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Welcome to the set of lectures on intermediate code generation. So, in this sequence of 

lectures, we are going to learn about different types of intermediate code; why 

intermediate codes are required? And we will also see how the attributed translation 

grammars can be used to generate intermediate codes for various constructs. 
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So, to begin with and to put the intermediate code generation phase in the right 

perspective, let us consider the compiler overview diagram that we have seen many 

times so far. So, we have… Once the character stream goes through the lexical analysis, 

syntax analysis and the semantic analysis stage, we get the annotated syntax tree over 

which intermediate code generation can be performed. So, the output of this will be sent 

to the machine-code optimizer. So, this is the perspective of intermediate code 

generation. So, we will look at the you know generation of the intermediate code using 

the SATG’s, that is the synthesized attribute translation grammars. And we will also look 

at some aspects of code generation using LATG’s, that is the L attributed translation 

grammars. 
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So, let us see the other users for intermediate code in the interpreters as such. So, what is 

the difference between compilers and interpreters? Compilers generate machine code and 

interpreters generate intermediate code; and then they continue with that process and 

interpret the intermediate code as well. So, when we say intermediate code is interpreted, 

the implication is the entire runtime environment that is required by the program to run is 

also provided by the interpreter itself.  

In cases such as Java, the intermediate code is actually produced by the compiler, and 

then there is a separate interpretation phase; whereas, in other languages such as Perl, 

Python or even Unix Shell, BASIC, LISP, the compilation process to produce 

intermediate code and the interpretation process are in the same program. Obviously, 

interpreters are much easier to write and can provide better error messages than a 

compiler, because the optimization and machine code generation phase is absent in an 

interpreter. The symbol table is still available to an interpreter. And therefore, error 

messages are easier to provide; and better error messages can also be provided. But, the 

catch is interpreters are very slow; at least five times slower than the machine code 

generated by compilers. 

To offset this problem or the deficiency, the Java runtime system and the interpretation 

system produce – actually provides what is known as a just-in-time compilation. So, in 

JIT compilers, the interpreter code is actually compiled into machine code and then run. 



This is very useful if the code is going to be run again and again. So, in such cases, JIT 

compilers are probably very close in execution speed to the compiler code. Interpreters 

also require much more memory than the machine code generated by compilers, because 

interpreters all said and done also have the symbol table and other data structures. And 

they really need to simulate the entire machine environment in which the code is 

supposed to run. So, all these require much more memory than that required by the 

machine code, which is generated by compilers. So, I already said that, Perl, Python, 

Unix Shell, Java, BASIC, LISP are examples of interpreted code; whereas, the compile 

code we all know C, C plus plus, Pascal and many other languages. The compilers for 

these languages produce machine code. 
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So, now, the big question that needs to be answered properly. Why do we require 

intermediate code at all? The other option is you have source languages and you have 

target machines; I just write a compiler for the source language A and the target machine 

X. So, why cannot this be done? So, let us look at the implications of this process. So, let 

us take an example. There are four source languages and there are three target machines; 

and we want to implement all the four source languages on all the three machines. So, to 

begin with, we obviously require 4 front ends, which do lexical analysis, parsing, 

semantic analysis and intermediate code generation. And if the intermediate code is 

immediately converted to machine code within the compiler or it is also possible that the 

intermediate code is not produced at all. So, intermediate code could be at a very high 



level such as an abstract syntax free in these cases. And it will not be at lower levels such 

as quadruples that we are going to use in our intermediate language study. 

So, for all practical purposes, we can say that, the source language is directly compiled 

into machine code. So, 4 front ends, which actually do the first part of compilation. Then 

we require 4 into 3 – 12 optimizers, which will optimize the code. And we also require 4 

into 3 – 12 machine code generators. So, really speaking, this order is kind of interleaved 

because we produce machine code and we also optimize the machine code itself; we do 

not have any intermediate code here. So, these two actually are mixed with each other. 

Some of the optimizations are done on the basic blocks in the machine code; whereas, 

some of the optimizations are done on loops, etcetera. So, this is a fairly heavy 

investment. For each of these languages, we require an optimizer and also a code 

generator. 

Let us see what happens when we have an intermediate language. So, definitely we 

require the 4 front ends which do go up to the semantic analysis; and they produce 

intermediate code instead of producing machine code. In such a case, we require 4 front 

ends. And then the intermediate code optimizer – just one of them is enough, because all 

the four source languages compile into the same intermediate language. And the 

intermediate code can be compiled into the machine codes. So, we require three different 

machine code generators as well. So, the extra in the first case is quite a bit; we require a 

large number of optimizers and machine code generators; whereas, here we are able to 

reuse the machine code generators. And of course, you may argue that, this front end and 

this front end are not the same, because in this front end we do not do any intermediate 

code generation; whereas, in this front end, we do some intermediate code generation. 

But, producing intermediate code is very simple as we are going to see and it definitely is 

not as difficult as writing too many optimizers and code generators. 



(Refer Slide Time: 08:37) 

 

So, this is one of the problems. So, too much code to write, too much code to debug. 

Now, the problem is we are not able to reuse the code that we have written so far. So, the 

code optimizer is one of the largest and extremely difficult to write components of a 

compiler. And since in this case, we have a machine code optimizer and not an 

intermediate code optimizer, which is independent of the machine language, we really 

cannot reuse the optimizer written for this language in this particular code generation 

system or code optimizer system. Each one them will have to be rewritten. Whereas, if 

you produce intermediate code, the machine independent code optimizer is just a single 

piece of code; it can be reused with all the compilers. So, this is a very efficient solution 

to the problem of producing many compilers for many source languages and machines. 
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What are the various types of intermediate code that we have available in literature? So, 

to do that, we must first of all understand what is the level at which the intermediate code 

is positioned. So, first of all, intermediate code must be very easy to produce and it must 

be easy to translate to machine code. This is something in between the source language 

in the machine code. So, you can call it as a sort of universal assembly language. And 

obviously, because this is supposed to be independent of any machine, it should not 

contain any machine-specific parameters such as registers, addresses, etcetera. The type 

of intermediate code deployed is based on the application. So, there are many of them. 

For example, we have quadruples, we have triples, we have indirect triples, and we have 

abstract syntax trees. These are the classical forms of intermediate code. And these are 

used for machine-independent optimization and machine code generation. So, this is the 

traditional use of these intermediate codes. 

Recently – when I recently, it is still about 10-15 years ago that, the static single 

assignment form was invented. So, this a form, which is very effective for certain types 

of optimizations. So, for example, there is an optimization called conditional constant 

propagation and another optimization called the global value numbering. These are far 

more effective on the static single assignment form rather than on the traditional 

intermediate codes in the form of quadruples and triples. Finally, the program 

dependence graph or the PDG has been in use for many decades in the automatic 

parallelization of code. And they are also useful in instruction scheduling and software 



pipelining phases of the machine-dependent optimizer. So, these are the various forms of 

intermediate code starting with the classical forms, then the SSA and the PDG. So, we 

are going to really study all forms of these intermediate codes in the coming lectures. 
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So, let us look at a conceptual intermediate code called the three address code. So, let me 

emphasize that, the three-address code is really a generic form of intermediate code; and 

it can be implemented as quadruples, triples, indirect triples, trees or DAG. I will give 

you some examples very soon. In the three-address code, the instructions are extremely 

simple. There are three examples of instructions here; a equal to b plus c; x equal to 

minus 5; if a greater than b, goto L1. So, these are three examples of intermediate code. 

We will see many more as we go on. In the assignment statements of this kind, either a 

equal to b plus c or x equal to minus y, the LHS is the target and the RHS has at most 

two sources and one operator. So, this is the operator; and the b and c are the sources. 

Why did we say at most two sources? In the case of such simple unary of instructions, 

we have just one source; so maximum of two and minimum of one. If you consider the 

branch statement; even here we can say this L1 is the target and these are the sources and 

this is the operator. So, RHS sources can be either variables or constants. So, we can say 

a equal to b plus 1; we can say a greater than 2; but, we cannot definitely say 2 equal to b 

plus c. So, the left-hand side must always be an address. So, let us take a simple 

expression a plus b star c minus d slash b star c. The interpretation would be subject to 



the usual understanding of the operators. So, the multiplication takes precedence over 

plus; plus and minus are at the same level; and slash and star are also at the same level. 

So, the first one is the first intermediate instruction would be a equal to b star c, because 

we cannot do a plus b first; we will have to do b star c first. 

Then, the second instruction is t 2 equal to a plus t 1. So, we have evaluated b star c; then 

we say a plus t 1. The third one is again t 3 equal to b star c; this particular thing, because 

we cannot do division before we evaluate this. And since division has more precedence 

than minus, we will have to do the division first. To do division first, we will have to do 

multiplication even earlier. Then we do t 4 equal to d slash t 3; and finally, t 5 equal to t 

2 minus t 4. So, a few points have to be emphasized here; of course, the form of the 

intermediate code – it is that of the three-address code here.  

So, we have one binary operator and two operands in each of these instructions. More 

important – the left-hand sides are all temporary variables, which are generated during 

the intermediate code generation phase. So, it is very important to remember that, the 

intermediate code employs a large number of temporaries; and these temporaries will be 

generated as and when we require them. There is usually no reuse of temporaries after 

their work is over; we just generate new temporaries and go on using them. The machine 

code generation and the optimization phase will take care of eliminating the redundant 

temporaries. 
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Here is an implementation of the 3-address code, rather many implementations of the 3-

address code. So, we have 3-address code, then the quadruples, then triples, then syntax 

tree and DAG. So, traditionally, this has been used as the textual form; and the other four 

are used as data structures inside the machine or inside the compiler. So, the quadruple 

gets its name because there are four fields in each instruction: op, arg 1, arg 2 and result. 

So, it is possible to in fact show even jumps using the same format, because as I said, the 

result is the jump target; then arg 1, arg 2 are the arguments of the expression, and op is 

the relational operator. So, this is just a listing of the 3-address code here. So, there is 

nothing very special here. So, we can … This is self explanatory. 

Triples are slightly different. We really do not show the temporaries explicitly in the case 

of triples. So, let us go through them. The first instruction is star b c; and we have not 

shown any temporary. So, when we want to do t 2 equal to a plus t1, a is depicted here; 

and instead of t1, we provide the index of the instruction, which computes that particular 

operand. So, in this case, this is the instruction 0; star b c is the instruction, which is 

executing. So, next, we again do star b c; then we have slash d and 2. So, t4 equal to d 

slash t3. So, t3 is this particular instruction.  

So, we provide the index of that instruction here as 2. Finally, for minus, we say t2 minus 

t4. So, t2 is number 1 – this particular instruction; and t4 is number 3, that is, this 

particular instruction. So, really speaking, this is nothing, but a straightforward encoding 

of the tree in this array form. So, if you look at the tree, this is easy. So, we have star b c 

here and then we have a plus b star c. Then we have b star c here and then d slash b star 

c, and then finally, a minus. So, this is nothing but an array encoding of this tree; that is 

it. 

What is a directed acyclic graph representation of this 3-address code? It is very similar 

to that of the tree with the difference that, whenever there is some expression, which is 

already available, we do not recompute it, but we simply make the operand pointer point 

to it. So, in this case, b star c has already been computed. And therefore, the tree for b 

star c is right here. We just point the right operand of this slash to this particular subtree. 

And that is why this is a directed acyclic graph and not a tree representation. The 

important difference between DAG and all other forms of intermediate code that we have 

here is that, these catch what are known as common sub-expressions. So, there is no 

expression, which is recomputed unnecessarily. It is all reused again and again whenever 



necessary and of course, if possible. Why did I say if possible? Suppose you assume that, 

either b or c has been assigned a value before b star c. In that case, this particular b star c 

and the prior occurrence of b star c are obviously very different; and in such cases, there 

is no question of reuse; we recompute b star c. So, this is how the 3-address code is 

actually implemented in practice. So, in our discussion, we will use 3-address code of the 

textual form in this form and we will say that, the machine implementation can use any 

one of these. 
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So, what are the various forms of 3-address code? So, I gave you a very few examples. 

Now, let us look at the exhaustive list. There are many types of assignment instructions. 

So, a equal to b biop c, a equal to uop b, and a equal to b. biop is a binary operator; it can 

be arithmetic operator, logical operator or relational operator. uop is a unary operator; it 

is either an arithmetic operator or a shift operator or a conversion operator or logical 

operator; minus also is included, I missed it.  

So, minus shift and conversion are all arithmetic type of operators; and logical operator 

is the compliment operator. So, what exactly is special about conversion? Minus and 

shift we understand already. Conversion is useful in converting integers into floating 

point numbers and floating point numbers into integers, characters into integers, and so 

on. So, we saw in semantic analysis that, we look at the coercibility of various types. So, 

if the coercibility is defined by the programming language, then we need to convert these 



operands into suitable types before we emit the intermediate instruction corresponding to 

it. So, we are going to look at this also in the intermediate code generation phase. 

Then, we have several types of jump instructions. So, there is an unconditional goto L. 

So, L is the label of the instruction to either target instruction. If t goto L; so if t is true, 

then jump to L. If a relop b goto L. So, if a relop b is true, then jump to L; otherwise, 

continue. So, here t is a boolean variable. So, either take 0 or 1. a and b are either 

variables or constants. 
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Then, we have many types of instructions to take care of function declaration and 

function call. For the function declaration, we require a function begin and name of the 

function. A function end instruction to end a function. Then to pass a parameter and 

place it on a stack, we require param p instruction; and this is a value parameter. There is 

a refparam p, which is required for a reference parameter. So, different types of 

parameter schemes will be learnt a little later. But, now, I should tell you that, value 

parameters actually evaluate the expression, which is passed as a parameter in the high 

level language and then place that value as the parameter; whereas, in the case of a 

reference parameter, the expression is evaluated and the address of that particular value 

is placed as a reference parameter. Then there is a call f comma n, which is an instruction 

to call a function f with n parameters. There is a return instruction without any value; and 

there is a return a instruction in which we return a value from the function. 



Then, we have a indexed copy instructions. So, a equal to b of i. So, b of i looks like it is 

an array; obviously, b is an array; i is the index into that array. The only difference is 

even though this appears as a single dimensional array, we are really going to convert 

multidimensional array accesses to such signal sequence single dimensional array 

accesses. So, that is why this is intermediate code; we are breaking down higher level 

statements into lower level statements. a is set to the contents of contents of b plus 

contents of i. So, usually, if it is a simple array, then b is the base address of the array 

and i is the offset into that array. So, you take the base address, add the contents of i; 

then you get the place, where we actually want the value. So, access the value of that 

particular place and put it into a. This is the semantics of a equal to b i. 

Similarly, a i equal to b implies i-th location of array a is set to b. So, again as I said, this 

could be a translation of the multidimensional array into a single dimensional array. This 

may be the result of that. Then we have… So, you must also observe that, we do not 

have any instruction of the form a i equal to b i. This is because a i is already… – it has 

an indexing operator. So, here for example, if you say a equal to b of i just like a equal to 

b star c and star being an operator, here we have b and i as source operands; the indexing 

is the operator; and this is the target of the assignment. Similarly, here as well, i is an 

operand; b is another operand, because they are not modified, and is an assignment. And 

then of course, indexed assignment is the operator. So, this is usually indicated as a 

bracket c is equal to and this is indicated as equal to b brackets. 

Pointer assignment – we have a equal to and b, which sets a to the address of b; that is, a 

points to b. Star a equal to b; so we take b; then evaluate the address as star a. So, take 

the contents of a; treat it as an address; go to that address; and that is where we are going 

to put b. So, contents of contents of a is set to contents of b. The effective address is 

obtained by looking at the contents of a and go to that particular place. So, it is not a 

single level addressing here; there is indirect addressing mechanism as well. a equal to 

star b is similar. So, a is set to the contents of contents of b. So, contents of b would be 

an address. So, we have to take the contents again. So, here also, the contents of a would 

be the address; where, b is placed. 
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Now, we are going to look at a series of programs and the intermediate code that is 

produced by a typical compiler for such programs. The C program has int a 10, b 10, dot 

product and i. They are all integers; a and b are arrays of size 10. dot prod is assigned 0 

to begin with; initialized to 0. There is a loop, which starts from 0 goes up to, but not 

inclusive of 10; and it is incremented once with an increment of 1 every time. dot 

product equal to dot product plus a i star b i; that is the meaning of this. So, we compute 

the dot product and the translation is quite straightforward. The declaration does not have 

any translation; obviously, there is no code produced for declarations. We start with dot 

prod equal to 0; this is already in a very simple form. So, there is nothing more to do. 

Then we have i equal to 0; this is a translation of the loop. So, we check whether i greater 

than or equal to 10; if so goto L 2; that is the exit of the loop; otherwise, the body of the 

loop. 

So, now, take the address of the a. In fact, the address of a could be the stack pointer 

value pointing to the place, where a is placed. Then we have second instruction T2 equal 

to i star 4. So, we are now translating a of i. Then T3 equal to T1 of T2. So, essentially, 

we are doing a of i with these three instructions. So, you can easily see that, a single 

instruction a of i, rather single access a of i translates to three instructions in the 

intermediate code. Then we translate b of i; which is T4 equal to address b; T5 equal to i 

star 4; and T6 equal to T4 of T5. So, this is effectively b of i. Now, we do the 

multiplication. So, T7 equal to T3 star T6. Then we add that to dot product. So, T8 equal 



to dot product plus T7. Then we must assign it back to dot product. So, dot product equal 

to T8. 

Now, we do the second part; the increment here for the loop. T9 equal to i plus 1; and i 

equal to T9. So, you should also observe that, the intermediate code generation produces 

really dumb intermediate code. It is easy to see that, this is nothing but i equal to i plus 1, 

but, we do not do that, and even this. It is nothing but dot prod equal to dot prod plus T7; 

but, we do not do that. The intermediate code generation that is why is a simple-minded 

program. And an optimizer is anyways necessary to improve the program. Finally, there 

is goto L1, which repeats the loop. So, this is the intermediate code produced; it is just 

like assembly code for this particular program. So, let us look at a second example; the 

same dot product program. But, let us say we use a pointer to run through the arrays 

instead of using indexing as we have done here; a i plus star b i. So, a i star b i. 
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Instead of that, let us run through the arrays using pointers. So, we have a 10; we have b 

10, dot prod and i as integers. Then we have pointers to integers – int star a1 and int star 

b1. So, we start with dot product equal to 0; a1 equal to a. So, the pointer a1 is pointing 

to a; pointer b1 is pointing to b. The loop in the body is different, but the loop header is 

the same. So, we write dot prod plus equal to star a1 plus plus star star b1 plus plus. So, 

what is the meaning of this assignment? We do star a1 first. So, that gets you the 

contents of the array in a way similar to a of i. Then we must go to the next location in 



the array. In this case, we actually… In this case, we did a of i; and then this i plus plus 

took care of progressing to the next element in the array. Since we are not using the i to 

index into the array, we must alter the pointer itself. So, after star a1, we do a1 plus plus. 

So, that automatically takes you to the next element in the array. Similarly, star b1 gets 

you the contents of that location and b1 plus plus will take you to the next location. 

Multiplication of these two will produce the product and then we add it to dot prod. So, 

that is really the same dot product that we had seen earlier. Here the loop variable I is not 

used in the computation, but it is used only for the termination of the loop. 

So, let us see what the code corresponding to this b. So, this is easy – dot prod equal to 0. 

Then the pointer assignment a1 equal to ampersand a. So, that is the address of a. 

Similarly, b1 equal to ampersand b – address of b. Then the initialization of i; i equal to 

0. Now, the loop. So, this part is the same. If i greater than equal to 10, goto L2. The 

body of the loop – first, we do T3 equal to star a1. We have an intermediate code 

instruction for that. Then we do T4 equal to a1 plus 1. That is the a1 plus plus part. Then 

we do a1 equal to T4. So, these two together do the auto increment on a1. Then we have 

star T5 equal to star b1; T6 equal to b1 plus 1, and b1 equal to T6. So, that is the star b1 

plus plus. We do the multiplication T3 star T5. Then add it to the dot product in these 

two as before; then the loop control here. So, this shows an example with the pointer to 

the array instead of indexing. 
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The third program shows you a function for the dot product. So, these are all different 

variants of the same computation. So, the function is int dot prod; it takes two arrays as 

parameters: int x and int y. We have d, i as integer variables inside the function. d is 

initialized to 0. Then the loop runs exactly the way it used to. And we have d plus equal 

to x i star y i exactly the way it was in the main program before. So, return d returns the 

value of the dot product. So, func begin dot prod; obviously, beginning of the function 

requires this intermediate instruction. Then d equal to 0 and i equal to 0 as before. So, the 

loop control is also as before. So, nothing to expand. But, here after the loop terminates, 

we need to return the value of the dot product and then go back to the program. So, 

return d combines the tasks of value return and return to the main pro…call e. Func end 

of course, ends the function. 

In the body of the program, the code is not very different. So, I am not going to expand it 

all over again, explain it all over again. So, we have address x i star 4, T1 T2, address y, i 

star 4, T4 T5, T3 star T6, d plus T7, d equal to T8, etcetera. Now, we should also see 

how the function is called. So, what is special about this? This shows you how the 

function is written and how the values are returned by the function. 
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In the main program, we have int p, int a 10, b 10; and then p equal to dot prod a comma 

b. I have skipped the part, where we read values into a and b. So, func begin main. So, 

main is also a function in C. And then the first parameter – array is always passed by 



reference. So, we have refparam a. And the second parameter b is again an array. So, it is 

refparam b. The base address of the arrays are passed in these places. Then we also need 

a place for the result. So, refparam result. So, you must keep in mind that, this location 

result is actually in this main program; it is not a part of the function. Therefore, the code 

generator must be able to produce the appropriate code for this return instruction. So, we 

will see that later anyway. Then there is a call to dot product and the number of 

parameters is 3 including the result. So, a, b and the result. Then the come out p equal to 

result; the result would have been assigned a value by the function; and then we have 

func end. So, these are a couple of examples to show the various constructs in the 

intermediate code. 
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And, one final example will show you how recursion is handled in the intermediate code. 

So, we have the famous factorial function here – int fact n; if n is 0, return 1; otherwise, 

return n star fact n minus 1. So, it is quite straightforward; nothing very special here. 

func begin fact; if n equal to 0 goto L1. So, in L1, we have return 1. So, that is this part. 

Then we compute n minus 1. Push that parameter using the param T1. Then the result 

refparam result. Then call fact with two parameters: first is T1, the second is a result. 

Then T3 accumulates the value n star result and we return T3. So, as I said, since return 

combines two functions: one is sending a value back to the caller and second is to return 

to the caller. So, there is no question of the control flow going to return 1 after the return 

T3 instruction. So, nothing to worry here. 
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So, that is about the examples of various types of intermediate code, how they are 

produced, rather what intermediate code is produced for programs, and so on. So, now, 

let us delve into the details of producing such intermediate code for various constructs in 

the language. So, let us look at code templates for if then else statement. So, the form of 

the if then else statement we already know very well. If E S1 else S2. The other way is if 

ES. So, the assumption is we do not have what is known as a short circuit evaluation for 

E. So, we will see a little later that, if… Since E is a boolean expression, we can actually 

have jumps out of the expression E if we produce what is known as a control flow code 

for the boolean expression. So, this is known as short circuit evaluation for E. 

So, let us assume that, there is no short circuit evaluation. In other words, the expression 

E is evaluated completely with no jumps and then the decision of whether it is true or 

false is made. So, obviously, the code that must be produced for this is quite intuitive. 

So, first of all, we must produce the code for E. Then let us assume that, the result of this 

is in the temporary T. Then here we must check whether T is true or false. So, if T is 

false, the else part has to be executed. So, goto L1. So, that is why the jump. If that T 

variable contains a true value, then we execute S1.  

So, code for S1. Now, after S1, we actually have come to this point; we should not fall 

through and execute S2; we should actually jump to outside of S2. So, that is why go to 

L2, which is the exit. But, there are also cases where there are jumps from within in S1. 



We will see examples of this very soon to understand it. Similarly, there will be jumps 

from within S2 as well. So, all exits from within S1 and S2 also jump to L2. So, this is 

something we must be careful about. And I will show you examples of how this can 

happen. If E S is only a subset of what we have discussed so far; code for E; then the 

branch statement to check whether T is true or false; and then if it is false, then we go 

out; otherwise, we execute code S and then go out. So, all exits from S also jump to L1. 

(Refer Slide Time: 42:39) 

 

What about the while construct? Again we have no short circuit evaluation for E; that is 

the assumption. We will consider short circuit evaluation a little later. So, we produce the 

code for E. The result is in T. Then as usual, we must check whether E is true or false. 

So, if T is less than or equal to 0, that is false; we jump out; that is L2. If E is true, then 

we continue and execute S. So, the code for S must be produced. After code for S, we 

must go back to the code for E, evaluate it and continue with the loop. So, there is a goto 

for L1. The other special case here is if there are any jumps out of S, all these must 

actually jump to L1. So, that must be taken care of. 
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So, let us look at an elaborate example to show how the jumps from statements within 

can also arise. So, let A in this example be assignments and E i be expressions. So, the 

code is if E 1. And in the then part, we have a complete if then else again. And in the else 

part, we have else A 3. And after this entire statement of the outer part, we have the next 

statement A 4. So, the intuitive understanding is we check whether E 1 is true. If E 1 is 

true, we execute the second if then else; if it is false, we execute A 3 and then go on to A 

4. So, if it is true, we come inside; we again check whether E 2 is true. If it is true, then 

we must execute A 1 and then jump to A 4 directly. If it is false, we must execute A 2 

and then jump directly to A 4. We should never execute A 3 after any one of these. So, 

this is how jumps from within a statement can arise. So, there is a jump from here and 

also a jump from here, which should actually take you to A 4 and not to A 3. So, let us 

see the code for this. 

There is code for E 1. Then the temporary for E 1 is tested. T 1 less than equal to 0 goto 

L1. So, that would be the code for A 3 – the else part. So, in red, we show the code for 

the outer part; and in violet, we show code for the inner part. Then the code for E 2; if 

that is false, the E 2 expression is false; goto L2. So, that is else part of this second 

expression – second if then else. We execute that and then jump to L3, that is, the code 

for A 4. So, observe that, this is the jump out of the inner statement in this if then else. 

Then we have code for A 1 and we jump to again L3. So, as I was saying, it is this jump. 



Then we have code for A 2 jump to this thing; and finally, code for A 3 and fall through 

to A 4. So, that is how the jumps out of inner statements can arise. 
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Let us look at an example of the while statement as well. So, here is the while part; and 

inside, we have an if then else; and finally, we have… The body of this while loop is an 

if then else. And finally, we have another assignment statement. So, while the expression 

E 1 is true, we go on executing this; and then finally, we jump to A 3 when the 

expression becomes false. So, again after A 1, there is a jump out of the if then else; and 

after A 2, again there is another jump out of the if then else. Both of them will take us to 

the beginning of E 1. So, code for E 1; and then if T 1 less than equal to 0, goto L2; that 

is the exit; code for A 3 directly; otherwise, we execute the code for E 2, then test it. If it 

false, we go to the else part, that is, the L3. And then we go back to the beginning of the 

code. So, otherwise, we execute the code for L1 and go back to the beginning of while 

loop. So, this is how jumps can arise from within while loops as well. 
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So, it is… Now, we move on and start looking at the – now, SATG – attribute translation 

grammar with the synthesized attributes to produce intermediate code for various types 

of constructs. So, there are many attributes. So, let us look at some of them; the others 

will be clear as we along. Most important we have what is known as S dot next and N 

dot next; S and N are two non-terminals that we are going to use in the grammar. These 

are lists of quadruples indicating where to jump. So, the target of the jump would still be 

undefined when it is on this list. Then there is if expression dot falselist. So, these are all 

synthesized attributes. So, we are not going to put any arrows corresponding to it. If 

expression dot falselist indicates that it is a quadruple. So, we want to jump; where to 

jump if the expression is false. So, when we generate the jump statement for the 

expression – if expression is false, then jump; the target is still undefined, and the target 

will be defined a little later. 

E dot result in general is a pointer into the symbol table entry, which is… It is a 

temporary storing the result of evaluating the expression. So, as I already told you, all 

temporaries generated during intermediate code generation stage are inserted into the 

symbol table. And in quadruple, triple and tree representations, that is, the 

implementation, pointers to symbol table entries for variables and temporaries are used 

in place of names; whereas, in our textual examples of 3-address code, we will continue 

to use the names. But, wherever we have used a name, its meaning is that, there is a 



pointer to the entry for that particular entry in the symbol table. So, the SATG will make 

these attributes very clear. 
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Then, we have a global variable called nextquad, which actually contains a number; the 

number indicating next quadruple to be generated. So, whenever we increment the 

nextquad, that means, we have generated one instruction and we want to go to the next 

hole, where an instruction can be placed. Then there is a backpatch instruction, which 

takes two parameters: first one is the list; the other one is the quadruple number. The list 

contains a large number of, a number of rather branch instructions, whose targets are 

unfilled as of now. Those targets will be filled with quad number by this backpatch 

instruction. So, this is a compiler instruction and not an intermediate code instruction. 

Merge is a compiler function; it takes many lists and merges them into one. 

The core of the SATG would always be this gen quadruple, which outputs a quadruple. 

So, where is the quadruple going to be placed? It is going to be placed at position 

nextquad; and nextquad counter will be incremented as well. So, again just to stress this 

point, the temporaries of variables, which are inserted into the symbol table; and we use 

names in the textual representation. But, in actual implementation, the pointers to symbol 

table will be used. We have used a large number of temporaries. So, we require a 

temporary generator. newtemp is a temporary generator and its parameter is the type of 

the temporary that is needed whether it is int or real or char or etcetera. This generates a 



temporary name of the temp-type; inserts the name, which is generated into the symbol 

table and returns the pointer to that entry in the symbol table. So, that is how T 3, T 4, 

etcetera are dealt with. 
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So, as we had done in the case of semantic analysis, we need to break the production for 

if then else into two parts. So, this is the production S going to if expression, then S 1 

else S 2. So, we have broken the if E part into another production; IFEXP going to if E. 

In the case of semantic analysis, the purpose was to provide an appropriate error message 

very early; whereas, in the case of the intermediate code generation, this becomes 

necessary, because we must first produce the test for E immediately after parsing E 

before we produce the code for S 1 and S 2. If the code for S 1 and S 2 is produced early 

without the jump, then it is incorrect code.  

So, what is happening here? So, we have parsed E; we have come up to this stage; the 

reduction has not happened in the parser. So, here if expression dot falselist – that is the 

attribute of the left-hand side. We will now store the next instruction in that list. So, 

makelist nextquad. So, next quad is the quadruple number of this particular instruction at 

this time. The instruction generated is if E dot result less than or equal to 0 goto dash. So, 

this blank or dash is unfilled at this time; and if possible, we will fill it; otherwise, we are 

going to fill it in some other production. So far we have tested the expression and 

produced code here. 



In the second one, S going to if expression S 1; then we have a marker non-terminal N 

else and another marker non-terminal M; and finally, S 2. So, here if we need to patch 

this instruction, which implies that the E dot result is false and address to which it is 

patched is the beginning of the code for S 2. That is stored in M dot quad. So, M going to 

epsilon will store the quadruple number as M dot quad. That is the address of the code 

corresponding to S 2. So, backpatch if expression dot falselist comma M dot quad. 

 And then on the S dot next, we still do not know where jumps out of S 1 will be going 

to. So, all the S 1 dot next list will be placed inside this merge statement. We do not 

know where exactly this jump for N will go to. So, N going to epsilon will produce a 

goto statement after the then part. And we do not know where the jumps out of S 2 will 

go to. So, all these will be merged into S dot next. Here this is the if then expression. So, 

IFEXP S 1. We just do a merger of S 1 dot next and IFEXP dot falselist and put it on S 

dot next. So, we will stop here and continue with rest of the translation in the next 

lecture. 

Thank you. 


