regular grammars which are

also you know specification of regular languages. But that is not the task right now of

course, it can be shown that for every regular expression a finite state automation can be

constructed and for every finite state automaton a regular expression can also be

constructed. So, we will look at this briefly a little later.

(Refer Slide Time: 49:40)

Now, what we have seen so far are finite state automata, but there something very special

about it they are what are known as deterministic finite state automata. So, why are they

called deterministic? The deterministic automata do not permit more than one transition

from any state on a particular symbol whereas, for non deterministic finite state

automata. They allow 0 1 or more transitions from state on a given input symbol.

(Refer Slide Time: 50:22)

So, to show you a simple example on 0 from the straight q 0 I can either remain in the

state q 0 or go to the state q 1 similarly on a one I can either remain in state q 0 or go to a

state q 1. So, in the you know this is an example where the non determinism shows the

machine can decide to stay in q 0 on a 0 or it can decided to stay by jump to q 3 on a 0.

So, this is exactly, what is non determinism. So, it allows 0 1 or more transitions from a

state on a given input symbol. So, the finite state N F A the other one is called as a D F A

deterministic finite state of automata and this is known as an N F A. But the transition

function delta is different here it is a same 5 tuple, but the transition function is very

different.

So, for example, delta of q coma a it used to be a single set in the case of a D F A, but

here it is a set of all states p such that there is a transition labeled a from the state q to the

state p. So, it is a set here and one of the elements of the set could be chosen by the

automaton at any point in time. So, for example, in this case you know. So, from the

state q 0 on a 0 the delta function says it is a set consisting of q naught coma q 3 and for

this on a one if the set consisting of q naught coma q 1. So, either q naught or q 3 can be

chosen by the machine. So, delta in the case of a D F A was represented as q cross sigma

2 q that is for a given combination of q and symbol a single state was possible. But here

a set of states, this is the power set notation a set of states as which is a subset of the set

of state is possible.

A string is accepted by is accepted by an N F A, if there exists a sequence of transitions

corresponding to the string that leads from the start state to the some final state. So, it is

very similar to the previous one you know in the case of a D F A we said it should be go

from start state to final state on the input here. It can go from a start state to anyone of

the final states it is not necessary that it goes to the same final state every time it can go

to anyone of the final states s o and then still we say the string is accepted. So, every N F

A can be converted to an equivalent deterministic finite state automata, that accepts the

same language as the N F A. So, this is a very powerful result which says the non

determinism does not really add anything to finite striate automata. So, we are going to

look at that result in some detail later on. So, let us look at this example here is non

determinism and the language is the set of symbol x such that x contains two consecutive

0’s or two consecutive 1’s.

So, let me demonstrate how this work. So, it is you know from q 0. It can consume any

number of 0’s and 1’s, but finally, it should go to q 3 and then to q 4. That means, it

would have at least two consecutive 0’s here followed by any numbers of 0’s. And once

again in q 4 if it has taken this path it can have any numbers of 0’s and 1’s in the

beginning. But then it must consume at least two 1’s enter q 2 and then it can have any

number of 0’s and once in this state as well. So, two consecutive 0’s or two consecutive

1’s, that would be the rule to make a string acceptable to this particular automaton. So,

we will stop here and continue with non deterministic automata in the next lecture.

Thank you.

