
Systems Analysis and Design

Prof. V. Rajaraman

Department of Super Computers Education & Research

Indian Institute Of Science, Bangalore

Lecture - 16

Last time we started looking at expanding a DFD to several DFDs. In fact, we started

with hostel mess management system, which is our running example. So, we said billing

system among that in that mess management system. Billing system is an important part.

The billing system essentially takes the menu from the mess manager based on he gives

items and use in that menu.

(Refer Slide Time: 01:44)

Based on that the update daily rate goes to the mess secretary, who kind of knows what it

is going to cost. And at the end of the month payments will be received from the students

for the bills, which are sent. And also the bills will have itemization as we said. And the

expenses are noted in a file and student information, plus a bill is in another file. And this

is the general structure, with which you started and next we went to from there.

(Refer Slide Time: 02:31)

We expanded the billing system into several parts there is, in other words as I said in all

complex examples, the basic rule is to divide and conquer. So, for dividing and

conquering you split up a very basic high level DFD. A high level dataflow diagram, into

a set of connected diagrams, where each one, can be separately looked at. And each the

programs or processes in directly. So, that is whole idea of really breaking down, in fact,

technically it is called leveling of DFD.

Breaking in to single DFD into sub-components, where each component belongs to one.

So, it is a billing system itself consist of number of parts one is calculating student bills,

last time there is an error in that student square. And infact, it is written as like remember

like mess manager or so. So, we changed it and you just note it actually, because the bills

go to the student, not to the mess manager and the payments are received from the

students.

So, the billing system can be divided into, we can calculate student’s bills. In fact, we are

finding the number of meals based on which, the daily rate can be calculated because the

daily rate depends upon the number of meals to cook and also the menu. So, the

expenses data is apart from the daily wages calculated rate calculated. Total expenses is

put on a separate file. And there is an item rate, which is used in order to calculate the

daily rate.

Because each item has got certain cost and you have to really find out the billing, based

on that cost. And similarly we separate part talking about reconciling payments. In other

words, when the payments are received from the students, they got to be checked against

the bill, which is sent and that is called reconciling. And if there is payment under

payment or overpayment. Then of course, there should an exceptional report or a notice,

which you should issue to the student. Saying that, your bill is not properly paid and if it

is unpaid bill for long pending period.

We said there is entirely chief warden, for taking action. So, the important point really

want to make is that the billing system, itself being divided into number of sub parts as a

part of division. The question of how to divide it logically depends on the problem. And

it is also some extend arbitrarily, it is not there is a specific way you can break down.

You really have to think logically saying that something, which is got to billing has to

have something to do with number of meals cooked.

You have to something to do with the rates of item and daily rates. And you got to

something to do, which the fact that the really rates in effect are also given; to the based

on that students bills are prepared and reconciling part is very important. Because, one

little part, which I could have ordered, namely the student mess secretary. Who is

suppose to give, the actual menu for the 2 days ahead of time. So, that the actual items

can be bought, ahead of time from the vendors.

And this, I am not putting this primarily because it is strucking it up, there is goods not

enough space, this PPT to be able to put that and clutter up the whole thing. So, I thought

I will mention it and not just clutter up the thing you can put it you self. In other words,

got to be in some kind of a input to come from the student mess committee manager or

student mess committee secretary. Who decides the members and so on. And you should

be able to give the items to be able to use two days ahead of time, to calculate daily rate

because only based on the item cost the daily rate can be calculated.

And of course, a mess manager also has to kind of be told about of what items to number

of meals to be cooked, based on the number of students and also based on the menu and

so. In other words, calculate daily rate infact, it is the most complex of the whole set of

processes. Because, it has got number of parts will do. I could in fact divided up

calculate daily rate into multiple parts. One is to find out the total number of items to be

used on a any given day.

And then another module, which essentially says having calculated finding out the total

number of items to be used on a any given day, for based on the menu. Calculate the

daily rate which can be a day, which uses these. In other words, the point I am trying to

make is the number of the processes are circled in which you want to divide. But, divide

is depend upon on your convenience. I mean there is something you like if you divide

into too many parts.

Then also, it is you know each process will become a three line process is just like the

same rule in programming languages. In a program you do not want to make function,

just two line or three lines, function must do something substantial. That is the reason I

have use this way. But you could try it out, in other words I am not that is nothing sacred

in this particular division of the billing DFD into multiple parts.

(Refer Slide Time: 09:25)

Now, let us look at the stores issue, stores issues other part which is actually it came

from the mess management system. The mess management system was a single high

level chart, then we divided up into multiple parts. So, this particular one, now is the

stores issue and control system, there is billing system is one part. In other words we

give a number 1 to that billing system. We give a number 2 to the store issue and control

system.

Store issue and control system, again based on the issue has to be done by the mess

manager to the cooks and so on. And orders also have to be placed. So, the stores issue

and control system, primarily looks at the situation and terms of the ordering to be done

at the appropriate time. Vendor payments to be made and the orders which you are

placed and all that. In other words, there are number of things, which it does and again

because there is I am giving a high level part.

 Now, that is can be broken up into number of sub-parts and each sub-part will have a

role to play like for the….

(Refer Slide Time: 10:50)

So, let us go to next one 2 itself become 2.1 2.2 2.3 2.4, which are all the parts of the

system. In terms of the control we had to have a control of in other words, stores issue

and management system must have inventory, update and low stock warning. So that

whenever the stock becomes low he can be order in time. In other words as I pointed out,

the current system they found that they were not able to predict.

Whereas, we used and the result that the ordering was in trickles and that added to cost,

where we order in bike and delivery has to be done few times rather than too often. Then

I think total cost will go down, the inventory update and low stock warning system is one

part and creating order to the vendors is another function, is got to be done. And

calculate such item needed, which is again unless you know the items needed, you

cannot really check the item availability.

In other words, if the mess secretary gives certain menu for which items are not

available. Then you have to really tell either order it immediately if it is an essential or

this got to be feed back with the mess secretary. Saying that this particular item is not

available and would you like to change the menu. So, the point is to calculate item

needed based on whatever menu is given and based on the availability of that you decide

whether you can do it or not. In other words each one is again for the processes or you

might say a function.

And so the high level DFD, which is a previous one. Namely the stores issue and control

system has been split up into layer level DFD. This is what I said is levelling, so the

levelling is what is being done.

(Refer Slide Time: 13:20)

And let us go back to the rules of leveling, in other words, I just given you of examples

of leveling. In other words the point the reason why I am doing it is, you have to fix your

ideas. And it is always good to start with particular example and starting with particular

example and generalize it. After generalize it, you come back and look at the particular

example, to see if the generalization works or not and that is where, which actually

presented in the web and the book and so on.

But, in the lecture I thought I could really go back and forth and be able to tell you that

where do, the levelling rules arise I mean is it arbitrarily. But, there is logic behind all

these rules and the logic has to be explained. And when you actually, do a levelling you

have to check, whether you have to following the levelling rules. And you are not really

contributing any of the rules which have been put down, one is the process p is

expanded, the next level or label p point, p point 1, p point 2 and so, on.

In other words I said 1.1 or 1.2, 2.1 and 2.2 and so, on. The whole idea is nothing but,

labelling to kind of know that it belongs to starting with a high level number 2, it goes to

lower levels. All data flows entering the first one that is the high level should also enter

the lower levels. In other words, unless you are there actually, you are breaking up single

one into multiple ones, single one basically said data input.

And the data input has to be preserved; you cannot have a system with new data coming

in which is not put in the original, unless you made a mistake in the original. Some times

what happens is that when you do the levelling and you start expanding it. You find

suddenly that you made an error in the original. So, you back to the original and change

it there, but you make sure at the end of the game after your level. Whatever the data

entered top level should also enter the low level, in other words expanded level.

(Refer Slide Time: 15:55)

The expanded DFD, may have data stores that is new data stores can be created. In fact,

if you have absorbed keenly, you could have created certain new files in the 2.1 2.2 and

2.3 and so on, which are over and above what are there in 2. I would like you to kind of

go back and look at the tool itself, which is I think, I this 2 and here you had 1 2 files and

3 files. Here I have 1 file, 2 file, 3 file, 4 files, in fact, I created files. So, we have data

stores, which I have shown in the expanded DFD, we have shown that new files are

there, that is not wrong.

And because the expansion you would like to be able to kind of have the same data, split

up into multiple files for convenience, that is effectively what we have done. For

convenience in particularly for the process, when you write the process, the data only

required by the process only is put up in the file. The file will have all kind of cluttered

information, it may not be necessary. In other words, it may not be essential wasting

actually space.

Because, when you come to database management system, we will look at some of the

issues, in terms of how to kind of break up very large data base into parts, which are all

using certain rules and certain methods. We have to make sure that the after we make

some alterations in the data base management system, we have, so called relation in that

case. And one larger relation can be split up into other relations. So, we look in to that at

a later time.

But, at this time I am really looking at not detail of implementation. So, only when you

get an implementation, you have to worry about database management system, the kind

of database you are going to use in all that. This is the higher level, just to tell them to

make sure that datas available in files and you have to make sure itself that later on,

when you give it to a programmer, he will be able to appropriately interpret it and clear

into a proper database management system.

No new external entity can appear in the expanded DFD, in other words whatever the

entities are there, what I mean by external entity is in our case was vendors, mess

secretary, mess manager, students all these are external entities. Suddenly, you cannot

bring a new external entity into lower level, because all the generation of data is all done

by the external entities.

External entity are the generators of data as well as consumers of data, you cannot bring

in a new generators and new consumer in an expanded DFD, which is not there in the

original that means, you made a mistake in the original. So, you have to back and say

may be if you add more to the external entities to be top level DFD and make sure that

because of that kind of putting these things, otherwise it should not be there, also the

keep the number of process at each level less than 7.

Other words the 7, which is again a magic number, the reason why you try to kind of

break up something into smaller parts, breakup into two many smaller parts, you will not

able to understand the complex, the each of them and their interrelationship at all very

logically. There is a psychological rule which says is the magic number 7 plus or minus 2

that psychological experiment says that, people in general have a certain capacity to

remember, like for instance telephone numbers, they have certain capacity average

person you know.

There are people who remember 100 digits and so on, but by and large, people have

certain capacity to kind of visualize in one visualization, certain number of parts is a

number of visualization, with the number of parts becomes too many then the

visualization loses its meaning. So, for visualization you have to keep your numbers

reasonable, it should not be 2 or 3 it could be 4 or 5 and I have used only 3 or 4, for a

simple reason that my screen size is limited.

And I cannot go on and putting of too many of them in my screens. But, if you feel that

you want to expand this further, you could do it yourself which you can try next size.

(Refer Slide Time: 21:36)

.

So, this is the kind of levelling rules, using levelling rules and showing levelling

example, an abstract example not an example which is particular is that from particular

you go to general that’s what I said particularly, you already looked at. Now, we are

going to general, so general effectively says that your external entity A, in this case

simplify matters and to fit in to my screen, I assume nearly two external entities one

which is feeding the input, one which is feeding the output at the top level process.

And to be many more, but as I said this for my convenience of showing and then top

level process is divided into number of smaller process 1 2 3 4, each one is certain new

file. But external entity you see has remained the same they have not changed only two

external entities. ((Refer Time: 22:39)). And now 1 itself is taken into 1.1 1.2 1.3 1.4, 2

is taken into 2.1 2.2 2.3 and so on and similarly for 2 and 3 and 4.

And one could, in fact, go beyond this and make it from 3.1 3.2 ((Refer Time: 23:03))

and so on in fact, I would not recommend on that. Simple reason is that unless it is very,

very complex problem. Because you are going to end up with a million line codes

something like that, which is true in certain live processes, there what they will probably

do is that the top level process itself, will be separated out into many top level process.

And each one can be expanded, so if you go too much to the grain size becomes too

small then it is not very effective.

So, there should be reasonable grain size, my suggestion to give about 1 levels, 2 levels

and 3 levels in the case, top level middle level and lowest level that exactly what I did in

my example. So, let me go back and look at what all we did earlier, in terms of the. We,

started with the mess management system is the top level DFD, which is what I have

given in the picture.

And then from this, we went to the next level to 2 and 3 and 1 was there on the earlier

one and then because 1 2 3 cannot be shown in 1. I showed in 1 and 2 and 3 other and

from that I went to 1.2 1.3 broke up 1 into multiple parts. And then I broke up 2 into

multiple parts, so effectively I have shown the levelling as an example. So, this is the

essentially what is the specific case for the general case, in other words I started up with

example, I went to general set of rules, I went back and showed you how I have done it.

So, it is not any magic levelling is a straight forward thing and only promotes certain

amount of logical thinking, divide and conquer, dividing a large problem into smaller

problems. Now, let us go back and look at some of the illegal constructs in DFDs, no

loops are allowed in DFD, what I would mean no loops are allowed in DFD, one output

cannot start from particular circle or processes go to other process and return back. So,

what is essentially it becomes an endless loop.

Endless loop as you know have no cure, the machine was stopped. So, there should not

be any loops a process cannot be a pure decision because a process has got to do a

number of things. Normally as I said is not a single instruction, if you have a pure

decision, single instructions, so single instruction has no meaning.

(Refer Slide Time: 26:37)

For instance, the single dataflow cannot be split up into many flows in different labels.

Like output I can say here is actual rate greater than standard rate, actual rate less than

equal to and also to compare a single comparison instruction. The comparison instruction

is a single one, which is not you know, single instruction which is again is not really a

process. No data flow can be allowed between stores, because stores are both dumps,

dump stores.

Stores only store datas you cannot transfer from one to the other without any processing

there is no point in doing it. If, you have to do something like that you might have to

merge the two files.

(Refer Slide Time: 27:24)

And this is an illegal construction there is a loop, record has taken calculate bill and ask

for next record. And then you may end up with a situation, where next record is not there

to hang up or there is no proper thing of put for the end of records it may hang up. So,

this is a bad construct.

(Refer Slide Time: 27:46)

We have been looking at, so far what is known as logical DFDs what I mean by logical

DFD is that we are really looked at the logic of the system. In terms of what logical datas

Flow, how the logical datas are processed, how files are created, how the logical datas

are taken from the input entity and process results into the output entities and so

primarily it is more or less to do with logic, rather than physical documents.

Normally, when you work with the user, the user is lot more comfortable with the

physical system, in other words he will tell you who generates what document, whom

does it go, what does he do with the document. And what document as he generate, to

whom does he send, see the documents need not entirely the logical document, it could

be actually physical documents. So, physical DFD is similar to a document flow

diagram, but it specifies who does this operation and the operations, which you are

specified by the logical DFD.

In other words physical DFD tells who does what, otherwise...

(Refer Slide Time: 29:24)

Let me take an example, we will become clearer physical DFD depicts physical

movements of goods, physical DFD can be drawn during fact gathering phase of a life

cycle. As I said fact gathering said the users are lot more comfortable with documents

flow and things like that, particularly if you are going to a nourish. If you are going to

new hotel and trying to kind of a computerize new hotel management system, then they

only tell you about, what are the existing method of taking the documents for the

customer who comes.

And the document which is the bill is created, payment he makes, so on and so on. So, it

is physical thing.

(Refer Slide Time: 30:15)

Let me give an example a daily example, in fact before bank computerization if you

remember, may be you are not remember of course, still. Now, many banks which are

rural areas are the areas which are not computerized, not bank which are not

computerized. Normally small banks, which still use this technique in other words, the

customer goes to a, what is known as the clerk or a teller.

And nowadays the term teller is used to have a clerk who gives the cash immediately, but

I am essentially telling receiving clerk. And cheque is given by the customer to the clerk,

and the clerk checks whether the cheque is valid, signature is valid and is there a balance

in the check. And if there is a balance in the account to pay the check and whether any

mistakes have been made in the entry of that cheque, other words you have entered the

wrong date or you made some corrections then they will always tell you immediately

kind of change the date and put your signature again.

So, this physical part even today if, you go and give a cheque because you have to give a

physical check except ATMs, you have to give a physical cheque and physical cheque is

actually, check by the clerk there except that the ledger is not used. But, a computer is

used to look at the ledger to be stored in the computer and signature also stored in the

computer.

So, signature which is there is been scanned and stored. So, scan signature and this

signature are actually usually compared, most often it is usually compared it is not

automatically compared. Because the automatic comparison method, are not still very

much matured. I mean of course, they are coming may be in few years, you can just give

a check it will be taken by a machine.

And everything will be checked there, even hand written part and then check your

signature and so on fortunately that date has not come. We still need people to kind of do

all those things. So, verify the signature at balance of course, customer accounts files are

available to the clerks and if the bad cheque, the bad cheque is returned for either

correction or saying that you do not have any balance. So, the cheque cannot be honored

if the cheque is okay then a token is issued.

So that you can use the token, to go the cashier and take your money from the cashier.

Now, the cashier also be told that this cheque has been validated and I have given it a

token number. So, what that the clerk will do is write of that cheque the token number

also and sign there, get the managers signature some places the amount is too large, it is

got to be verified by a manager.

Manager also verifies it and then he puts the signature and then it goes to a cashier. Now,

in the mean while the customer of course, is waiting for his cash, because this process

which could be a manual process takes a few minutes. If it is good bank, it will over in

five minutes. But if not such a good bank or rush is too much, first of the month

something like that then it will take longer because, the queue will be build up and the

clerk will only can do at a certain rate.

So, in any case the token, the whole idea of a token is that you know when to kind of

present the token to the cashier and normally in most banks there is a display device on

top. And when the token is ready, she will press the button and the token number will

appear in the display device. And then you go the cashier present your token and get

cash. And the cashier has to in turn stores the cheques, physical cheques because later on

may be require for verification and the entry in the day book.

What is meant by day book is, it is issued cash she has to immediately update or cash

balance because at the end of the day she is answerable or he is answerable, to how much

of money was drawn by her. And how much of money being returned and so they will

reconcile, how much of money was given out to customers. And they have reconcile the

fact that, this money was taken, this money was given, the balance is so much.

So, that is facilitated by an entry book, it is called a day entry book in terms of the things

this is the kind of thing, when you go and computerize the bank for the first time. The

physical DFD is the one, which the manager of the bank or any clerk will be comfortable

with. And you also understand the process of what goes on of course, this is a very, very

simple process, but even that has got a couple of steps.

But it also shows the importance of the documents, documents are not we talk about

paperless office, paperless system and so, on, all certain done, paper still play to be

important role. Like your cheque book, your cheque is a paper and that has got a very

important role to play and the physical cheques have to toured again. Because suppose, if

you issued a self cheque and later on you dispute that self check was drawn by somebody

for whom, which is not intended then they should go back and be able to retrieve your

cheque.

And then see who has drawn the money on your behalf and tell the customer that

somebody else has taken it, may you made a mistake or whatever and not or it is a

forgery in which case a complaint is lodged. So, the point I am going to make is, you

cannot rid of also the paper document and many of very often, the stored cheques are

kept stored for a few months. I mean normally, banks they have some kind of a time

limit, saying that beyond three months or so, they will destroy all the cheques.

So, if you don’t go back and check your balances and find some cheques, which is issued

not issued by you, after three months they will say it is too late, you have to come within

a certain period. Three months itself is a very long time and in fact, some banks, modern

banks, newer banks and they do not allow for a more than a month I mean, because

storing all these paper take up storage space.

And if it is a bank in a central business locality, rentals are very high and you had to have

store in store somewhere there, normally they send it out in archive. But then somebody

comes and asks, because we cannot reply immediately it has to be taken out from the

archives and brought back and so, on. The point I am really want to make is that the

paper documents are important, the files important.

And because of the fact that, the paper documents are important, bills are important and

storage documents are important, document flow diagrams is also important. It is not

((Refer Time: 38:13)) which you have ignored and given this document flow diagram.

(Refer Slide Time: 38:18)

Then you go to logical DFD of same thing except, now I am going to look at what

processes will be used in a computerized bank to be able to do with the same thing. So,

the computerized bank, the customer present the cheque, so it retrieves the customer

record from the customer account. And then the balance is checked and a token is issued.

Again if it is teller system, instead of token issues, what the line will go from check

balance issue to cash the customer.

And many banks, now have a teller up to a certain limit, that is probably go to the teller

and get up to about 2000 rupees or so right away without any further.((Refer Time:

39:22)). Whereas, if it is cheque even if the computerized bank, cheque about 20000

rupees something like that then of course, they will not give naturally they will give

immediate cash, teller will not give because teller cannot take the responsibility. So,

token will be issued.

And the teller will store the token number and check and also the search and other words

they I am breaking up the cashier’s thing again. That is a store and token number and

cheque is the cheque, either can be stored the physical storage or also in some

computerized banks, what they will try to is of course, before you pay cash the token has

got to be stored in a physical storage. But after the cashier is paid as I said the documents

occupy too much space.

And you cannot keep of too long, some branches are now what they try to do scan it,

scan the check and put the scan document in the database. So, that as I said complaint

about three months later somebody comes, then you can easily retrieve it, the paper

documents may retrieve in a big bundle and they have to take out one by one and so on,

it will take a long time, where a retrieve by computer is reasonably fast.

So, if there is a particular bank, which is got a huge number of transactions, with cheques

and so on they look put a scanner. Because they actually the scanner, the reason why

they may not scanner everywhere is, it occupy space, it cost money and it may not worth

scanning. But, some place they do it offline, other words they store it for the whole day,

at the end of the day, they will take all those things off line, scan it and store it. So, these

are the kinds of things, which you essentially as a systems analyst, you have to tell the

bank person.

That is we got too many transactions, maybe you should not scan it online, actually scan

it offline. But store physical cheque with token number, which of course can be file in

the computer also. And then search and match token, the search and match token is again

physical, normally it is physically done, you can also do logically in the sense that if

token itself is a number entitle in the computer, token number the token number is on its

travels and the token number comes to the search and match and then that displays

automatically.

That also can be made somewhat automatic, that is the reason I have shown it in this

way. But in this case, a token slip is given to the, for the matching against what comes to

the check. And check with token goes to the update daily book, the day book is

essentially as I said is an important part to be able to find out how much cash is issued,

on a given day. So, the point is that, once you start with physical DFD then you look at

the logical processes, which are involved and the logical process probably will make

more sense to you.

And then, you can once the logical process makes sense to you, then you can go back

and based on the suggestion that some methods of doing things, doing business or better

computerization to the company for which you are doing it. This case I took very simple

example for bank, same thing I could try for say hotel management system or something

like that, where you look at maybe, you go to hotel and find out what do physically. And

then you can essentially see how, it can be done logically.

That give you an example of this so, this module is kind of concerned with dataflow

diagrams, the major issues are the major points we covered was that data flow diagram

and important tool in analyzing systems. And you start certain rules are there, in terms of

how to create dataflow diagram, data flow diagram actually graphical lane, the graphical

lane the components consist of the process, files, external entity, data flows, input flows

and output flows and so on.

And these are all how they are all interconnected and then we looked at the how, to start

the top level data flow diagram and then we into kind of up or levelling and we looked

into some of the levelling rules. And also we looked into some of the rules, which you

should follow in creating the DFD, other words DFD itself you know, at the end of

making a DFD to check you made mistakes or not, you back and look at the rules.

And if you are logically done the work, those rules are you could have automatically

followed. But, sometimes you are careless and then something will be there, which like a

loop, putting in to processes, then you can recognize that then immediately remove it. In

fact, some of these things, there also tools available, tools are available doing number of

things, tools are available for drawing the data flow diagram.

Drawing of course, consist of an nice looking drawing, you want to draw of course, you

use the drawing tool in the PC itself, but DFD drawing tools are there, which give you

the label and labelling and so on, levelling itself is of course, something little bit more,

why I would say human. Automatic leveling will not be done by any computerized

program. But, the checking of incorrect DFDs, like loops, like two files been connected.

All those can be detected by a computer program.

So, the computer program available, to detect the errors, to kind of help you draw help

you kind of store the thing, so that you can retrieve it. And we got so multiple diagrams

show a larger diagram print it out, show larger diagram. But, nobody likes a large

diagram. But nobody likes the very large diagram, you really have to kind of, always

start with top level and then go the smaller levels and each one by one you should show.

So, these are all some tools, which are there and some tools which are in the open

domain.

But, as you know open domain tools, normally gives a one month license or something

like that and they expires. But, in any case they learn want to learn, you are always go

the open domain tools and look through that and see what it does. And at least when you

go and work for the company later on, you got professional tool you have not been

completely unaware of the system tools.

That is the reason why should always look at open domain software, particularly as a

students because most colleges cannot afford to buy some of these very expensive tools

and so open domain of course, is itself, for one month free trail will be there. And you

can try it out and you will not take more than a month, buy out some DFDs and so on.

So, you can try it out for a few days and then of course it expires, it expires, and that is

what I would suggest. In the web part of this course, there is web support material you

have some site names and so on for your convenience.

So, some URL s are been given, so you can look at those URLs, for some of their tools.

And so, you can play around with that URL, see the whole complained about our

education is that is impractical, other words we only talked about theory, we don’t do

any practice. So, that is the reason why, the practice part unless you know how to use

tools yourself, a practice cannot be taught in a lectures see, it can be taught to some

extend in lab

But even in lab, I think things like searching for particular URL, dataflow diagram and

so on it is anybody with a reasonable common sense and google search can do these

things. So, what I would suggest is that in most of the things, I am going to talk about

later on also apart from what I said lecture, our support material in the web which I have

created. Apart from that also URLs, google search can do and get a lot of information.

In fact, sometime you call the information over killed, the whole idea I am putting a set

of transparencies in the web support material for this course, without having to go

through an ocean of information, you can find concisely. And also each module have to

given the URLs, which are relevant for that module also given a comparison of other

books, where you can read this and what books give a reasonable treatment of this.

So, other words the text book is important I have, but along with text book you also can

look at some reference books. And this is the whole idea of combining lectures, also

some web support material to go along with the lectures. So, this module is now over and

I start with next module, which is a process specification.

 (Refer Slide Time: 50:18)

The process specification is primarily what goes in to each of the circles, the DFD each

of the circles which are actually a process. So, how to clearly initiate the specification,

specification can be written down in playing sentences or a page that does not make

much sense, that is what given by the manager to you before you computerize, you have

to convert that word statement or see a half a page of description into a process.

So, the structured english is what I am going to use for process specification. And there

are certain types of business rules they call it. It is very complex business rules, where

the whole lot of if conditions, then, else and so on. And they can become very confusing

in a structure english thing, whereas in a decision table they get concise as in a tabular

structure, just like tooth table were able to see at a glance. What conditions are applied,

what rule apply, what actions you have to take. So, these are the two major ones I am

going to talking about in this module.

(Refer Slide Time: 51:48)

So, when you come up with the process specification, you must be sure the specification

is not incomplete, completely is whatever is given and in the write-up that is been

followed, and nothing has been left out. And there is no ambiguity, sometimes written

english will have some contradictory specifications and those got to be checked before it

goes into computer, ambiguity because in fact, human language unfortunately is not

completely unambiguous.

If the human language unambiguous and it can entertain only one particular way, you

can owe me any lawyers at all. So, human languages or by nature certain amount of

ambiguity. But the ambiguities got to be clear, no ambiguity can occur on the process

specification and contradictions, any contradiction requirement you put there, which you

should be able to detect and tell the manager if I do, I can’t do the other, redundancy

unnecessary rules are given, the rules can be much more concise.

Because what happens in real practices, particularly things like insurance rules and many

other rules in fact, even government surveys rules and so on the rules are all initiated.

And then they find out some problem, in naturally implementing it and then they put add

more rules, without really seeing whether new rules or contradictory to the older rules

are ambiguous and so on.

And so new rules go on building up and you got very complex set of business rules,

which you have all these difficulties and even then it can be incomplete because in a

specific case. And it could happen in that because we went on adding as an afterthought,

you could have put certain same rules again, because you get remember the rule already

existed. So, this got to be done automatically to some extent, the tool will you use should

be able to check this also.

So, decision table specification it is reasonably easy, though the checking of

incompleteness, the ambiguity, contradictions and redundancy that is not all that easy in

the structured english statement. So, the basic rule is to use decision tables, whenever

you have a whole set of complex rules and use the structured english, when you have lot

of loops, when you have something like programming like structures, do while repeat

until things like that, in which case the specification in english is much neater.

(Refer Slide Time: 54:54)

Eliminating redundancy specification, it is also something called decision trees, which is

descended of decision table and we will find out later on, the decision table in a certain

strict order, there is no strict order in following conditions. Otherwise, conditions in a

table can be carried out in many order, any random order, whereas decision tree in one

where, the condition has to be tested in a specific order.

So, tree is something like a, you all know about tree structure, except that the notes of the

trees or decisions the arrows are actions. And so gain show of the glance, a tree starting

with certain set of decisions. And how those decisions will got broken up into further

decisions and how ultimately actions are taken, I will give an example as I go along.

(Refer Slide Time: 55:56)

How do you use structured english precisely, specify processes terminology you used,

terminology used in decision table.

(Refer Slide Time: 56:05)

How to detect the errors, decision trees, comparison of structured english, decision table

and decision trees, because I am giving three different tools, I should compare all three

tools and that’s what I will do at the end.

(Refer Slide Time: 56:23)

So, before designing system, the main motivation is that you must clearly understand that

the logic I already said that and for each process block of the DFD has got to be

expanded. And an analyst understanding must be cross checked with the user of the

information system.

(Refer Slide Time: 56:40)

A notation is thus needed to specify process blocks in detail, notation used must be

appropriate for the type of application to be modelled.

(Refer Slide Time: 56:49)

Different notations are needed to represent the repetition structures, complex decision

situation and situations where sequencing of testing of conditions is important, that’s

how there are three different kind of tools.

(Refer Slide Time: 57:05)

As I said for complex decision processes and detect logical errors and so a tabular

structure is useful.

(Refer Slide Time: 57:18)

And let us start with the actual process specification once the DFDs are obtained, the

next step is to precisely specify the process. Either structured english decision tables or

decision trees.

(Refer Slide Time: 57:34)

Again I am saying the same thing, decision tables are used, when the process is logically

complex involving, where used and conditions followed certain strict order.

 (Refer Slide Time: 57:45)

Structured english is similar to programming language, like pascal. In fact, it is closer to

pascal tendency because C is too concise and it does not have our strict syntax dramatic

rules. Other words there is no comma, full stop is got to be compulsory, like you know

any programming language, you have to interpreted by a computer, it is very important

to have a of proper commas, full stop, dashes, dots and so on at the right place, you don’t

have it then it is a syntax error.

So, does not have any syntax rules, because it does not have any syntax rules, it cannot

be automatically check by computer. It is got to be converted into a program and the

program will be checked by computer. But at the time you create the process

specification in structured english, you can also create what, test data can be used later

on, when you write the program that will be easy.

(Refer Slide Time: 58:53)

Structured english the intention is to give precise description of process. The structured

english description should be understandable to the user, you have to give a precise

instruction description and should be usable.

(Refer Slide Time: 59:09)

I will give an example, I will give very quickly give an example, customer pays advance

then give 5 percent discount, else if purchase amount is greater than 10,000. Then if the

customer is regular customer, then give 5 percent discount else no discount and so there

is whole lot nested, ifs and else the whole point is that it shows that it gives the rules, a

set of rules for giving discount, when a customer buys something from you.

So, based on purchase order, so on and do that. So, next time I will look at this in greater

detail, explain this and I will essentially stop at this point and continue in next lecture.

