
Storage Systems
Dr. K. Gopinath

Department of Computer Science and Engineering
Indian Institute of Science, Bangalore

Lecture – 41
GFS functions and operations

Welcome again to a NPTEL course on storage systems. So, the last 2 classes we are

looking at the Google file system.

(Refer Slide Time: 00:38)

And basically, in the first part of this we looked at the GFS high level design.

(Refer Slide Time: 00:41)

And in the second part of it we looked at the consistency management.

(Refer Slide Time: 00:52)

(Refer Slide Time: 00:54)

And basically, we went over some aspects of this model. Basically, that you might have

what is called either a defined situation respect to a file or it could be consistent, but not

defined undefined.

So, basically because of concurrent rate operations. Different chunks could be written in

different even though they are getting returned to all the replicas in the same way. The

actual chunks may be written in different values. So, that is why reason why it can be

consistent, but not defined of course, it is a failure we can have inconsistency. And

similarly, with record appends also, we have a similar situation. Once a succeed it is

defined, but it might be that there are some earlier parts at lower offsets, which are some

stuff that was put in, but could not be carried forward. Because some chunks some

chunks are was field they are they could not complete that part of right. So, that is

basically what this is.

(Refer Slide Time: 02:12)

So, went through some of this last time.

(Refer Slide Time: 03:16)

And we also looked at a bit about how the application design has to change a bit.

(Refer Slide Time: 02:23)

And thus, good thing about this particular design is that if you use appends you do not

really need a heavy duty distributed lock manager. So, basically you try to avoid the

costly consistency and concurrence issues by is slightly different simpler method.

(Refer Slide Time: 02:48)

So, again we looked at this write control.

(Refer Slide Time: 02:52)

And the data flow and basically what you mentioned was to ensure that you have you

can exploit the bandwidth in the system. As soon as the client figures out, where the

chunk locations are where the where the primaries on their chunk locations are. It can

start pushing it immediately. And then once all the locations primaries and secondaries

report that they got the data, then a client actually does the actual act of committing the

writes. Because all the data will be actually sitting in some temporary area. And then

once the write starts, then the primary will decide on a particular order. And then all the

after all the mutations that are going on the same time if all the writes are taking place.

And then each of these secondaries will actually write those things in the same order.

So, this design is slightly different from the ones we saw before with respect to good

(Refer Time: 04:06) systems where the bandwidth issue is not taken that seriously.

Because these are large scale file system, massive as system is bandwidth issue is an

important form.

(Refer Slide Time: 04:19)

So, basically there is way want to continue from here, as I mentioned earlier, there could

be a for each chunk there could be a current lease holder. And you want to check, if you

want to do a write operation, you want to check who the who is the party has got the

lease. And once you get the lease holder that is the primary, and then other people would

other replica locations. They will have the chunk replicas, and that service the client gets.

Now, there is some aspect relating to the lease management also. Usually you want to

minimize management overhead at the master. And the way the do it is by having a

initial lease only for 60 seconds. So, if there are requests that come in within the 60

seconds. So, you do not have to go to the master. 60 seconds was considered to be a

reasonably good amount of time. Again, we will see that most file systems. Typically,

have leases around same amount of time 30 seconds or multiples of 10 seconds. This

terms about the steady longer 60 seconds is it looks a bit steady longer, but I think this

makes sense because, these operations are also take longer. Because we are dealing with

large 64-megabyte chunks.

And the primary can request and typically receive extensions indefinitely. As long as it is

where actively using it can keep on doing it. And there is not much extra overhead

because anyway you are going to use heartbeats for checking the health of the chuck

servers. And then basically any lease request can be sent as part of them heartbeats itself.

Took basically the you can keep telling that I am alive, but the same time saying that in

case you have to get any leases, you can put that in the same (Refer Time: 06:19) send it

out.

And basically, you can the master also has some control over things. It can revoke a lease

before expiry for example, if there is a file that is getting renamed, you want to prevent

mutations on that file, while these misconcurrent operation is going on. You want avoid

that concurrent operation. And therefore, you can essentially take back the lease. Once

the lease is taken back, then there is no way anybody can modify that particular file.

Again, one advantage of lease management is that is the leases is that even if master

loses communication with a primary. It is safe to grant a new lease to another replica

after old lease expires is that is basically the standard reason why you use leases.

Basically, it is communication through time rather than communication through

messages.

So, but this requires that once you have communication through time; that means, you

need to have time synchronization as a critical part of this. So, it has to be reasonable,

but it turns out that in this particular system, they do cache metadata for some pits of

time. So, they can inconsistent that are there anyway are going to be here with respect to

metadata, here is some problem again this is similar to what happens in nfs where similar

ratios arise.

So, you know the time synchronization is not very, very accurate, it is still manageable.

Because the semantics anyway assumes that there is a possibility of looking at still

metadata for some period of time.

(Refer Slide Time: 08:12)

Just like the writes, you can also do the record appends. It is very similar, only thing is

that you have to worry about the last chunk of the file. In the case of a write it can be

spanning multiple chunks and you have to split it. And the various aspect we that had to

be done. There could be also let us say read modify write cycles etcetera, that is their part

as part of the write. Whereas, in the record appends basically have to look at only the last

chunk.

So, the client sends request to primary. Again, just like previously primary checks if

append exceeds the max size. If so, pad chunk size pad the chunk to max size. And then

it tells secondaries to do the same thing. It says you also I am going to pad it you also

pad it. Because and then again it goes back to the client and says I have not done

anything for you so far, but please retry it we will proceed after that. Because all it has

done is to pad the chunks. Whereas, in the case of for the common case usually whatever

is being written usually is fits into the maximum size.

So, it tells the secondaries to write data at it is own offset, and reports success to client,

these are simpler case.

(Refer Slide Time: 09:45)

Now you have to wonder about what happens if there is a failure. Record append fails at

any replica client retries operation. So, that is how you may find that the replicas can

diverge in the content of what they have replicas of same. Chunk may contain different

data possibly including duplicate was same record in whole or in part. Basically some

because of this issue GFS does not guarantee that all replicas are byte wise identical.

So, basically what happens is that you retry some guys have might succeeded some guys

may not might not have succeeded. Those guys have succeeded have written something.

And those guys have not succeeded have not written it completely or partially written it.

So, they will be diverging. Again, when retry the whole operation. What will happen is

that everybody gets a new offset the new offset, but whatever chunk that they are put in

previously whatever has failed is still remains there. That is reason why GFS not

guarantee all replicas are byte wise identical it also can happen because of some such

chunk server is down. Or so, because it is down it is not able to take this particular, let us

say data. And so, it can become stale. So, you have to have another protocol by which

this tale replicas are detected.

So, what GFS somewhere and guarantees is that the data written at least once as an

atomic unit. You are trying to obtain something it is giving you at least one semantics;

that means, in a possibly written multiple times, but all the previous times are failure

somewhere. And then, but finally, if it succeeds, there will be at least once it is returning

the whole thing properly at all the replicas. The appends succeeded all the replicas. So,

for op to report success data must have been written at same offset on all replicas of

some chunk. All replicas at least as long as the end of record, and any future record will

be assigned a higher offset or a different chunk even if a different replica later becomes

primary. So, even if when the primaries change and whatnot we can guarantee, but that

any future record will be assigned higher offset. Or it has to be it will be in a different

chunk all together.

So, regions in successful record append op record append ops have written their data

defined they become consistent. Whereas, intervening regions inconsistent. So, wherever

the successful record appends have taken place, they will be first of all consistent,

because all of them are writing in the same order. And order is fixed. And it is made sure

that all the data is available to all the clients, all the primary secondaries only when

everybody has got the data, then they start writing it. And they all write at the same

offset. That is why it should be that particular region will be both defined. And consistent

it is consistent, because they are writing the same things is defined because all of them

also will have completed their thing. Otherwise it is not reported this success.

Now, as before this particular successful append. They could have they could have been

some problems that is why the intervening regions are inconsistent. Some are written it

some are not written it does have for old information some are new information.

(Refer Slide Time: 13:50)

So, another thing that GFS does this is the provide something called snapshots. And the

basically this is neither for standard reasons why snapshots are useful. You want to make

a copy of a file or a directory tree. And it could be for backup, it could be for you want to

make some modifications, and it is not clear that the complex modifications may go

through successfully. So, you want to make a snapshot of it, and do it on a branch and

later decide what to do with the update whether it is if it succeeds.

So, because you are going to make a copy of file or a directory tree especially directory

tree, you have to make sure that you have to minimize interruptions of ongoing

mutations. This snapshot should not basically stop the ongoing mutations, ongoing

changes. So, basically standard copy on write can a mechanism. When a master receives

a snapshot request. It revokes any outstanding leases on chunks in files to be snapshot.

Basically, if you have going to snapshot, you want to make sure that no client is actually

writing to it therefore, you basically try to get back all the leases. So, that you it is clear

for you to start doing a snapshot.

So, if there is any later write to these chunks, first find the lease holder from master. And

then master can now create a new copy of chuck. So, after any covers taken place, after

covers taken place if there is any later write to these chunks. You first find the lease

holder from master get a lease because the client has to find the lease holder from master.

So, master will actually allocate a new lease for it and then the master can now create a

new copy of chunk.

Now, the master also logs the operations to disk. First it applies this log record to it is in

memory state, by duplicating metadata off source file or directory tree. Basically, in

snapshot you have a source and the destination. So, basically you duplicate the metadata

of the source file, or the directory first. And then actually you log all these things to disk.

Just like in any standard snapshot newly created snapshot files, point to same chunks as

source files. Once the update happens then they will be that connection this is broken.

(Refer Slide Time: 16:41)

So, if you a new client was to write to a chunk c after snapshot, sends master to find

current lease holder, right. Basically, a snapshot has been done, and there could be other

things going on. And that is somebody wants to do a client write to chunk. So, sends

request to master to find current lease holder, somebody else might be have in the current

lease. Then the master notices the reference counter the chunk being greater than 1.

So, if the master notices that the reference count is greater than 1, then it knows so that it

is a snapshot it is connected with snapshots. So, instead going back to the client

immediately, it picks a new chunk handle c prime. And then ask each chunk server with

current replica of c to create a new chunk called c prime. Because now the write is going

to go to this c prime and they have some interesting optimizations they make sure that

the data is copied locally not over network. In their systems when was designed this for

certainly far more faster than ethernet. That is why it is done locally not over the

network.

So now why this has been done? The request handling again is the same as master grants

one replica a lease on c prime. And now c prime is write on c prime. Very difference in

the beginning when the client wrote there was this chunk c, which was higher chunk

count of greater than 1; that means, it was also part of that. Same chunk was part of 2

views one of the old file system on the new of the snapshotted file system. And because

the reference counts greater than 1, you had to allocate a new chunk c prime, and now

the client actually can write to c prime directly. Now that that particular chunk has been

decoupled from the previous file system.

(Refer Slide Time: 18:57)

Now, this let us just look at all the one standard what are the master operation. I think as

we discussed so far. It executes all namespace operations. For example, if it question of

adding a file, deleting a file, deleting a directory, etcetera. The master also manages all

the chunk replicas, makes placement decisions. Because it is the only single entity which

knows all about the whole system. It can make all this fairly quickly and everything is

done using information in memory. So, it is quite fast also it also creates new chunks and

also new replicas as necessary.

So, if the chunks sometimes if there is a replication factor of some amount, and some of

the chunk servers may go down. So, it may turn out that the number of replicas may not

be as much as necessary. So, it does some system wide activities to make sure that, the

replication level again goes up those kind of things also it does it has to balance load

across all chunk servers and also reclaim unused storage.

Now, one thing of interesting about this particular file system we will discuss again later

is that the deletes are not done eagerly; that means, as soon as you tell a delete you do

not immediately reclaim this space. It is done lazily. So, idea being here is that you have

a scan of the whole system at regular intervals the rather for housekeeping operation

during that time, you notice those deleted files and their corresponding chunks, then you

reclaim you essentially do some current garbage collection. So, they have a garbage

collection face is does that.

So, that we will discuss this part of it brief later sometime. So, again it turns out there are

some operations take a long time, and just like a new standard file system and concurrent

file system, you take basically locks over regions of the file system. If you want to get

concurrent operations on multiple parts of file system, there has to be locks taken on

different portions in the file system that is what. This also does example snapshot takes a

long time, and it has to revoke all the leases, it will take some time.

So, if you know if you are taking or if you are not taking for concurrency, you need to

ensure that other party is not connected with this snapshot operation they should able to

proceed, but it should be able to stop those guys who are encroaching on the part with

the snapshot register. So, you need to take a lock the correspond. So, want allow multiple

operations to be active at the same time. And therefore, you need to use multiple locks to

over multiple regions to ensure proper serialization.

(Refer Slide Time: 22:18)

So, let just look at some aspects relating to this directory operations. One thing about this

particular file system which is somewhat different from a regular file system, like for

example, ext 3 file system in Linux. GFS does not have a per directory data structure,

that lists all the names in that file in the directory. So, all that has is a lookup table

mapping full pathnames to metadata. So, because of that it turns out a per directory data

structure. So, you cannot go to a directory and say list all the file.

So, it uses prefix compression to store the names. That is why sufficient unit. Basically,

idea here is this that suppose you have a file d 1 d 2 dn finally, the leaf node. This whole

thing is thought of a single name. In a regular file system, we first go to d 1 locate the

directory structure corresponds to d 1, and then search for d 2 in it d 2 is there then again

you search for something etcetera, right. Here the whole thing is looked up in one shot.

So, there is at lookup table. Full pathnames are mapped to meta directory; that means,

you give it this it just goes under some hashing or something immediately finds a

corresponding entry and it gets sign out equal I know. And because of this it does not

have any hard or symbolic links. It turns out when you are doing this kind of stuff, you

can not have hard or symbolic. Because if you want to have hard links, then you need to

have the notion of someplace where it each of those new names for these hard links are

present in a particular directory, you need to have those kind of notions. This one is not

there. Because it does not have a per directory data structure.

So, each node in namespace tree, where there is absolute filename or directory name has

also a read write lock. Because you want to allow a lot of concurrency, and normally

when you have a tree structured file system like this; given slash etcetera, some

operations down below can actually cause some condition the top. Where look at it is

own why that is it is. So, it has both read and write lock. Read lock is use so that nobody

can change it. Whereas write lock is 2 can you got the only person who can change it

both things were taken.

For example, if you are doing an operation on slash d 1 d 2 dn df sorry leaf, then you

take all the read locks up to this point. And depending of operation want to take a write

lock on the full pathname. So, you take read locks only on that each of the directory

names. So, this allows concurrent mutations in the same directory. So, if you are doing

for example, multiple file creations in the same directory, you can acquire a read lock on

the directory name. And the write lock on each other file names, and that is perfectly fine

because basically all you are saying is you are not going to change the pathname. It is

intact as it is, but you going to change the file. That is why you going to take a write lock

on that what is that in the case of a regular file system. You need to take a each party has

to take a lock on dn. Because they are going to add something to the directory. You

modify something in the file you are adding a create for example you are doing a create

for example, you are going to add something per directory.

So, if you want to the add to the directory that has to be exclusively written, the directory

itself has to be written. That means, that if you want to do multiple file creations, they

will have to take a write lock on the directory entry also. Where is in this case there is

basically taking a read lock on the directory name. And a write lock on the file name. So,

this allows for a slightly amount of concurrency, but then the thing is that they have do a

you need to have a map which maps full pathnames to metadata. Unless you use tricks

like prefix compression it is going to be efficient.

(Refer Slide Time: 27:18)

Let us look at one example of how they achieve this one. I will also relate this 2 a

different problem and some other file systems. Suppose I have the following situation. I

am going to do some snapshotting, and then while this is being snapshot become of there

is some slash home user is being snapshotted to slash save user. There is a the intent of

this being of course, that somebody’s saving or backing up the current state of your user

directory exactly as it existed, we just want to back up back that is being backed up to

save user.

Now while this snapshotting is being done, I want to ensure that the user is not able to

create a file. Let us say I want to do that. So, the way this is done here is the product. So,

let us look at the directories slash home user and foo. So, if you want to create a snapshot

you are supposed to take the your read lock on slash home, and a write lock on the user.

Whereas, when you are doing a create, you want to create a foo file for example, what is

going happen is that you are going to have a read lock on this, a read lock on this,

because the idea is that nobody should be changing the pathname while I am creating a

foo. That is why this is both are read and then this will be write.

So, suppose I look at the snapshot itself. In snapshot slash save should be r, because it is

read only again the pathname should not be change that is why I am taking read on

block. Whereas, I am modifying a user because I am copying whatever is here into this

one that has to be write. A notice that for create or taking a read for snapshot you take an

already a write, because you taken a snapshot on write. Nobody can get a read lock.

Again, this if you think about it the idea is that when you are doing a snapshot, what did

we say it was you are going to; let us see, where was this?

(Refer Slide Time: 29:54)

So, if you are doing a an operation write, you are going to take a read locks on all these

directory names. And then you take a read or a write lock on a full pathname all right.

So, because of this when you think about it, you are going to create on user a read lock is

required for the create that a snapshot to ensure that nobody else can modify it at the time

it is being created you take a write lock, and the 2 things are let us say not compatible.

So, only one of them can proceed. So, if you have already started the snapshot nobody

else can create a file.

Now, if you think about it, this solution essentially helps you to avoid some complicated

condition problems. And this illustrate this with take an example from a regular file

system, which does not have this notion of a full pathname to metadata mapping. And

does not have per directory data structures. Suppose we have a system called hierarchical

storage management. What is this? These are some are basically you can have a system,

that has got some files which has stolen tape. You have some disk files and also on tape.

And then once in a while when some files have become very old, you want to send it out

to tape. And then when we require it, it is picked up from the tape and brought back.

So, suppose some guy wants a migrates somebody there is already a file in the tape now,

when the migrate it inside to the disk. So, the party who is doing is what we call the

perpetrator, this is a guy is going to bring it in to the disk. And to do that you basically

have to lock that particular things to make sure there is no other concurrent operation on

that object. It is not admit the disk, but you want to make sure that nobody else also

attempt some more activity of that kind of whatever right. So, that is why you are taking

a lock on it.

Now, while this is going on somebody you know centrally it tries to look it up, let us say.

So, in conventional file systems when you are looking up a file you have to lock the

directory where it is existing. Because otherwise somebody could concurrently delete it.

For example, and then. So, therefore, you cannot know you do not know what answer to

give them. So, basically when I looking up you try to lock the directory. So, if you lock

the parent directory, while they look up is going on now the problem for us is that the file

is getting migrated it is coming from tape it takes multiple seconds let us see 5 seconds

whatever or even 50 seconds; that means, that the parent of directory is locked up for that

amount of time. Because if this like the guy was trying to look it up cannot succeed till

the migration has completed.

So, this guy has got a lock on the directory. And so, it keeps hanging there. If suppose

somebody else tries to look up the parent of directory. Then that they also will hang and

if you did just a few of the by sheer bad luck, if all of them tries to opt a slash 4 5 of

them, right. If there is a the depth is only 3 4, let us say and the bad luck. So, migration is

going on and each of the guys some there other 3 or 4 other processes which are looking

up. Those comparison the directory path. And the whole system is essentially can hang

and with whole system because slash is stuck and everybody is stuck now.

So, this kind of things can happen, costly because you are trying to take a lock and a

directory per say. Because a directory has the notion of having those files and they have

to be if you are updating anything you have to take a lock on a directory. Whereas, in this

kind of systems, you are taking a lock on the pathname, not on some directory structure

called directory. And that is why it is slightly easier it will be less problematic, but the

problem with this solution is that you do not you do not have hard or symbolic links.

Basically, because you can not have hard links because, hard link by definition has 2

different names for the same thing; that means, that you have to create a some way of

hashing 2 different names to the same object which is not possible.

So, because you can create arbitrary a hard link. So, there is no arbitrary hash functions

which can map 2 different names to the same thing, with arbitrary pathnames given.

Therefore, you cannot have hard links. So, that means, that the kind of saving etcetera

some kind of savings etcetera that you can do with regular file system are not possible.

But the advantage of that is that your directory now can let us you do not need a

directory per say, only pathnames you actually are locking on a pathname, rather than on

a directories actual directory structure.

(Refer Slide Time: 35:48)

So, basically this so; because you are taking a you are going to have some lock objects,

and your read write. And there is a large namespace with many nodes, and you do not

want to create a read write object is for each one of them. So, this read write lock objects

are located lazily on demand. And if there not in use they are deleted. Again, locks are

always taking in a consistent total order to prevent deadlock they basically standard the

attempt at 2 phase locking kind of models. Ordered first by level in the namespace tree,

next lexicographically within the same level. Basically, is the multiple people walking up

and down the a directory namespace the namespace, you have to always have the notion

that when you lock it you take it in same order. You start from the top go to the next one

etcetera rather than some guys going up and some guys going down. If you do that you

can deadlock situations, that also use there.

(Refer Slide Time: 37:07)

Now, coming to a few other aspects of the system. You also need to handle how to do a

replica placement. Each of the single each of this is where in a let us lot of errors are

there. I am just highlighting some aspects of a they have done. Now there are 100s of

chunk servers and clients spread across many machine racks crossing many network

switches.

So, your how you place your replicas where actually determine how well you perform.

Not only that there are issues like, we have bandwidth going into the rack or out of a

rack. May be much less than the aggregate bandwidth all of all machines then rack. For

example, if you are having something like forty machines on a single rack, or 20

machines. Then it turns out that the bandwidth between them can much higher than if

you are again taking the let us say some network connection out of the rack. That will be

basically the maximum possible the technology at that time for example, when this

people did it because gigabit Ethernet.

So, out of the rack will probably be one gigabit. Where as if we have some 20 or 30

machines these are the with 100 megabit per second. Let us say that is certainly bigger

than the one gigabit connection. So, because of this, your replica placement has to be

managed in such a way that, you maximize data availability and reliability, and also

network bandwidth utilization. And the way they do it is by making sure that this the

chunk replicas are spread across the racks. There is some positive things about this. In

similarly thinks about this first you think about spreading chunk replicas across racks is

that the data survives even if an entire rack damaged or offline. In real big systems

typically, there are many correlated failures. For example, one power supply in spite of

redundancy in work node. The power supply can be problematic and the whole rack

might be powered down.

So, in that case, if you do not spread your chunk replicas across racks, you might lose a

whole the availability is compromised seriously that is why it has to be done across.

Other nice thing about doing this is that if you want to do a read traffic for a to look at

the if you want to do a read for a of a chunk. You have essentially now have the

aggregate bandwidth of multiple racks. You are not actually fighting to get 3 chunk reads

going to the same rack and all of them flowing out of the same connection from the rack

to the client. You basically now have 3 different connections from 3 different racks

which are coming to the client.

So, basically if it is read traffic for a chunk it is actually a good solution. Whereas, for

write traffic it is a problem, because if I want to write to multiple racks, actually I have to

send multiple copies to each other racks. I can not forward it from 1 play one machine

inside the rack to another machine is same rack, I can not do it. So, there is a problem

here with respect to write traffic, but again they have decided there is a proper trade off

to make because they are usually more into heavy reads rather than heavy racks.

Basically, again with the design optimization. Basically, depending on your the way you

are using the file system you have to choose and they have decided that it is better for me

to be able to exploit the aggregate bandwidth of multiple racks for reads then suffer it is

the suffer with respect to write traffic having to make 3 independent writes with different

racks. That will essentially reduce the bandwidth of other things because all the 3 racks

are getting messed up with respect to the format.

(Refer Slide Time: 41:18)

So, there are quite a few other operations that have to be done. When you are doing

chunk creation, you have to think about where to place the chunk for example, right

during chunk creation this is a re replication rebalancing some of example a master

creates a chunk. You have to choose locations for initial empty replicas. Look at the

beginning before there is nothing be returned to the chunk. Somebody let us say is doing

a append. So, you have to figure out where to choose it. So, there are various heuristics

fairly straightforward place new replicas on chunk servers with below average disk space

utilization that is first number, that is one kind of heuristic. At the same time, they want

to ensure that limit number of recent creations on each chunk server. Basically, the issue

is that the creation may be cheap. But if you create too many things just behind it all

kinds of write traffic also will come. Because usually what they have in their kind of

system, if append once read many basically the append once read many workload typical

pattern. And once it has been completely returned, it becomes read heavy.

So, basically the thing is once you the reason why you are creating a chunk is because

somewhere wants to write. Once you are finished writing it, it now starts becoming read

only heavy traffic can start after that. So, that means, that it becomes a likely that if you

create too many of them on the same chunk server. Then there will be 2 much write

traffic going to that particular chunk server and that particular thing might be overload

overloaded.

So, and you also just like before we have mentioned, you spread replicas of a chunk

across racks also. Now this one case master creates a chunk. Then there are similar issues

like master replicate re replicates a chunk for example, it turns out that one chunks of a

dice. So, you wanted 3 copies now there only 2 copies. So, you want to re replicate. So,

that number of available replicas if back to normal.

Now, again there are lot of interesting possibilities. This particular system has certain

policies for doing this. For example, it turns out that there are some chunks which are

blocking client progress. Because they are taking too long they have overloaded. If you

notice this kind of situations, you boost the priority of that chunk. So, that you can have a

new replica for that. That is if you are also lost too many replicas for example, you

wanted have 4 copies, now you may have lost already 2. Then that means, you are lost

more than you expected typical at the most you want to be at the most one away. For

example, 3 or something like that you already lost 2. Then that is becomes very high

priority other thing that want to do is to make sure of the bandwidth is handled properly,

a limit number of active replications in cluster. And in each chunk server you have too

many active replications then that also will have a interfere with actual work that is being

done. Because these things are all basically management operations. You are just so that

your comfort level is good, that I wanted 3 copies and 3 copies. There actually not doing

anything with respect to the actual client request.

So, these management operations can essentially suck away all the bandwidth. So, idea is

to also try to see if we can limit the number of active replications other thing the chunk

server does is it limits replication bandwidth by throttling read request to source chunk

server. So, you want a chunk server also can essentially play a role if it can throttling

read request in case basically the number of replications require to high thus throttling

concept. There is also the system also the master also rebalances replicas again from with

respect to load balancing. Again, here most of ideas are similar to what we already

discussed. Basically, a you want to ensure that there is not too much bandwidth taken up

while you are it balancing etcetera those kind of thinks.

(Refer Slide Time: 46:22)

I already mentioned this a bit where basically this particular file system is slightly

unusual. Because files are deleted lazily and garbage collected on regular file system

scans.

So, all you do is you write down the delete time, and then leave it as leave it, there you

do not delete the file. And interestingly also in the system, they have even if something is

deleted till actual garbage collection. The file that is deleted is available under hidden

name. Again, these have a similar to even nfs for example, when we have the open, but

delete situation, right. The server will actually rename that file with a in accessible name,

right. Which the clients on that particular client which deleted it can actually access.

So, the similar is going on here also. And I am told that you can even rename this hidden

name to the what you need in case you find that. There is a reason why you want to get

back the those kind of user possible one thing they are an interesting thing about this

particular design is that they found eager deletion to be problematic. Basically, because

when you want to delete something, the master has to send delete messages and they

may be lost. And the it may be that the machines also die; that means, that if you think

that you are deleted somewhere strictly pluck off I have told them to do it, but they might

not have done it, all right the master has to keep on thinking about all the type if you do

eager deletion which is a bit of a big overhead.

So, the idea is that why going to that kind situation. You just do it lazily and do it when

you have to anyway scan the file system for the reasons. It could be for many other many

for example, it could be that you are scanning it, because you want to see if any disk

block has gone bad. Normally what happens is that disk suffer from something called

late intervals. So, to catch those things you scan it disk every so often. So, the various

scans a that kind in the system.

So, why not piggyback on those kind of scans, and detect those things that have to be

deleted, because you have marked it as deleted at that time when it is deleted you just a

at the time when a do this can you release it. Of course, this is a problem because this can

be a problem, because if you are very close to the end of your storage availability space

availability. This kind of systems also will create some problem. Because that at the you

have to actually be not lazy about it you have to be active eagerly have on certain things

at that time.

But the reason why eager deletion is problematic is because write errors create garbage

chunks unknown to master. Basically, the chunks are kept by the chunk servers and

certain parts are the disk can suddenly go back. Again, I have mentioned latent secondary

also. And these are not known to the master. So, you need to have some if really you

want to do a eager deletion proper one, right. Then what will happen is that do it then

there will be some chunks which are not known to the master as having deleted

So, because of all these things they have decided that it is best to delete files lazily. Now

they have a similar regular scan of chunk namespace also. The chunk namespace for

example, is kept in the as because each chunk is a Linux file, and you keep various

mappings between chunk identifiers and the chunk file names of the Linux files file

names.

So, basically master identifies orphaned chunks not reachable from any file and erases it

is metadata. So, in their design it turns out a very hard problem called distributed garbage

collection, a it is sorts like the simpler in a simple manner. Basically, because the file to

chunk mappings are kept only by the master. It is an memory actual as I mentioned

earlier as I say discussed earlier, the chunk master is responsible for all the chunks that is

there. And the chunk to file mappings are kept in memory by the master, because once

the chunk server comes on line it sends it all the mappings and then it keeps a

consolidated list of all the file to chunk mappings. And any chunk replica is a Linux file

in designated directory on each chunk server any replica; that is, not known to the master

is garbage. So, that can be deleted.

So, this way they actually solve a slightly tricky problem in a slightly simple manner.

(Refer Slide Time: 51:43)

They also have the issue of a stale replica detection. Replica may becomes stale if chunk

server fails and misses mutations. Therefore, the is something is something called a

chunk version number to distinguish between up to date and stale replicas. Again, this

version number is similar idea what you lot of file systems do if you reuse a inode

number you have a inode generation number, and that is used to figure out if you have

you are reusing a particular inode block.

So, that you do not get into the stale situations. When master grants a new lease on a

chunk, you increment chunk version number informs up to date replicas. Basically, at the

time at chunk is being used for write for example, right. You increment chunk version

number and tell all the up to date replicas, that there is the new version number. Master

and these replicas all log new version number before any client notified and write to

chunk. If a replica is not available it is chunk number will not increase, questionable will

not increase.

So, when this is not available because the chunk server is done. So, when the chunk

server again restarts, and reports it is set of chunks numbers associated numbers it can

figure out stale replica. It is possible that chunk server is done or the master itself can be

done. If the master sees a version number greater than it is own number for the

corresponding chunk. The master assumes that it failed when granting lease. And so,

takes higher version to be up to date. Because it keeps all the information in memory. So,

it has lost it and now it can rebuild it from the chunk servers.

(Refer Slide Time: 53:41)

Now, this particular system has as I discussed earlier has designed in fault tolerance and

diagnosis systematically. But high availability is one aspect data integrates another aspect

and it also has certainly supports lot of diagnostic tools. For high availability what is

important is fast recovery. So, basically clients and servers they make requests the time

out they again reconnect to restarted server and retry that is a normal operation is there

write the way we use a web. We try something that does not work do you retry the think,

right. Because the if the state is minimum then this is very reasonable thing to do and the

servers routinely shut down and just by killing the process.

So, first recovery is one chunk replication chunk replication is another we already

discuss this part. We not discuss this part the master application. Basically, what we have

here is the master keeps also some shadows. These are not mirrors. Mirrors are those in

which exact copies there. These are shadows. What is the shadow? It is got most of the

stuff the master has got, but it is slightly delayed it might be behind by few operations.

So, masters operation log and checkpoints replicated on multiple machines, the shadow

machines. The mutation to state committed only after it is log record flushed to disk

locally and on all master replicas. All the shadows should also get the log, but the it is

only in the log it is not the shadow things do not have the actual only the log is there, but

not the actual data. So, the important thing as we discussed earlier is that one master

process remains in charge of all mutations, as well as background activities such as

garbage collection and that change system internally. Only one master still there. When

master fails restart is almost instant, because you detect the failure and you restart a new

process new master process somewhere else using the replicated operation log.

Essentially the shadows can also be used as a read only is servers. If for bandwidth

purposes this shadows can also be used for getting certain operations done, but they will

be slightly stale. So, the application has to be careful about when it can use the shadows

for because the metadata can be slightly stale. Other thing that this particular design does

is to avoid this stale less problem with metadata in the shadow servers, it tries to track

master by applying log operations as things are coming in it tries to do it also.

(Refer Slide Time: 56:50)

So, there is also data integrity there is taken care of seriously in the system. It has got 32-

bit checksums. If I am sorry 32 bit checksums in memory. And there logged persistently

separate from user data. Now it is impractical to detect corruption by comparing replicas

across chunk servers. An actually chunk server must independently verify integrity of it

is own copy by maintaining checksums. So, each chunks do it. Reason being the replicas

can definitely go become divergent, because it is part of the semantics. Because we

notice that with atomic record appends things can go divergent therefore, each chunks

over should maintains (Refer Time: 57:37) for it is own checksums and checking it.

Again, during idle periods chunk servers scan and verify contents of inactive chunks. We

do not have too much time, but basically, they also have fairly substantial diagnostic

tools, with detailed diagnostic logging. Mostly done asynchronously to avoid

performance what are loss.

So, with this I want to conclude this today’s discussion about GFS.

(Refer Slide Time: 58:03)

I think basically it is GFS when it first came out that probably was the first really large

file system, which had reliability, scalability and availability as core parts of it is design.

And because it was designed with application mind, it avoided the Posix issues. And

therefore, it could scale with the way it had to be scaled. So, I think I will conclude here

with respect to GFS here. In the next class I will briefly talk about what is write some of

the issues of GFS currently as perceived by the designers. And then from there we

proceed to other types of large scale storage designs.

Thank you.

