
Principles of Compiler Design

Prof. Y. N. Srikant

Department of Computer Science and Automation

Indian Institute of Science, Bangalore

Lecture - 17

Intermediate Code Generation Part – 1

 (Refer Slide Time: 00:20)

Welcome to the set of lectures on intermediate code generation. So, in this sequence of

lectures, we are going to learn about different types of intermediate code; why

intermediate codes are required? And we will also see how the attributed translation

grammars can be used to generate intermediate codes for various constructs.

(Refer Slide Time: 00:40)

So, to begin with and to put the intermediate code generation phase in the right

perspective, let us consider the compiler overview diagram that we have seen many

times so far. So, we have… Once the character stream goes through the lexical analysis,

syntax analysis and the semantic analysis stage, we get the annotated syntax tree over

which intermediate code generation can be performed. So, the output of this will be sent

to the machine-code optimizer. So, this is the perspective of intermediate code

generation. So, we will look at the you know generation of the intermediate code using

the SATG’s, that is the synthesized attribute translation grammars. And we will also look

at some aspects of code generation using LATG’s, that is the L attributed translation

grammars.

(Refer Slide Time: 01:38)

So, let us see the other users for intermediate code in the interpreters as such. So, what is

the difference between compilers and interpreters? Compilers generate machine code and

interpreters generate intermediate code; and then they continue with that process and

interpret the intermediate code as well. So, when we say intermediate code is interpreted,

the implication is the entire runtime environment that is required by the program to run is

also provided by the interpreter itself.

In cases such as Java, the intermediate code is actually produced by the compiler, and

then there is a separate interpretation phase; whereas, in other languages such as Perl,

Python or even Unix Shell, BASIC, LISP, the compilation process to produce

intermediate code and the interpretation process are in the same program. Obviously,

interpreters are much easier to write and can provide better error messages than a

compiler, because the optimization and machine code generation phase is absent in an

interpreter. The symbol table is still available to an interpreter. And therefore, error

messages are easier to provide; and better error messages can also be provided. But, the

catch is interpreters are very slow; at least five times slower than the machine code

generated by compilers.

To offset this problem or the deficiency, the Java runtime system and the interpretation

system produce – actually provides what is known as a just-in-time compilation. So, in

JIT compilers, the interpreter code is actually compiled into machine code and then run.

This is very useful if the code is going to be run again and again. So, in such cases, JIT

compilers are probably very close in execution speed to the compiler code. Interpreters

also require much more memory than the machine code generated by compilers, because

interpreters all said and done also have the symbol table and other data structures. And

they really need to simulate the entire machine environment in which the code is

supposed to run. So, all these require much more memory than that required by the

machine code, which is generated by compilers. So, I already said that, Perl, Python,

Unix Shell, Java, BASIC, LISP are examples of interpreted code; whereas, the compile

code we all know C, C plus plus, Pascal and many other languages. The compilers for

these languages produce machine code.

(Refer Slide Time: 04:50)

So, now, the big question that needs to be answered properly. Why do we require

intermediate code at all? The other option is you have source languages and you have

target machines; I just write a compiler for the source language A and the target machine

X. So, why cannot this be done? So, let us look at the implications of this process. So, let

us take an example. There are four source languages and there are three target machines;

and we want to implement all the four source languages on all the three machines. So, to

begin with, we obviously require 4 front ends, which do lexical analysis, parsing,

semantic analysis and intermediate code generation. And if the intermediate code is

immediately converted to machine code within the compiler or it is also possible that the

intermediate code is not produced at all. So, intermediate code could be at a very high

level such as an abstract syntax free in these cases. And it will not be at lower levels such

as quadruples that we are going to use in our intermediate language study.

So, for all practical purposes, we can say that, the source language is directly compiled

into machine code. So, 4 front ends, which actually do the first part of compilation. Then

we require 4 into 3 – 12 optimizers, which will optimize the code. And we also require 4

into 3 – 12 machine code generators. So, really speaking, this order is kind of interleaved

because we produce machine code and we also optimize the machine code itself; we do

not have any intermediate code here. So, these two actually are mixed with each other.

Some of the optimizations are done on the basic blocks in the machine code; whereas,

some of the optimizations are done on loops, etcetera. So, this is a fairly heavy

investment. For each of these languages, we require an optimizer and also a code

generator.

Let us see what happens when we have an intermediate language. So, definitely we

require the 4 front ends which do go up to the semantic analysis; and they produce

intermediate code instead of producing machine code. In such a case, we require 4 front

ends. And then the intermediate code optimizer – just one of them is enough, because all

the four source languages compile into the same intermediate language. And the

intermediate code can be compiled into the machine codes. So, we require three different

machine code generators as well. So, the extra in the first case is quite a bit; we require a

large number of optimizers and machine code generators; whereas, here we are able to

reuse the machine code generators. And of course, you may argue that, this front end and

this front end are not the same, because in this front end we do not do any intermediate

code generation; whereas, in this front end, we do some intermediate code generation.

But, producing intermediate code is very simple as we are going to see and it definitely is

not as difficult as writing too many optimizers and code generators.

(Refer Slide Time: 08:37)

So, this is one of the problems. So, too much code to write, too much code to debug.

Now, the problem is we are not able to reuse the code that we have written so far. So, the

code optimizer is one of the largest and extremely difficult to write components of a

compiler. And since in this case, we have a machine code optimizer and not an

intermediate code optimizer, which is independent of the machine language, we really

cannot reuse the optimizer written for this language in this particular code generation

system or code optimizer system. Each one them will have to be rewritten. Whereas, if

you produce intermediate code, the machine independent code optimizer is just a single

piece of code; it can be reused with all the compilers. So, this is a very efficient solution

to the problem of producing many compilers for many source languages and machines.

(Refer Slide Time: 09:44)

What are the various types of intermediate code that we have available in literature? So,

to do that, we must first of all understand what is the level at which the intermediate code

is positioned. So, first of all, intermediate code must be very easy to produce and it must

be easy to translate to machine code. This is something in between the source language

in the machine code. So, you can call it as a sort of universal assembly language. And

obviously, because this is supposed to be independent of any machine, it should not

contain any machine-specific parameters such as registers, addresses, etcetera. The type

of intermediate code deployed is based on the application. So, there are many of them.

For example, we have quadruples, we have triples, we have indirect triples, and we have

abstract syntax trees. These are the classical forms of intermediate code. And these are

used for machine-independent optimization and machine code generation. So, this is the

traditional use of these intermediate codes.

Recently – when I recently, it is still about 10-15 years ago that, the static single

assignment form was invented. So, this a form, which is very effective for certain types

of optimizations. So, for example, there is an optimization called conditional constant

propagation and another optimization called the global value numbering. These are far

more effective on the static single assignment form rather than on the traditional

intermediate codes in the form of quadruples and triples. Finally, the program

dependence graph or the PDG has been in use for many decades in the automatic

parallelization of code. And they are also useful in instruction scheduling and software

pipelining phases of the machine-dependent optimizer. So, these are the various forms of

intermediate code starting with the classical forms, then the SSA and the PDG. So, we

are going to really study all forms of these intermediate codes in the coming lectures.

(Refer Slide Time: 12:18)

So, let us look at a conceptual intermediate code called the three address code. So, let me

emphasize that, the three-address code is really a generic form of intermediate code; and

it can be implemented as quadruples, triples, indirect triples, trees or DAG. I will give

you some examples very soon. In the three-address code, the instructions are extremely

simple. There are three examples of instructions here; a equal to b plus c; x equal to

minus 5; if a greater than b, goto L1. So, these are three examples of intermediate code.

We will see many more as we go on. In the assignment statements of this kind, either a

equal to b plus c or x equal to minus y, the LHS is the target and the RHS has at most

two sources and one operator. So, this is the operator; and the b and c are the sources.

Why did we say at most two sources? In the case of such simple unary of instructions,

we have just one source; so maximum of two and minimum of one. If you consider the

branch statement; even here we can say this L1 is the target and these are the sources and

this is the operator. So, RHS sources can be either variables or constants. So, we can say

a equal to b plus 1; we can say a greater than 2; but, we cannot definitely say 2 equal to b

plus c. So, the left-hand side must always be an address. So, let us take a simple

expression a plus b star c minus d slash b star c. The interpretation would be subject to

the usual understanding of the operators. So, the multiplication takes precedence over

plus; plus and minus are at the same level; and slash and star are also at the same level.

So, the first one is the first intermediate instruction would be a equal to b star c, because

we cannot do a plus b first; we will have to do b star c first.

Then, the second instruction is t 2 equal to a plus t 1. So, we have evaluated b star c; then

we say a plus t 1. The third one is again t 3 equal to b star c; this particular thing, because

we cannot do division before we evaluate this. And since division has more precedence

than minus, we will have to do the division first. To do division first, we will have to do

multiplication even earlier. Then we do t 4 equal to d slash t 3; and finally, t 5 equal to t

2 minus t 4. So, a few points have to be emphasized here; of course, the form of the

intermediate code – it is that of the three-address code here.

So, we have one binary operator and two operands in each of these instructions. More

important – the left-hand sides are all temporary variables, which are generated during

the intermediate code generation phase. So, it is very important to remember that, the

intermediate code employs a large number of temporaries; and these temporaries will be

generated as and when we require them. There is usually no reuse of temporaries after

their work is over; we just generate new temporaries and go on using them. The machine

code generation and the optimization phase will take care of eliminating the redundant

temporaries.

(Refer Slide Time: 16:17)

Here is an implementation of the 3-address code, rather many implementations of the 3-

address code. So, we have 3-address code, then the quadruples, then triples, then syntax

tree and DAG. So, traditionally, this has been used as the textual form; and the other four

are used as data structures inside the machine or inside the compiler. So, the quadruple

gets its name because there are four fields in each instruction: op, arg 1, arg 2 and result.

So, it is possible to in fact show even jumps using the same format, because as I said, the

result is the jump target; then arg 1, arg 2 are the arguments of the expression, and op is

the relational operator. So, this is just a listing of the 3-address code here. So, there is

nothing very special here. So, we can … This is self explanatory.

Triples are slightly different. We really do not show the temporaries explicitly in the case

of triples. So, let us go through them. The first instruction is star b c; and we have not

shown any temporary. So, when we want to do t 2 equal to a plus t1, a is depicted here;

and instead of t1, we provide the index of the instruction, which computes that particular

operand. So, in this case, this is the instruction 0; star b c is the instruction, which is

executing. So, next, we again do star b c; then we have slash d and 2. So, t4 equal to d

slash t3. So, t3 is this particular instruction.

So, we provide the index of that instruction here as 2. Finally, for minus, we say t2 minus

t4. So, t2 is number 1 – this particular instruction; and t4 is number 3, that is, this

particular instruction. So, really speaking, this is nothing, but a straightforward encoding

of the tree in this array form. So, if you look at the tree, this is easy. So, we have star b c

here and then we have a plus b star c. Then we have b star c here and then d slash b star

c, and then finally, a minus. So, this is nothing but an array encoding of this tree; that is

it.

What is a directed acyclic graph representation of this 3-address code? It is very similar

to that of the tree with the difference that, whenever there is some expression, which is

already available, we do not recompute it, but we simply make the operand pointer point

to it. So, in this case, b star c has already been computed. And therefore, the tree for b

star c is right here. We just point the right operand of this slash to this particular subtree.

And that is why this is a directed acyclic graph and not a tree representation. The

important difference between DAG and all other forms of intermediate code that we have

here is that, these catch what are known as common sub-expressions. So, there is no

expression, which is recomputed unnecessarily. It is all reused again and again whenever

necessary and of course, if possible. Why did I say if possible? Suppose you assume that,

either b or c has been assigned a value before b star c. In that case, this particular b star c

and the prior occurrence of b star c are obviously very different; and in such cases, there

is no question of reuse; we recompute b star c. So, this is how the 3-address code is

actually implemented in practice. So, in our discussion, we will use 3-address code of the

textual form in this form and we will say that, the machine implementation can use any

one of these.

(Refer Slide Time: 20:49)

So, what are the various forms of 3-address code? So, I gave you a very few examples.

Now, let us look at the exhaustive list. There are many types of assignment instructions.

So, a equal to b biop c, a equal to uop b, and a equal to b. biop is a binary operator; it can

be arithmetic operator, logical operator or relational operator. uop is a unary operator; it

is either an arithmetic operator or a shift operator or a conversion operator or logical

operator; minus also is included, I missed it.

So, minus shift and conversion are all arithmetic type of operators; and logical operator

is the compliment operator. So, what exactly is special about conversion? Minus and

shift we understand already. Conversion is useful in converting integers into floating

point numbers and floating point numbers into integers, characters into integers, and so

on. So, we saw in semantic analysis that, we look at the coercibility of various types. So,

if the coercibility is defined by the programming language, then we need to convert these

operands into suitable types before we emit the intermediate instruction corresponding to

it. So, we are going to look at this also in the intermediate code generation phase.

Then, we have several types of jump instructions. So, there is an unconditional goto L.

So, L is the label of the instruction to either target instruction. If t goto L; so if t is true,

then jump to L. If a relop b goto L. So, if a relop b is true, then jump to L; otherwise,

continue. So, here t is a boolean variable. So, either take 0 or 1. a and b are either

variables or constants.

(Refer Slide Time: 23:16)

Then, we have many types of instructions to take care of function declaration and

function call. For the function declaration, we require a function begin and name of the

function. A function end instruction to end a function. Then to pass a parameter and

place it on a stack, we require param p instruction; and this is a value parameter. There is

a refparam p, which is required for a reference parameter. So, different types of

parameter schemes will be learnt a little later. But, now, I should tell you that, value

parameters actually evaluate the expression, which is passed as a parameter in the high

level language and then place that value as the parameter; whereas, in the case of a

reference parameter, the expression is evaluated and the address of that particular value

is placed as a reference parameter. Then there is a call f comma n, which is an instruction

to call a function f with n parameters. There is a return instruction without any value; and

there is a return a instruction in which we return a value from the function.

Then, we have a indexed copy instructions. So, a equal to b of i. So, b of i looks like it is

an array; obviously, b is an array; i is the index into that array. The only difference is

even though this appears as a single dimensional array, we are really going to convert

multidimensional array accesses to such signal sequence single dimensional array

accesses. So, that is why this is intermediate code; we are breaking down higher level

statements into lower level statements. a is set to the contents of contents of b plus

contents of i. So, usually, if it is a simple array, then b is the base address of the array

and i is the offset into that array. So, you take the base address, add the contents of i;

then you get the place, where we actually want the value. So, access the value of that

particular place and put it into a. This is the semantics of a equal to b i.

Similarly, a i equal to b implies i-th location of array a is set to b. So, again as I said, this

could be a translation of the multidimensional array into a single dimensional array. This

may be the result of that. Then we have… So, you must also observe that, we do not

have any instruction of the form a i equal to b i. This is because a i is already… – it has

an indexing operator. So, here for example, if you say a equal to b of i just like a equal to

b star c and star being an operator, here we have b and i as source operands; the indexing

is the operator; and this is the target of the assignment. Similarly, here as well, i is an

operand; b is another operand, because they are not modified, and is an assignment. And

then of course, indexed assignment is the operator. So, this is usually indicated as a

bracket c is equal to and this is indicated as equal to b brackets.

Pointer assignment – we have a equal to and b, which sets a to the address of b; that is, a

points to b. Star a equal to b; so we take b; then evaluate the address as star a. So, take

the contents of a; treat it as an address; go to that address; and that is where we are going

to put b. So, contents of contents of a is set to contents of b. The effective address is

obtained by looking at the contents of a and go to that particular place. So, it is not a

single level addressing here; there is indirect addressing mechanism as well. a equal to

star b is similar. So, a is set to the contents of contents of b. So, contents of b would be

an address. So, we have to take the contents again. So, here also, the contents of a would

be the address; where, b is placed.

(Refer Slide Time: 28:05)

Now, we are going to look at a series of programs and the intermediate code that is

produced by a typical compiler for such programs. The C program has int a 10, b 10, dot

product and i. They are all integers; a and b are arrays of size 10. dot prod is assigned 0

to begin with; initialized to 0. There is a loop, which starts from 0 goes up to, but not

inclusive of 10; and it is incremented once with an increment of 1 every time. dot

product equal to dot product plus a i star b i; that is the meaning of this. So, we compute

the dot product and the translation is quite straightforward. The declaration does not have

any translation; obviously, there is no code produced for declarations. We start with dot

prod equal to 0; this is already in a very simple form. So, there is nothing more to do.

Then we have i equal to 0; this is a translation of the loop. So, we check whether i greater

than or equal to 10; if so goto L 2; that is the exit of the loop; otherwise, the body of the

loop.

So, now, take the address of the a. In fact, the address of a could be the stack pointer

value pointing to the place, where a is placed. Then we have second instruction T2 equal

to i star 4. So, we are now translating a of i. Then T3 equal to T1 of T2. So, essentially,

we are doing a of i with these three instructions. So, you can easily see that, a single

instruction a of i, rather single access a of i translates to three instructions in the

intermediate code. Then we translate b of i; which is T4 equal to address b; T5 equal to i

star 4; and T6 equal to T4 of T5. So, this is effectively b of i. Now, we do the

multiplication. So, T7 equal to T3 star T6. Then we add that to dot product. So, T8 equal

to dot product plus T7. Then we must assign it back to dot product. So, dot product equal

to T8.

Now, we do the second part; the increment here for the loop. T9 equal to i plus 1; and i

equal to T9. So, you should also observe that, the intermediate code generation produces

really dumb intermediate code. It is easy to see that, this is nothing but i equal to i plus 1,

but, we do not do that, and even this. It is nothing but dot prod equal to dot prod plus T7;

but, we do not do that. The intermediate code generation that is why is a simple-minded

program. And an optimizer is anyways necessary to improve the program. Finally, there

is goto L1, which repeats the loop. So, this is the intermediate code produced; it is just

like assembly code for this particular program. So, let us look at a second example; the

same dot product program. But, let us say we use a pointer to run through the arrays

instead of using indexing as we have done here; a i plus star b i. So, a i star b i.

(Refer Slide Time: 31:54)

Instead of that, let us run through the arrays using pointers. So, we have a 10; we have b

10, dot prod and i as integers. Then we have pointers to integers – int star a1 and int star

b1. So, we start with dot product equal to 0; a1 equal to a. So, the pointer a1 is pointing

to a; pointer b1 is pointing to b. The loop in the body is different, but the loop header is

the same. So, we write dot prod plus equal to star a1 plus plus star star b1 plus plus. So,

what is the meaning of this assignment? We do star a1 first. So, that gets you the

contents of the array in a way similar to a of i. Then we must go to the next location in

the array. In this case, we actually… In this case, we did a of i; and then this i plus plus

took care of progressing to the next element in the array. Since we are not using the i to

index into the array, we must alter the pointer itself. So, after star a1, we do a1 plus plus.

So, that automatically takes you to the next element in the array. Similarly, star b1 gets

you the contents of that location and b1 plus plus will take you to the next location.

Multiplication of these two will produce the product and then we add it to dot prod. So,

that is really the same dot product that we had seen earlier. Here the loop variable I is not

used in the computation, but it is used only for the termination of the loop.

So, let us see what the code corresponding to this b. So, this is easy – dot prod equal to 0.

Then the pointer assignment a1 equal to ampersand a. So, that is the address of a.

Similarly, b1 equal to ampersand b – address of b. Then the initialization of i; i equal to

0. Now, the loop. So, this part is the same. If i greater than equal to 10, goto L2. The

body of the loop – first, we do T3 equal to star a1. We have an intermediate code

instruction for that. Then we do T4 equal to a1 plus 1. That is the a1 plus plus part. Then

we do a1 equal to T4. So, these two together do the auto increment on a1. Then we have

star T5 equal to star b1; T6 equal to b1 plus 1, and b1 equal to T6. So, that is the star b1

plus plus. We do the multiplication T3 star T5. Then add it to the dot product in these

two as before; then the loop control here. So, this shows an example with the pointer to

the array instead of indexing.

(Refer Slide Time: 34:56)

The third program shows you a function for the dot product. So, these are all different

variants of the same computation. So, the function is int dot prod; it takes two arrays as

parameters: int x and int y. We have d, i as integer variables inside the function. d is

initialized to 0. Then the loop runs exactly the way it used to. And we have d plus equal

to x i star y i exactly the way it was in the main program before. So, return d returns the

value of the dot product. So, func begin dot prod; obviously, beginning of the function

requires this intermediate instruction. Then d equal to 0 and i equal to 0 as before. So, the

loop control is also as before. So, nothing to expand. But, here after the loop terminates,

we need to return the value of the dot product and then go back to the program. So,

return d combines the tasks of value return and return to the main pro…call e. Func end

of course, ends the function.

In the body of the program, the code is not very different. So, I am not going to expand it

all over again, explain it all over again. So, we have address x i star 4, T1 T2, address y, i

star 4, T4 T5, T3 star T6, d plus T7, d equal to T8, etcetera. Now, we should also see

how the function is called. So, what is special about this? This shows you how the

function is written and how the values are returned by the function.

(Refer Slide Time: 36:58)

In the main program, we have int p, int a 10, b 10; and then p equal to dot prod a comma

b. I have skipped the part, where we read values into a and b. So, func begin main. So,

main is also a function in C. And then the first parameter – array is always passed by

reference. So, we have refparam a. And the second parameter b is again an array. So, it is

refparam b. The base address of the arrays are passed in these places. Then we also need

a place for the result. So, refparam result. So, you must keep in mind that, this location

result is actually in this main program; it is not a part of the function. Therefore, the code

generator must be able to produce the appropriate code for this return instruction. So, we

will see that later anyway. Then there is a call to dot product and the number of

parameters is 3 including the result. So, a, b and the result. Then the come out p equal to

result; the result would have been assigned a value by the function; and then we have

func end. So, these are a couple of examples to show the various constructs in the

intermediate code.

(Refer Slide Time: 38:23)

And, one final example will show you how recursion is handled in the intermediate code.

So, we have the famous factorial function here – int fact n; if n is 0, return 1; otherwise,

return n star fact n minus 1. So, it is quite straightforward; nothing very special here.

func begin fact; if n equal to 0 goto L1. So, in L1, we have return 1. So, that is this part.

Then we compute n minus 1. Push that parameter using the param T1. Then the result

refparam result. Then call fact with two parameters: first is T1, the second is a result.

Then T3 accumulates the value n star result and we return T3. So, as I said, since return

combines two functions: one is sending a value back to the caller and second is to return

to the caller. So, there is no question of the control flow going to return 1 after the return

T3 instruction. So, nothing to worry here.

(Refer Slide Time: 39:37)

So, that is about the examples of various types of intermediate code, how they are

produced, rather what intermediate code is produced for programs, and so on. So, now,

let us delve into the details of producing such intermediate code for various constructs in

the language. So, let us look at code templates for if then else statement. So, the form of

the if then else statement we already know very well. If E S1 else S2. The other way is if

ES. So, the assumption is we do not have what is known as a short circuit evaluation for

E. So, we will see a little later that, if… Since E is a boolean expression, we can actually

have jumps out of the expression E if we produce what is known as a control flow code

for the boolean expression. So, this is known as short circuit evaluation for E.

So, let us assume that, there is no short circuit evaluation. In other words, the expression

E is evaluated completely with no jumps and then the decision of whether it is true or

false is made. So, obviously, the code that must be produced for this is quite intuitive.

So, first of all, we must produce the code for E. Then let us assume that, the result of this

is in the temporary T. Then here we must check whether T is true or false. So, if T is

false, the else part has to be executed. So, goto L1. So, that is why the jump. If that T

variable contains a true value, then we execute S1.

So, code for S1. Now, after S1, we actually have come to this point; we should not fall

through and execute S2; we should actually jump to outside of S2. So, that is why go to

L2, which is the exit. But, there are also cases where there are jumps from within in S1.

We will see examples of this very soon to understand it. Similarly, there will be jumps

from within S2 as well. So, all exits from within S1 and S2 also jump to L2. So, this is

something we must be careful about. And I will show you examples of how this can

happen. If E S is only a subset of what we have discussed so far; code for E; then the

branch statement to check whether T is true or false; and then if it is false, then we go

out; otherwise, we execute code S and then go out. So, all exits from S also jump to L1.

(Refer Slide Time: 42:39)

What about the while construct? Again we have no short circuit evaluation for E; that is

the assumption. We will consider short circuit evaluation a little later. So, we produce the

code for E. The result is in T. Then as usual, we must check whether E is true or false.

So, if T is less than or equal to 0, that is false; we jump out; that is L2. If E is true, then

we continue and execute S. So, the code for S must be produced. After code for S, we

must go back to the code for E, evaluate it and continue with the loop. So, there is a goto

for L1. The other special case here is if there are any jumps out of S, all these must

actually jump to L1. So, that must be taken care of.

(Refer Slide Time: 43:36)

So, let us look at an elaborate example to show how the jumps from statements within

can also arise. So, let A in this example be assignments and E i be expressions. So, the

code is if E 1. And in the then part, we have a complete if then else again. And in the else

part, we have else A 3. And after this entire statement of the outer part, we have the next

statement A 4. So, the intuitive understanding is we check whether E 1 is true. If E 1 is

true, we execute the second if then else; if it is false, we execute A 3 and then go on to A

4. So, if it is true, we come inside; we again check whether E 2 is true. If it is true, then

we must execute A 1 and then jump to A 4 directly. If it is false, we must execute A 2

and then jump directly to A 4. We should never execute A 3 after any one of these. So,

this is how jumps from within a statement can arise. So, there is a jump from here and

also a jump from here, which should actually take you to A 4 and not to A 3. So, let us

see the code for this.

There is code for E 1. Then the temporary for E 1 is tested. T 1 less than equal to 0 goto

L1. So, that would be the code for A 3 – the else part. So, in red, we show the code for

the outer part; and in violet, we show code for the inner part. Then the code for E 2; if

that is false, the E 2 expression is false; goto L2. So, that is else part of this second

expression – second if then else. We execute that and then jump to L3, that is, the code

for A 4. So, observe that, this is the jump out of the inner statement in this if then else.

Then we have code for A 1 and we jump to again L3. So, as I was saying, it is this jump.

Then we have code for A 2 jump to this thing; and finally, code for A 3 and fall through

to A 4. So, that is how the jumps out of inner statements can arise.

(Refer Slide Time: 46:13)

Let us look at an example of the while statement as well. So, here is the while part; and

inside, we have an if then else; and finally, we have… The body of this while loop is an

if then else. And finally, we have another assignment statement. So, while the expression

E 1 is true, we go on executing this; and then finally, we jump to A 3 when the

expression becomes false. So, again after A 1, there is a jump out of the if then else; and

after A 2, again there is another jump out of the if then else. Both of them will take us to

the beginning of E 1. So, code for E 1; and then if T 1 less than equal to 0, goto L2; that

is the exit; code for A 3 directly; otherwise, we execute the code for E 2, then test it. If it

false, we go to the else part, that is, the L3. And then we go back to the beginning of the

code. So, otherwise, we execute the code for L1 and go back to the beginning of while

loop. So, this is how jumps can arise from within while loops as well.

(Refer Slide Time: 47:24)

So, it is… Now, we move on and start looking at the – now, SATG – attribute translation

grammar with the synthesized attributes to produce intermediate code for various types

of constructs. So, there are many attributes. So, let us look at some of them; the others

will be clear as we along. Most important we have what is known as S dot next and N

dot next; S and N are two non-terminals that we are going to use in the grammar. These

are lists of quadruples indicating where to jump. So, the target of the jump would still be

undefined when it is on this list. Then there is if expression dot falselist. So, these are all

synthesized attributes. So, we are not going to put any arrows corresponding to it. If

expression dot falselist indicates that it is a quadruple. So, we want to jump; where to

jump if the expression is false. So, when we generate the jump statement for the

expression – if expression is false, then jump; the target is still undefined, and the target

will be defined a little later.

E dot result in general is a pointer into the symbol table entry, which is… It is a

temporary storing the result of evaluating the expression. So, as I already told you, all

temporaries generated during intermediate code generation stage are inserted into the

symbol table. And in quadruple, triple and tree representations, that is, the

implementation, pointers to symbol table entries for variables and temporaries are used

in place of names; whereas, in our textual examples of 3-address code, we will continue

to use the names. But, wherever we have used a name, its meaning is that, there is a

pointer to the entry for that particular entry in the symbol table. So, the SATG will make

these attributes very clear.

(Refer Slide Time: 49:38)

Then, we have a global variable called nextquad, which actually contains a number; the

number indicating next quadruple to be generated. So, whenever we increment the

nextquad, that means, we have generated one instruction and we want to go to the next

hole, where an instruction can be placed. Then there is a backpatch instruction, which

takes two parameters: first one is the list; the other one is the quadruple number. The list

contains a large number of, a number of rather branch instructions, whose targets are

unfilled as of now. Those targets will be filled with quad number by this backpatch

instruction. So, this is a compiler instruction and not an intermediate code instruction.

Merge is a compiler function; it takes many lists and merges them into one.

The core of the SATG would always be this gen quadruple, which outputs a quadruple.

So, where is the quadruple going to be placed? It is going to be placed at position

nextquad; and nextquad counter will be incremented as well. So, again just to stress this

point, the temporaries of variables, which are inserted into the symbol table; and we use

names in the textual representation. But, in actual implementation, the pointers to symbol

table will be used. We have used a large number of temporaries. So, we require a

temporary generator. newtemp is a temporary generator and its parameter is the type of

the temporary that is needed whether it is int or real or char or etcetera. This generates a

temporary name of the temp-type; inserts the name, which is generated into the symbol

table and returns the pointer to that entry in the symbol table. So, that is how T 3, T 4,

etcetera are dealt with.

(Refer Slide Time: 51:57)

So, as we had done in the case of semantic analysis, we need to break the production for

if then else into two parts. So, this is the production S going to if expression, then S 1

else S 2. So, we have broken the if E part into another production; IFEXP going to if E.

In the case of semantic analysis, the purpose was to provide an appropriate error message

very early; whereas, in the case of the intermediate code generation, this becomes

necessary, because we must first produce the test for E immediately after parsing E

before we produce the code for S 1 and S 2. If the code for S 1 and S 2 is produced early

without the jump, then it is incorrect code.

So, what is happening here? So, we have parsed E; we have come up to this stage; the

reduction has not happened in the parser. So, here if expression dot falselist – that is the

attribute of the left-hand side. We will now store the next instruction in that list. So,

makelist nextquad. So, next quad is the quadruple number of this particular instruction at

this time. The instruction generated is if E dot result less than or equal to 0 goto dash. So,

this blank or dash is unfilled at this time; and if possible, we will fill it; otherwise, we are

going to fill it in some other production. So far we have tested the expression and

produced code here.

In the second one, S going to if expression S 1; then we have a marker non-terminal N

else and another marker non-terminal M; and finally, S 2. So, here if we need to patch

this instruction, which implies that the E dot result is false and address to which it is

patched is the beginning of the code for S 2. That is stored in M dot quad. So, M going to

epsilon will store the quadruple number as M dot quad. That is the address of the code

corresponding to S 2. So, backpatch if expression dot falselist comma M dot quad.

 And then on the S dot next, we still do not know where jumps out of S 1 will be going

to. So, all the S 1 dot next list will be placed inside this merge statement. We do not

know where exactly this jump for N will go to. So, N going to epsilon will produce a

goto statement after the then part. And we do not know where the jumps out of S 2 will

go to. So, all these will be merged into S dot next. Here this is the if then expression. So,

IFEXP S 1. We just do a merger of S 1 dot next and IFEXP dot falselist and put it on S

dot next. So, we will stop here and continue with rest of the translation in the next

lecture.

Thank you.

