
System Analysis and Design 

Prof. V. Rajaraman 

Department of Super Computer Education and Research 

Indian Institute of Science, Bangalore 

 

Lecture - 17 

We were talking about the specification of processors and we said that, there are three 

different methods of specifying processes. One is called structure English it is very 

similar to programming languages, which we have learnt already. The other two are what 

is called decision tables. The third is called decision trees. And, decision tables are useful 

for complex decision processes where, the number of conditions to be tested is quite 

large. 

And, it also gives a non-procedural method of specifying the business rules. And, if a 

sequence of taking actions are sequence of taking, testing the conditions is important in 

any given problem. Then, you go to something called decision trees. So, I will look at all 

these trees. And today I will start with ((Refer Time: 02:14)) structured English for given 

word statement. I am starting with a very simple example, but normally in practice, your 

statements will be very, very long. 

(Refer Slide Time: 02:29) 

 

When I say, customer discount policy what it really says is that, it is a business rule, 

which is used by the company to take a decision on when to give discounts. And, what 

condition should be fulfilled in order to give discounts. So, the business rule says give a 



discount of 5 percent, if the customer pays advance or if the purchase is for 10,000 

rupees or more and the customer is a regular customer. 

So actually, if you look at this there is a, the action is giving a discount. Whereas, the 

conditions to be tested are customer paying advance or purchase order is greater than 

10,000. Greater than equal to 10,000 and customer is a regular customer. ((Refer Time: 

03:25)) there are conditions, which are three different conditions are involved in this. 

And an action is either giving a discount or giving no discount. 

(Refer Slide Time: 03:36) 

 

So, if I want to put it in structured English. I will say, if customer pays advance then give 

5 percent advance discount. If, purchase amount is greater than or equal to 10,000 

rupees. Then, if the customer is a regular customer then give 5 percent, else no discount 

end if. And then, the as you know else, if and else to be bracketed. And, the next else is 

corresponding to the latest if mainly the, that is if purchase amount is greater than equal 

to 10,000. 

And then the end if, final classes ((Refer Time: 04:21)) is customer pays advance. That is 

for the whole classes. You can see here, the similarity between this and the way in which 

you will write a programming program, in a programming language. Because, this can be 

easily converted into a what is now known as procedural language. Procedural languages 

are the ones, which people normally use that is C language or C plus plus and so on or 

Java or what have you. 



So, all procedural languages give a step by step procedure. Except the ((Refer Time: 

04:59)) the English statement. Because, primarily as I said the English specification. 

Structure English specification is something which could be understood, both by the user 

and by the developer of the program. So, it is something of a familiar intermediate part. 

In fact, many people suggest, that during the development of a large project. It is 

important to break it up into smaller parts. And then at each level generate the testing to 

be done. 

So, that testing is done simultaneously with the program development. And, so that the 

testing is not left at the end. Then, you ((Refer Time: 05:50)) find arrays which is not 

expected. So, this is called test driven programming and so on. So, but then this is only a 

tool to write a program later on. But, at that time the ((Refer Time: 06:06)) English 

statement it is easier to get the test data generated. Or test what you want to test. And in 

fact, get these tests cleared with the user. 

(Refer Slide Time: 06:22) 

 

Saying that these are the ones I am going to test. So, same thing can be expressed 

decision table. As you can see, it is a non-procedural thing. In other words, it is does not 

say in detail, what are done in sequence. And, what actions are taken in sequence ((Refer 

Time: 06:42)) in other words in a structured English ((Refer Time: 06:43)) more or less 

like, it is called procedural. Because, ((Refer Time: 06:44)) step by step you go and at the 



end or during the steps you talk about a certain action to be taken, in this case, during 

either discount or no discount. 

Whereas, in this case it is a fabulous structure. And at a glance you can say for instance 

the advance payment is made, there are number of business rules. Rule one says, is 

advance payment is made the answer is yes, then give five percent discount. The other 

purchase amount and regular customer are irrelevant. So, that is why put dashes. 

Wherever, condition testing result by testing a condition is irrelevant, you put a dash. If 

the conditions got to be true, you put a yes. And, if the conditions got to be false then 

you put a no. 

Rule number 2 says, if advance payment is made ((Refer Time: 07:43)) no means, No 

advance payment is made. But, the purchase amount is a greater than or equal to 10,000. 

And, there is a regular customer. The rule says that, in that case you give a discount of 5 

percent. And, rule 3 again says that, no advance is paid and he is not regular customer. 

And, the purchase amount is not is greater than equal to 10,000, even then you do not 

give a discount. 

And, in the last case namely no advance is paid no purchase amount smaller than ten 

thousand. Then you also give no discount. So, this is essentially, conversion of the word 

statement. Or, a statement of business rules given by the customer to an equivalent table. 

And you can see, the advantages of the table is that any user, can easily visualize these 

rules. It does not have no any kind of programming language. And, does not get cluttered 

up with the whole lot of if then else statements and then bracketed if then else and so on. 

So, when the number of conditions increase the bracketed, if then else become little 

confusing. And, that is the reason why a tabular structure is somewhat more you know, 

easy to understand for the user. 



(Refer Slide Time: 09:25) 

 

So, conditions are questions to be asked, yes is yes, N is no, dash is irrelevant. And, X 

against an action, if I put a- X against an action ((Refer Time: 09:34)) that is means the 

action is to be taken. Give 5 percent discount, the first two rules I put a X against the 

give 5 percent discount. And, last two rules, I say give no discount. So you use actually a 

cross against actions, which are to be taken under dash against actions. My wish need not 

be taken or which are not really taken. 

(Refer Slide Time: 10:04) 

 



So, the rule 2 as I said I already explained that of the decision table discount states, if no 

advance paid payment. And, purchase amount is greater than equal to 10,000 and regular 

customer. Then give 5 percent discount. 

(Refer Slide Time: 10:20) 

 

Actions are imperative sentences. see the you know the imperative sentences are actions 

to be performed should be precise and quantified. In whether it is structured English or 

decision tables any system ((Refer Time: 10:38)) the actions which the program is 

((Refer Time: 10:41)) had to be quantified. You cannot for instance say ((Refer Time: 

10:47)) substantial discount. Because one does not know, what substantial really means 

whereas give 20 percent discount as a clear meaning. 

So, in all cases particularly in programming, you have to give precise actions to be taken.Very 

often, when people gave business rules they use such terms as giving substantial discount is 

given. But; obviously, you cannot program it. What is substantial you see is it 10, is it 20, it is 

30. So, the whole point is that the ambiguity, which is inherent in a English statement such has 

English words such as substantial is removed in the case of a, you know action which is 

specified. 



(Refer Slide Time: 11:41) 

 

The same structured English procedure can be expressed is a decision tree. It is 

somewhat like a flowchart. In the sense that, you say advance payment is made, then 

give 5 percent discount. And you can go down, if advance payment is not made, you 

check the condition two. Which is purchase amount is greater than equal to 10,000 If the 

answer is not automatically you give no discount. And then, you test the next condition, 

which is to ask the question is a regular customer is a regular customer and he also 

advance is not paid but the purchase amount is greater than equal to 10,000. 

Then give 5 percent discount. So, this the otherwise no discount. So, the point is here 

also it is more procedural in the sense that, it gives the sequence in this conditions are 

tested, because the final action. Some extent some people are comfortable with this 

specification. Whereas, many people are ((Refer Time: 12:53)) more comfortable with a 

tabular structure, because everybody is used to tabular structure in real life. 



(Refer Slide Time: 13:05) 

 

Now, we will describe structured English in ((Refer Time: 13:10)) detail. And, in 

structured English as I said, it is not a programming language. But still certain types of 

notations are to be used in the structured English. So, that there is no ambiguity. And 

also, later on it is going to be used by a programmer to convert that structured English 

into an equivalent program. So, if you use there is clarity in the notation, which we use 

then the clarity in the notation ((Refer Time: 13:51)) very, very important for converting 

without any kind of a misinterpretation. 

This strict syntax is not necessary as I said, unlike programming language. But, strict 

syntax is necessary only to kind of make it so that, you do not make any logical errors, 

while developing it. So, this is the whole idea of having specific definitions. There are 

arithmetic operators like, plus for add, minus for subtract slash for divide and star for 

multiply. And relational operators usual greater than less than equal to, less than, less 

than equal to, not equal to and logical connectors. 

And or not which are logical connectors and there are keywords. If, then, else, repeat, 

until, while, do, case, for. These are all these, the if then else repeat while and so on are 

all there in those programming languages. The only extra things I have really put is 

search and retrieve. Which are really higher level operations and they have to be 

converted to lower level structures in a programming language. But, in the structured 

English, it is easier to understand you say search and retrieve. 



Because, read is there in every language. Read and write also will be there or print or 

whatever. And delimiters, delimiters are the ones which brackets which are used. In fact, 

end if and end for are also delimiters. That means, the effectively give the bracketing 

information. For if, if as got to be bracketed with end if. So, that is there to be able to 

give you an idea. that you have not made an error in nesting of the loops. Nesting of the 

loops really becomes a very often. It is a source of many errors. 

And so the nesting as to be done with a ((Refer Time: 16:26)) amount of care and for that 

reason, we provide the so called delimiters. Like ((Refer Time: 16:36)) and so on. 

(Refer Slide Time: 16:39) 

 

Then there are conditional statements. Like if, if condition then carry out a group of 

statements. Else another group of statements and end if. We can say that if and end if are 

bracketed. So, if balance in account is greater than or equal to minimum balance ((Refer 

Time: 16:57)) an example you can see that. If balance in account is greater than, equal to 

minimum balance. Then, honor request else release reject request. In other words, it is 

very simple statement. 

In for instance when you go to take some money from the bank, they look at your 

balance in the account. If it is greater than equal to minimum balance required for that 

account. Then you give it. give the money otherwise you do not. That effect is what this 

is. 



(Refer Slide Time: 17:31) 

 

The case is number of alternatives which are there. And case as you know, in any 

language you have got case statements. Whereas, the number of different variable equal 

to P the alternative P and so on. Instead of having this variable equal to P, you can also 

have some kind of a testing. But, by and large this is a because testing is already there 

elsewhere. 

The equality testing is something which is very often done. And so the case also is this, if 

you check these kinds of things are very useful. If your codes, you have given codes for 

certain variables. And if the codes match, then you do some action. For instance, you 

may have given a code of 1 for a person above 25 years of age. 

A code 2 for a person who is between 25 and 45, a code 3 for somebody between 45 and 

65 and so on. So, when you check the having checked. For instance, either you check it 

in the program or when they do it manually, they just give the code numbers. Say 1, 2, 3, 

4, and you say whether the code is one base some action. The code is to do some other 

action. 

So, very often similarly for codification is used not only for age, it is not a very precise 

example. Whether, another good example of codification is product codes. We have 

certain products all products have certain universal codes given. So, for each product 

code, you may take some different action. So, you can compare project code against the 



based on the truth or false root of the variable being equal to product code, you take 

some action. 

Example, say if product code is equal to 1 ((Refer Time: 19:48)) discount of 5 percent. If 

product code is equal to 2 give a discount of 7 percent. So, different products different 

discounts. In fact, the number can become very large in any business situation. And so 

the number of the statements ((Refer Time: 20:07)) within a case may be quite large. 

(Refer Slide Time: 20:13) 

 

And it is a very easy way of seeing what you do? And there is a repetition structure. 

Repetition structures, which is their many programming language. For index you for 

initial to final do statements in the loop. Example, start with total equal to 0, for subject 1 

to subject 5 do total marks equal to total marks plus marks in the subject, write roll 

number, total marks end for. 

The point is here you are going through, for you are finding out the sum of the marks in 

5 subjects. And then, finding out the total marks. So, you start with total equal to 0 and 

that the end of it ((Refer Time: 20:59)) total marks available. Because, layed 

subsequently it will be used, it is only very small part of the of the program. 



(Refer Slide Time: 21:07) 

 

While is somewhat similar it is also repetitive structure. While condition, do statements 

in the loop, end while. While there are students records left do read student record 

compute total marks find class, write total marks, class, roll number, end while. So, the 

here in this case again I take an example, where number of records of students are taken 

one after the other read. And then, some action is taken and the result is also printed in 

this case. 

(Refer Slide Time: 21:45) 

 



There is another example, for each item accepted record you know, when a items come 

under the store. Then, you as the very first earlier examples I talked about a situation, 

where products are received by a company. And sent for inspection and after inspection 

if they are accepted. Then, it is goes to the stores and stores does the updating of the 

database. 

So, in this case for each item accepted which the acceptance note goes from the 

inspection office to the inventory control there is stores office, search inventory file. So, 

the action to be taken by the store is search inventory file using item code. So, the search 

is a higher level construct are using here and if successful. 

Then, update retrieve inventory record write updated record back in the inventory file 

using the accepted record. There is a number of amount, amount came is came and so on 

is added to existing inventory record and stored back. Else, create new record in 

inventory, enter the accepted record in the inventory file. 

In other words it is not already existing in the inventory, it is a new item which is come 

in. So, then what you do is, you enter it is co ordinate whatever identify the information 

is there for that. And then, do the rest of it. In other words put it in the file. So, this is a 

again repetition, because for each item accepted. 

So, one by one when the items are accepted, then you do lot of this. And may be at the 

end of the day, you have a an updated file, which is up to date status of inventory in the 

store. 



(Refer Slide Time: 24:02) 

 

A procedural language tells how data is processed. So, that is exactly what I was telling 

at the beginning, it is a step by step set of procedures or language, which talks has a 

detail about what is to be done, when it is to be done and so on. And what sequence it is 

to be done. Whereas this is the ((Refer Time: 24:34)) advanced procedures. Most 

managers and users are not concerned how data is processed. They want to know, what 

rules are used to process data. 

So, that is important thing as for as the manager is concerned. Are you using the right 

rules, are the rules interpreted correctly. The rules are not interpreted correctly, then at 

the back stage itself. Where, you are getting the requirements specification. They can 

change the rules or have you not understood the rules. As given by the user due to some 

communication gap. You should at that stage itself with the users concurrence, change 

the business rule. 

So, most bus- managers are concerned only about, what rules are doing process, rules are 

being followed. They are concerned about, how you are going to do it. Because, that is 

the least of any managers concern. 



(Refer Slide Time: 25:36) 

 

So, specification of what a system does is nonprocedural. See, in the case of decision 

tables just specification of what a system does. Decision tables are nonprocedural 

specification of rules used in processing data. 

(Refer Slide Time: 25:56) 

 

The advantage of decision tables are easy to understand for non-computer literate users 

and managers. In other words the managers of course, understand little bit of what a 

language means and so on. But, there are no about details of any programming language 

or even structured English. Even structured English ((Refer Time: 26:18)) strange to 



them. So whereas, everybody understand the table. Good documentation rules used in 

data processing. Actually, documentation is as important as program. 

In other words, the ones good documentation is there. Program writing becomes straight 

forward. And simple representation of complex decision rules. Otherwise, representation 

of a complex set of decision rules. Becomes at a glance, you can see what is going on. 

And, allows also systematic creation of test data, which we will see there is a ((Refer 

Time: 26:59)) set while you are developing programs. You should be able to also create 

simultaneously test data to check the program, never leave testing to the end. You do 

incremental testing as and when you go. 

(Refer Slide Time: 27:15) 

 

Tabular representation allows systematic validation of specifications. Detection of 

redundancy incompleteness and inconsistency of rules. So, these are very important as I 

said, many are very often rules are rules grow over time. And because, your grow over 

time, there is always a contraction between something which I said earlier or something 

which is said later. And this contradictions are to be avoided. Also some cases will rules 

are not stated, that is called incompleteness. 

In the case, of decision tables algorithms exist to automatically convert decision tables to 

equivalent computer programs. And also algorithms exist to check for the ambiguity in 

tables. 



(Refer Slide Time: 28:14) 

 

I will give an example of how you go from a statement, word statement to a equivalent 

table. The business rule says that a bank uses the following rules to classify new 

accounts. A depositors age is 21 or above and if the deposit is rupees 100 or more. 

Classify the account as type A. If the depositor under 21 and is deposit is over 100 

rupees classify it as type B. If the deposit is 21 or above over and deposit is below 100 

classify it as C ((Refer Time: 29:03)) depositor is under 21, and deposit is below 100 do 

not open account. 

In other words if 21 or over and deposit is below 100, classify it as C otherwise do not 

open. Because ((Refer Time: 29:20)) below 21 and deposit is below 100 do not open 

account. ((Refer Time: 29:24)) The numbers arbitrary, the age 21 the deposit 100 and so 

on are this arbitrary, just I pick it out to the hand. And, you can actually you any given 

bank will have similar rules which will not be related to age and may not be related to 

the most operand will be ((Refer Time: 29:47)) related to the amount of deposit. 

Now, the first thing you have to do when a statement like this is given is to identify the 

conditions. When you go through this statement you say, you see that, if the depositor 

age is 21 or above. So, immediately I detect a condition, age 21 and above greater than 

equal to 21, let us come to C1. And the second condition is that, if the deposit 100 rupees 

or more. So, condition two is deposit greater than equal to 100. And there is no other 

condition. There are only age and deposit amount. 



And the actions we have taken are classification of accounts, if they are open and a 

denial if it is not opened. So, we are actions are classify account as A, B or C or do not 

((Refer Time: 30:43)) open account. So, ((Refer Time: 30:45)) identify conditions and 

the actions to be taken. Next step is to develop the table, based on the conditions and 

actions. 

(Refer Slide Time: 30:56) 

 

Like, the conditions are in this case C 1 age greater than equal to 21, condition 2 deposit 

is greater than equal to 100. And the actions are classify as A, classify as B, classify as C 

and do not open account. There are four different actions the rule you can go through the 

rule one by one very easy. If age is greater than 21 and deposit is greater than equal to 

100 classify as A. 

If age is less than 21 deposits is over 100 classify as B. If the age is above 21 deposits is 

greater than is less than 100, then classify it as C. If the age is below 21 and deposit is 

also less than 100 do not open an account. In fact, I am giving every possible rule we are 

two conditions. And each condition can have a yes or no answer. 

There will be total of 2 squared rules. That is 2 to the 2 squared is; that means, 5 rules. Because, 

I exhausted the combinations possible, yes, yes, no, yes, yes, no, no, no. And each one I take 

particular action. Now, there is some terminology used in decision table as a terminologist 

primarily as a definitions of that everybody understands, the structure of a table. And what it 

really means. 



Because, there is necessity for some kind of a notation, just like structured English there 

is a need for a notation. In the case of decision tables also, there is a need for a certain 

notation. And that notation, in this case the conditions are all put together, in the left 

corner of the 4, it is a 4 quadrants, the table has got 4 quadrants as a left top quadrant. 

And where the list conditions are listed, this is called the conditions stub. 

And the one delayed and the left hand side of the double line is called action stub, there 

is actions to be taken. So, the conditions stub is states the conditions in to be checked at. 

The actions stub list of actions to be taken and the entries, the condition entries which is 

the there on the top right hand quadrant are the answers to those questions, which are 

asked. 

And below that are is called ((Refer Time: 34:03)) called action entries. So, that is the 

condition step, action step, condition entries and action entries. 

(Refer Slide Time: 34:11) 

 

So, I am summarize that here. So, there are four parts and if four parts are divided by 2 

double lines, just to 4 quadrants ((Refer Time: 34:22)) two double lines, condition stub 

lists all conditions to be checked. Action lists all actions to be carried out and a table is 

called limited entry decision table. 

If the answers to conditions are either yes no or dash. Dash is irrelevant; that means, 

whether the answer is yes or no does not matter. So, that irrelevant is shown by a dash. 



(Refer Slide Time: 34:53) 

 

X against an action, states it is to be carried out. A dash against an action, states it is to 

be ignored not to be it carried out. Entries in a vertical column specifies a rule. In other 

words as I read it out ((Refer Time: 35:08)) each vertical column here rule 1, rule A 2 

and so on. Each one specifies a rule, where you test the condition and take appropriate 

action. 

(Refer Slide Time: 35:21) 

 

Very important point about decision tables which makes it nonprocedural. And which also 

makes it somewhat simpler to understand and later on to process, like computer to detect 



ambiguity and so on is that, the order of the conditions is irrelevant. That is conditions can 

be tested in any order 

Now I can even if I write C 1, C 2, C 3 I can reorder it a C 3, C 2, C 1 or any order. And 

does not really matter ((Refer Time: 36:04)) simple reason that each rule will depend on 

the answers to all the conditions in that step. And what order I check, I should be 

irrelevant in the case of tables. In other words the definition of table says, that order of 

testing conditions irrelevant. 

However, order of listing actions is important. That means, if an action is listed first 

((Refer Time: 36:32)) first. An action is ((Refer Time: 36:34)) number 2 is got to be 

second next interval. If there is sequencing of actions whereas, there is no sequencing of 

conditions. 

(Refer Slide Time: 36:45) 

 

Sequential execution of actions and rules may be listed in any order. Because, conditions 

can also be listed in any order, rules can be list. Here, I can change around the order of 

the rules. Because, ultimately rules where it occurs is irrelevant as far as the jar is 

concerned. 



(Refer Slide Time: 37:12) 

 

One more type of a decision table because it is something called as else rule. In other 

words else rule is cover all, in other words in all cases which are not specified strictly in 

a set of rules. All that are clubbed together and you take one column action, it is like the 

else, if then else thing. Except, that in this case else may encompass many possibilities. 

So, for instance a business rule is says that, if application is sponsored and his dues have 

been paid. These are rules for admission of students to a particular short term course. So, 

the applicant is sponsored by the organization to attend the short term course. And if has 

minimum qualifications to profit in that course. And if his fees is paid, then send ((Refer 

Time: 38:19)) right away. 

If the applicant is sponsored he has minimum qualifications. But, the ((Refer Time: 

38:31)) fees not paid. So, the you have already filtered the application and found out that 

he is eligible. But, his fees not paid. So, send a provisional admit letter, which may state 

that kindly pay the fee by submit date for your admission to be valid. Otherwise, you will 

not be admitted. 

Else, in all other cases send a ((Refer Time: 38:57)) letter. Because, if the application is not 

sponsored automatically proceed. And if the he does not have any qualification, then also it 

goes automatically. And you can say, because yes and yes are covered, any one of the first 

conditions is known, the last condition is irrelevant. 



So, any case in all these cases you effectively say that send a regret letter. The else rule 

actually makes a decision table complete, what I mean by decision table complete is that 

all possible conditions, all possible rules which can occur are covered. So, in other words 

it is even if you miss out something, it is an exception action 

And sometimes it is could be quite dangerous, to an take an exception action I have to be 

careful in using an else. And clubbing a lot of things together the else. It is better to 

always to look at the complete part. 

(Refer Slide Time: 40:20) 

 

This another table here, which the point the reason why I have put this table is here the 

action, testing the sequence of testing actions becomes relevant. This is a set of rules for 

to be given to a supplier. And when the order is to be initiated, if quantity ordered is less 

than equal to quantity in stock. 

And quantity in stock minus quantity ordered is less than equal to reorder level. That 

means, it is above it. Then, required you know the quantity shipped is equal to quantity 

ordered same. Because, you have this rule and then, we update the quantity in stock as 

quantity in stock minus quantity shipped. 

So, the point really in this case is the fact that, you first do the quantity shipped is 

quantity ordered. And then, you do the… This is a set of rules for a vendor to follow, 



when the order comes and to him and he has to supply. So, when quantity ordered is less 

than. That is he has got enough stock in his inventory and it is above the reorder level. 

Then, you can immediately ship the whatever is order. And of course, update that is 

whatever is shipped is reduced. And the next rule says, the quantity ordered is less than 

equal to quantity in stock. That means, he has got enough quantity to ship and quantity 

ordered is minus quantity, the quantity in stock minus quantity ordered is less than equal 

to reorder level yes, if it is below reorder level. 

That means, the vendor in order to has to kind of bring up the stock to a certain level. 

Because, is a any inventory control of a vendor, whenever he supplies items I to get an 

example of a medical shop for instance. Medical shop when a customer comes and buys 

some medicines. He notes down, by that there is enough left in the shelf. If it is not 

enough left in the shelf in terms of what is consider as a reorder level. He will order that 

he will reorder that amount otherwise he will not do it. 

So, in this case, it is important to kind of the rule says that, you ship the quantity. And 

then initiate the reorder procedure right away. That means, you are calling another 

program, you might say. So, which will initiate the reorder procedure and then you 

update the quantity in stock by removing whatever was supplied. The third rule says, the 

quantity added is less than and equal to quantity in stock. In other words, he has ordered 

an amount, which is larger than what you have in stock. That means, you cannot supply 

the entire amount. 

You can ask the customer, when he whether he will take a partial order. In other words 

suppose he ordered 1000 and you have got only 800. You ask whether he will take 800 or 

he will take 1000 and nothing else. In some cases he may not. So, if partial segment is not 

is ok, then you ship the quantity. Your quantity in stock automatically becomes 0, because 

the quantity ordered is greater than quantity in stock. And you have to kind of have a back 

order file. 

In other words, you have a supply of two hundred which you did not supply later on. So, 

backorder put on the backorder file quantity added now it is quantity shipped. So, that you 

ship that amount. And then initiate reorder procedure automatically. We have to do that, 

because we have no stock. And last rule says, if quantity in stock is ordered is greater than 



quantity in stock, you do not have a stock. And the customer will not accept partial order. 

That means, you do not ship anything. Quantity shipped is 0. 

But, you have to reorder, because you know he may ask whether some item or somebody 

else ask for the item so reorder. And so backorder of course, is the what is to be shipped 

later on. If you know, he asks for 1000 and you do not have 1000, he is not willing to 

accept the partial quantity. Then you put the 1000 in the backorder file. And when you 

got enough stock, you supply 1000 time. 

At that time of course, there may be one more business rule saying that, if the delay, if 

more than three or four days he will not accept. So, that would complicate. In other 

words the business rule may be more complicated than this. But this gives a sample of 

the business rules normally used for in this case, when an order comes to a, he has got a 

order processing system. When, an order comes to a vendor. How does he process that 

order. 

What rules will he follow to process the order and it is a very, very elementary example. 

When just to so that I can fit in the whole thing in one transparency. Normally, order 

processing procedures in many companies will be quite complex. They may have many, 

many conditions to be checked. And I will come to that later on, in terms of what 

happens, if the number of conditions become too large. 

(Refer Slide Time: 47:05) 

 



We so far we looked at tables, where the entries the condition entries. Are only yes or no 

or dash. These types of tables are not is not restricted in the terminology ((Refer Time: 

47:29)) decision tables. And similarly, actions are put X or dash. And that are, that also 

not really the only actions you can specify. There is something called extended entry 

decision table. Where, it is used for descriptive, then the limit entry table. And which 

also can be converted easily into limit entry table. 

Almost automatically by a computer program. In case, the advantages of extended entry 

decision table is easy for people to understand. See, the number of rules will become less 

somewhat smaller. And it is easier for a non computer person to understand the rules. 

But, again it is non-procedural, because it is non-procedural it is a as I said, it is going to 

again easy for a person to understand. So, in this case, the product code will be 1. And 

customer code is A. And ordered amount is less than equal to 500. 

You see, in this case the rules, the rules are not the, rules are not yes or no. I put the 

actual values of product codes. In this case the product codes are either 1 or 2. In the 

case, the product code is A. and customer code is also there are three possible customer 

codes. And order amount there are two I am using. One is less than equal to 500 or 

greater than 500. So, this again is a discounting policy ((Refer Time: 49:08)) or 

particular company. 

The way in which I read these rules is that if the product code is 1, and the customer 

code is A. And the order amount is less than equal to 500 give a discount of 5 percent. If, 

product code is 1, customer code is B. And order amount is less than equal to 500 give 7 

and half percent discount. And third rule says that product code is 1, customer code is A. 

Order amount is greater than 500 give 7 and half percent discount. You see that, there is 

a difference between rule 1 and rule 3. 

Rule 1 is for less than equal to 500. And rule 3 is for greater than 500. ((Refer Time: 

50:04)) these two cases there are two different discount processes. And rule 4 says that 

the customer code is B. And order is above 500. Then give 10 percent discount. That 

means, again you see the difference between R 2 and R 4. The first two conditions 

((Refer Time: 50:25)) the third condition is different. And so there are the actions are 

different. 



And then the codes may be assigned based on the convenience or based on whatever 

policy a company follows. A type customer will be different type. B type customer and 

so on. If the product code is 1 and the customer code is C. Then give 6 percent discount. 

And the product code is 2 give 5 percent discount everybody. In the case of you know 

customer code of C does not matter, whether it is 500 or above and so on. So, I put a 

dash there to say that, that condition is irrelevant. 

So, ((Refer Time: 51:13)) only first two conditions mainly product code equal to 1. And 

customer code equal to C has to be checked. And I ignore the third condition. And I will 

take the action of giving 6 percent discount. And, if the product code is 2 ((Refer Time: 

51:28)) discount of 5 percent is given to everybody. So, this is what this particular table 

says, I interpreted rule after rule. The reason why I am doing it, I could have done by 

earlier on. 

In other words, I could have started with a set of rules given. And converted the rules 

into a into a equivalent table, which I did in the previous case. See the very first 

example. In this case, the reason I am doing this is to show you, how simple it is to 

explain what the table is to every person and that is a great advantage. See you that is a 

greatest advantage of a tabular structure. 

(Refer Slide Time: 52:20) 

 

We can also mix up the extend entries with limited entries, that is called a mixed entry 

decision table. In this case you can see, the product code equal to 1 or 2 are the only t 



two alternatives So, I am able to say yes, yes, yes, no. And customer code is that there is 

a there should be a yes. And the first the rule 1.There should be yes A yes ((Refer Time: 

53:01)) the Y unfortunately is missing and the typing. So, it is a printing error. So, it has 

to got to be Y A Y. Product code is 1, customer code is A and amount is less than 500. 

Then 5 percent discount. 

Let us say same table, but in a different form. We have to put yes and no together. 

Because, of the yes and no in some cases and codes in some other cases. The reason 

why, these all work the next entry, this is called mixed entry table. We, use mixed entry 

table, wherever the condition to be checked as only two alternatives. Like in this case, 

((Refer Time: 53:43)) you have only a one or two as two alternatives. So, you can say 

product code equal to 1 or no. Similarly, order amount is only less than 500 or greater 

than equal to 500. 

So, that is the reason why you can say, use yes or no. So the, this kind of a table is also 

allowed. In other words, the notation of tables ((Refer Time: 54:04)) limited entry tables. 

That limited entry tables are the ones, which are very useful. And also is one of the 

earliest kind of a table, which is to be started. And later on we see, that it is a very useful 

thing to have from the point of view of actually, automating the process of converting 

into a program. Also to some extent generating programs, I mean they are generating test 

data and so on. 

But, there is no, you know depending on the situation. Depending upon a particular 

situation, you could either use limited entry or extended entry. See as I said, the 

convenience are based on the types of alternatives. And the number, if the types of 

alternatives are large in number. Then instead of increasing number of conditions, I 

could actually put codes A B C. 

In other words, if I had used the limited table in this case, then you know the ((Refer 

Time: 55:22)) see, I would have what would I do is customer code equal to A, I had put 

yes or no. Customer code equal to B yes or no. And customer code equal to C yes or no. 

((Refer Time: 55:35)) the same condition. Condition two will be, will kind of get 

expanded, to three conditions, which are unnecessarily matter of the table. So, in the case 

of things like codes somewhat like case tables you know. 

The case the code occur, it is about it does not clutter up the structured English program. 



(Refer Slide Time: 55:59) 

 

This is you can link decision tables together. The linking means that, the one table can 

link another table, which can in turn lead to another third table. In other words, there is a 

sequencing of tables possible. And linking is very important and necessary in very 

complex problems. For a simple reason that, suppose I had not linked all of this. You 

see, because the table number 1, there are 4 conditions. Table number 2 there are 3 

conditions. And table number 3, there are 2 conditions. 

So, if I add 4 plus 4, 4 plus 3 7 plus 2 9. So, 9 conditions, if I put all 9 conditions in one 

large ((Refer Time: 55:55)) table. There will be 2 to the power 9, number of rules I have 

to cover. And 2 to the power 9 is how much, it is 512 rules. And nobody will be able to 

understand it clearly. So, it is very important to also in any table, limit the number of 

conditions. To be tested in a particular table to number which is again somewhat like 

magic number 7 plus or minus 2, your 9 ((Refer Time: 57:31)) too much. 

Normally, you try to keep the table with not more than six or seven conditions. If it 

becomes larger than six or seven conditions, then you start trying to linking up, linking 

up with other tables. Then break it up, break the table into smaller parts. Somewhat, like 

leveling in D F D. You, have one complex table, you got to kind of break it up into 

smaller tables. Just like a complex D T complex D F D, you break it up into level parts. 

Similarly, in a complex decision table. 



You kind of make it into link parts. Which are all using the same conditions, but add a 

final level, where the conditions are limited. In this case, I will interpret the table like 

this. If the there is a set of promotion rules. Which is given to a company in terms of 

under what conditions, should person be promoted or not. And I would, let you look at 

this with some care. And interpret yourself and try to get the business rules yourself. 

And you will understand, how linking take place. 

You almost ((Refer Time: 58:58)) self evident the way in which it is done. So, next time 

I will start with this point and explain this linking issue. And also the conversion of this 

into a equivalent word statement. 


