
Storage Systems
Dr. K. Gopinath

Department of Computer Science and Engineering
Indian Institute of Science, Bangalore

Highly scalable Distributed Filesystems
Lecture – 40

Highly scalable Distributed Filesystems _Part 2: The GFS Model

Welcome again to the NPTEL course on storage systems. In previous class, we started

looking at in the google file system. It is as we discussed before, it is a highly scalable

system, and basically it is geared for performance, scalability, reliability and availability.

(Refer Slide Time: 00:50)

So, is so, we looked at some aspects of the google file system, and we notice that google

file system has a specific idea about how to do things. One of them is that it takes care of

faults in the system quite well, and allows in that it takes care of very well is. It has a

somewhat relaxed consistency model. And the idea are the here also is that you want to

design the applications on (Refer Time: 01:28) file system. So, we are not assuming Posix

file system, we are assuming somewhat different, and for that reason this is the it has got a

relaxed consistency model. So, we will try to understand what this is today.

(Refer Slide Time: 01:41)

So, you notice that somethings have to be atomic for example, if you are doing file

created etcetera, that is you create a file and also it has to be certained with the directory

atomic model. If you do not do this, then it can create lots of complexities. So now, the

file name operations are namespace operations, or done exclusively by the master it is not

done by the clients sorry, by the yeah by the clients. So, you need to guarantee atomicity

and correctness of these operations and this going to be locking. And this particular

design as you mentioned early is a masters there masters and there are clients. So, assume

is about client now basically there is a master, and you have what you call this (Refer

Time: 03:11) this it is a yeah various GFS clients. This (Refer Time: 03:24) that is about

sorry, not well remove the exact terminology.

(Refer Slide Time: 03:22)

So, we will calling a GFS master and GFS client. And basically, the masters operation log

defines a global total order of these operations.

Notice that ordering is an important issue because we discuss ordering sometime in the

past. And what this particular system does is, it defines a global total order and then it is

expected that all the GFS clients also notice this same. So, first well let us define what a

mutations. It is an operation that changes contents or metadata of a chunk. And the types

of mutations that we talked typically talk about a writes or record appends. So, again in

regular file systems, you we were just call everything a write even a appends is called a

write, but in this particular system they have given 2 names, one is a write and a record

append. Write is what?

Write the datas written at in application specified file offset. Whereas, a record append it

is appended automatically at least once even in spite of concurrent mutations, but at

certain offset of the file systems chosen. Again, we discussed last time that we have the

similar to touch and nut situation. Remote that in touch and nut instruction many

concurrent people are trying to improvement something, and each party gets their own

motion of incremented value.

And it is there is no 2 log 2 people will get the same incremented value. Some is similar is

what is going on here. So, there can be multiple appends, each append happens at a

particular offset, and then this also is chosen by GFS. And order is not up to the client.

So, the also returned to the client and marks beginning of the defined region that contains

a record. Now what (Refer Time: 05:52) also is the GFS may insert padding or record

duplicates in between. What is it insert a padding? Because it may turn out the file that is

been; what is being written is going to span chunk boundaries.

When you span chunk boundaries, then it create some complications if you are to proceed

buts you have to do work with proof chunks now. So, that case complications. So, the

idea here is that if it is happens at the right is going to straddle 2 chunks, you do not try to

do it you think that chunk we basically pad it, saying that some based just empty space I

move to a new chunk. That way the logic come to that simpler. The idea is not to work

with complicated things based if there is anything which seems complicated just differ the

problem make it simple and work with it. So, you insert padding in case there is a right

that straddles 2 chunks and work with only a chunk deposit.

Also, there could be some duplicates because of if some error takes place, then you can

detract operation and sometimes there can be duplicates, because of earlier attempts to

write. And this have to be or detected. So, basically the idea here is even if there is

something which is a duplicate, you need to recognize the applications of the application

logic through a library code there figure out these are duplicate. So, again this makes it

first like a simpler design. If you look at a Posix kind of systems you do not have this kind

of options. Posix cannot already this kind of things. Because the application is not is not

been told that this kind of things can happen. Where as in GFS there is the model and the

applications have to figure it out it out. And so, that is why they will actually check for

certain consistency before they proceed.

(Refer Slide Time: 07:57)

So, it is responsible that application. So, if you do this mutations, then the state of the file

after this mutation depends on the kind of thing that happen was it success or failure was

it concurrent. So, GFS they define some terminology, something called consistent and

something called defined. A file region is consistent, if all clients see the same data,

regardless of which replicas they read from; that means, there are always in the same data.

So, inconsistent means they see different data. Usually you have failures that can happen.

So, consistent means all the clients will always see the same data, but this may not be

what really is what you want also what you want is something called defined region. It

means it is consistent and clients see what when attempted to write may it is entirety. So,

in the sense what is happening is that, there will be multiple writers and you are getting

inters persed write from various writes, that will be called an example of a if all of those

things succeed, it will be defined, but it will not be it will be consistent, but not defined.

So, for example, when a mutation succeeds, without interference from concurrent writers,

the region is defined and consistent. So, basically client see a mutation writes in entirety in

a without any break etcetera. Whereas, a concurrent successful limitations leave region

undefined, but consistent. There is all the clients is the same stuff, but they do not see the

write in it is complete entirety that will be interspersed. So, all clients see the same data,

but it may not reflect what anyone mutation has written. Typically fragment some multiple

mutations. Multiple writes are going on concurrent writes and then they can each

everybody see the same data every client, but what is there on the file is written by

different writes in some order, but everybody see the same data. It is not one write

incompletion in completing in one entirety follow over some other write may be (Refer

Time: 10:56).

So, there is a failed mutation, it makes a region inconsistent or undefined. And different

clients may see different data different times. For example, in one let us say that there is

some write go multiple writes are going on. And some write was done, but one replica

could not update it is result is, because it failed at that time. Because it is failed it has the

information of the previous content whatever it was. So, I write has gone to the replicas

properly, but third replica before it could be done might be part of it has been done it died.

And then right now it is possible that there is the proper write in 2 replicas, but partly only

in other replica is that way that (Refer Time: 11:57) we have seen different clients may see

different data at different times.

The one thing is again is in a with this example for cross layer design, and here is that

applications should take control about the situations the semantics whatever the

consistency guarantee where look at the thing and say again this distinguishes from Posix.

But this is manageable because it turns out that mostly in this particular file system

appends are taking place large files are being written there is also ca there is also check

pointing going on.

So, the checkpoint happens; that means, that you are on a very well-defined state. So,

readers can always look at checkpoints and then proceed with that, they do not have to

look at the current updates are going on. So, again this script I think we go through a bit

more carefully. So, the idea basically is that you can have it something consistence means

everybody see the same data, but it is not it may not be defined, it is defined in case a

particular write made it in it is entirety and it is you can see very clearly that this write has

without being interspersed other writes where is if there is a failed mutation. What is

happening is that some clients might see some information at updated because the (Refer

Time: 13:25) chunks are was down and it was now updated when it came up no other

clients can actually in principle you see it (Refer Time: 13:38).

(Refer Slide Time: 13:38)

So, this is a model they I have given in the paper. So, you can have 2 different types of

mutations wtites and record appends. Now if it is a serial either it is a serial write or a

serial record append; that means, one after (Refer Time: 14:01) solve completely serialize

in way, then if it is a success then it is going to be traditional is the normal the defined part

of it. That is most consistent and it is also depend.

Now in the case of record append, the reason why that is there because a required

appends are used as a way to attach something to a file without going through locking.

One of the interesting thing about this design is that that try to avoid things like

distributed lock managers (Refer Time: 14:32) as you notice (Refer Time: 14:35) are

somewhat complex, and they slow down the system called a bit. So, the idea here is just

like in the case of (Refer Time: 14:42) you basically want to allow multiple updates to

happen in parallel. And the way they do it is the without a DLN, you are going to have

concurrent appends going on. And this concurrent appends also can result in a situation

where it is defined, but certain portions of the system of the file contains could be

inconsistent again because of failures.

So, basically what happens is that you can have a record append going on, and some of

the replicas they do not get updated with the append because again the failure kind of

situations. So, they might have different piece of information, because there is

concurrence here see, there is no concurrency here therefore, there is no issue of it being

any other than what has to be (Refer Time: 15:45) case. So, all these things are

concurrent situations. Now this is the serial lock. This one says a serial success, but

actually this required append, because it is essentially trying to give you a concurrent way

of a appending things. That is why these 2 could have the same problems like what

concurrent writes also do.

Now let us look at current what is concurrent you are writing multiple writes. And here

you can have everybody sees the same thing consistent, but it may not be defined in the

sense that what you see on the file is not the write of a single write in it is in it is entirety it

could be partial here and there. So, if this is a failure you can have inconsistency, because

some guy has not some particular replica has not updated it is part of it is got old

information where the other guys have updated it. So, there is that inconsistency is there.

So, again we look a bit more into this exactly how this happens and what are the ways to

resolve the issues. The most important thing to remember is that failure is very clear some

of not updated it there is some old and new mixed up old information and new mixed up.

In the case of serial, it is very clear it is basically only one part is updating it and will see

how we can ensure that every if there are no failures everything happens in the right way.

This is concurrent things then again this can happen because of record appends or it can

happen because of writes unit concurrency. So, what happens is that you retry the

operation, when you retry the operations you might have what happens is that you have

not given the offset the client is not told if it fails right it was told that it is, something has

failed. We do not give them the offset. So, there time to retry them. So, whatever has been

written is actually chunk. So, will have interest because chunk here and there, but finally,

when it succeeds you get the offset, when I get the offset you know where exactly is a

complete write.

So, that is why it is defined here interspersed with some inconsistent information. So, in

the case of this write, you may find that it is consistent, because all of the chunks are

basically written on the same order. Basically, that master actually has a order in which it

is written and all of them actually write in the same order. And that is why it is consistent.

It can be undefined, because the mutation is not written completely. Because if there is

interference, then what will happen is that different writers will write different portions the

file. And therefore, the region may not be completely the what is say the applications can

figure what is going on, but it is not exactly the mutation write in it is completely entirely.

(Refer Slide Time: 19:43)

So, see if you are having many mutations, the mutated file region is guaranteed to be

defined and the contented written by the last mutation.

So, basically what is the way this is guaranteed is by making sure that all the changes to a

chunk are done in the same order on all it is replicas. And that means, that there is some

kind of a primary and the primary decides the order and everybody else follow the same

order. So, it also uses something called chunk version numbers to detect any replica that

has become stale, because it has missed mutations while it is chunk server was down,

because we because there are possibilities of failures. So, replica may become stale

because it has now missed some changes. And to detect these things you have version

numbers, the version numbers will be able to you can be used to figure out this replica

stale.

Again, this similar to again if you look at NFS, you have some notion of what is called

stale file handles there (Refer Time: 21:01) you called new generation numbers, and from

there you can figure out something is stale. Straight different model here, but it is

something similar.

So, one some stale replica is there it is never again involved in a mutation are given to

clients that ask master for chunk locations; that means, once some replica becomes stale

the master will essentially take it off. As something to be given to (Refer Time: 21:32)

stale as to a client. And the idea also is that these stale replicas are a problem and they will

be garbage collector, depending once we will discuss this in next class possible, I am

going through it in detail because this particular design has got lots of interesting let us

from various you know all let us say well known ideas, but they integrated very well. So,

this some garbage collection also going on for those stale replicas that have to be

removed.

So, there is a small problem also just like NFS as client caches chunk locations may reaf

from a stale replica is possible. So, the windows limited again just like in NFS where

windows limited by cache, entries, time out and next open a file. When you open a file

(Refer Time: 22:25) function purges a cache from the cache all the chunk into for that file.

So, if you really want to be (Refer Time: 22:34) about something you just open the file

and make sure everything is cleaned up. So, most files are appendable, I think this again

we mentioned is important part of the design. A stale replica usually returns a premature

end of chunk rather than outdated data. So, basically what is happening is that if you have

a stale replica you are not updated somethings, you have not taken care of certain

updates, because you because the chunks are washed out.

So, usually what happens is that you think that the file is this big actually turns out to be

slightly smaller. So, if this kind of error takes place premature end of chunk. It transfers

some size and it has been not there you get end of end of whatever you can retry the

reader can retry and get the results from get the information on the master about exactly

the character issues. So, the client may actually is a stale replica, but if it so happens that

it tries to do something with it gets another.

And therefore, it can get a current situation correct situation there is also other possibility

that component failures can corrupt or destroy data. So, for example, some chunks others

might have failed, and these chunk servers feeling or detected by heart beating. What is

heart? What the heartbeats? Basically, these are messages sent from a master to other

nodes to figure out if there alive or not. And that is so, identifying failed server is done

through heart beating, but if you did data corruption is handled by checksumming.

So, every 64 another by it is has got a checksum, and it has to match, when you read it

has to match otherwise you know that something is wrong. So, again if there is any

invalid replicas, you need to restore them and they typically I am told happens with 10

minutes. To only why get loose something is if all the replicas are lost. Now important

idea here is that you can determine the unavailable, but you not given corrupt data. Under

all circumstances they try to guarantee that it is possible that you may not have access to

(Refer Time: 25:25) data.

So, the application knows that something it has not worked out, but it can cannot work

with wrong data or corrupted data, that is one thing which they try to guarantee. So, ris

application receive clear errors rather than corrupt data. And it is quite important because

and the scale (Refer Time: 25:40) it is done. And if I write (Refer Time: 25:44) level it

typically finds that there are about, at least about 10 to 100 errors per day. These are what

are called undetected errors if you do not do checksumming and things.

So, if this kind of errors happen in critical part say system then you might get a file system

might get completely inconsistent. So, it is a very serious issue; that is, why at this level

you need to ensure that there is already that disc is already in lots of reed solomon coding

all those things. In addition, you doing checksumming so that these kind of issues are

taking care. And again, one other thing is that the GFS is at happening at the application

level all, right. This guys closer to an application level system. So, the checksum is

happening at close to application; that means, that the checksum is happening with respect

to both discs as well as network. And all that transfer that is happening.

So, this is closer to a n to n design of course, is only at the application level file system

level not at the current level, but anything upto till application wherever it is come from

days network HDS storage and network networking hopes whatever it is right they all get

all the data will be let us say at the end only you check the checksum. So, any error

somewhere in between could be caught. And since there is a application and the file

system working together, the checksumming aspect also in a sense almost at the

application level.

(Refer Slide Time: 27:23)

So, there is some kind of end to end guarantee. So, let just to see how this what is the

kind of applications that you have to design with GFS. First you have to depend on

appends, rather than overwrites. You may depend on check pointing and you have to

depend on writing self-validating self-identifying records. Because things can go bad,

when you write you should write down in such a way that you read the data, and then

figure out what can what has to be done again this happening at the application level it is

not happening yet much lower levels.

So, let us see what are the kinds of issues that appears. What is the typical use of a write,

a writer generates a file from beginning to end atomic at renames a file to permanent name

after writing all data. And why is this talked about basically because the GFS itself is

running on a Linux file system. And so, it might be writing parts of a big file and to

various small files. So, that recovery is easier to something breaks a (Refer Time: 28:44)

recover from right. That is why finally, after you probably might want to take the chunks

and make it to one single whole let us by that atomically rename is sometime may be

(Refer Time: 28:58) after writing all the data.

(Refer Slide Time: 39:03)

And one thing about reason why appends are used extensively is because, appends more

efficient and resilient to application failures than random writes. Why is it more efficient?

For the same reason fetch ended is efficient. So, without fetch ended what happens, every

time you have to some of serialize every person and everybody has to go through locking

right one by one. When fetch ended what happens is that lots of people are concurrently

updating it and everybody gets updated version one round trip. Something here also.

That is why it is more efficient. So, that is not a severe lock manager and it is the file

system takes care of responsibility of taking all the updates and giving it some order. So,

the applications are not aware that they are doing any locking that is very strong point

that is why it is more efficient. And is resilient to application failures than random writes.

So, basically random writes, it turns out have to do read modify write (Refer Time: 30:06)

if you are doing anything in between, you have to do lot of read modify write.

With appends; the issue is slightly simpler, because there is no the read modified circles

are not really necessary. So, we typically uses one writer generating a file from beginning

to end, and append it. Or there could be many writers concurrently append to a file for

merged results or as a producer consumer queue. Now we will go and read your exactly

how the append happens, but the important thing is the recall append guarantees a

following, which says at least append at once it is a preserves now basically each writers

are pretty preserved.

Again, this will look at it pretty similar to in the case of NFS, you have this issue about

what is called at least in a at least once right. Again, that goes back to RPC if you see this

RPC calls, right. In the RPC basically, a semantics either you can say at most once or at

least at least, once at most once means either it is 0 or one time typically in RPC people

try to give you at least one semantics. And NFS is based on at least one semantics; that

means, that you try to do and NFS operation, it is at least done once at least done once.

So, is a problem with I think all of us we have this discussed before with NFS you do at

least once then for non-idempotent operations you get it probably right. So, special

logging has to be done to catch those non-idempotent operations. Here we also have

append at least once, similar to what he saw in RPC’s at least one semantics you have up

append at least one semantics.

So, in the case of NFS, we handle the problem using using logging. Here it is done by

looking at if you see that there is something called self-validating self-identifying records

right. So, basically you write some sequence numbers. And that sequence number tells

you whether this is an extra copy setting of the thing that has been written. So, the

application actually has to understand this things. It actually knows that this kind of things

can happen and has to prove actively handle it; that means, if it leads a chunks it can look

at the some metadata, and nodes know that this part of the file is this part this region is

not this region is undefined. And (Refer Time: 33:03) discard it.

And then there is because at a self-validating self-identifying records, it knows where the

offsets are. So, again a chunk in there will be some information somewhere by which it

can figure out that actual offset is here even though physical aspects something else. So,

that some kind of a this kind of notions are all there. Again, the application has to keep

resonance this that something readers identify or discard extra padding and record

fragments, sorry. Readers identify and discard extra padding, and record fragments using

checksums. So, they have to do this systematically.

So, occasional duplicates and non-idempotent operations readers ignore using unique ids

in records needed to name corresponding application untitled such as web documents. So,

again this an example of an application driven file system, if you have you want to detect

as I mentioned duplicates etcetera, in there are some unique ids and records and these

record these things are basically connected with the application level entities like web

documents. So, basically it will have the information saying there is a web document x

part number 4 etcetera. So, if you see 2 chunks or participate chunk with same part

number 4 they know it is the duplicate. So, just like we number pages if I have duplicate

pages you can figure out that is duplicate we have to do the same thing here also. So, they

so, in a sense you do not do only by offset. You go by the offset and also look at some

metadata and you define that something is a duplicate.

So, the typical use is concurrent writes or single writer, and then there are duplicate. So,

that things you have to handle. Or the other thing we can do is by check pointing.

Periodically checkpoints how much has been successfully written basically when you

doing when lot of concurrent writers are going on appends are going on, because of

possibility that this the thing can be undefined state, right. You want to use only

checkpoint information. The checkpoint essentially is a consistent and defined part of the

file. So, basically if I have a check points it keeps readers from processing successfully

written file data that is still incomplete from application point of view. So, even though it

has successfully written it is inconsistent. Sorry I made a mistake. It is undefined it is

consistent, but undefined.

And readers can be can avoid this kind of situations, they can essentially look at only

things which are defined not necessarily consistent. Of course, other areas of course, the

standard thing advantage of check pointing is that keep something as where you can

restart from where you know last checkpoint it that is basically you can restart

incrementally if I want restart from. This consume very long write very large write, right.

Then it something has broken you go from the check point (Refer Time: 36:17) and these

are logics importance, because it is a very large-scale file system, and you are talking

about multiple gigabytes or terabytes at one go.

So, there is no way to provide atomicity. There is no way to provide atomicity, because

you do not have terabyte, memories there is no way to do it. So, by definition any large

file of that kind we have to break it up into pieces. And write one at a time the minute you

say break it up into pieces then atomicity or the whole thing is not possible. We cannot

guarantee it at all it is not possible. So, you have to handle it. So, application whatever

has checkpoints can include application level checksums.

Readers verify and process only file region up to last checkpoint which is known to be in

the defined state. So, defined means again consistent as well as the way a complete track

has been written. So, all this semantics and how to handle all these things is in the library

code linked to applications. So, I am not clear, but they say that in the paper that except

duplicate removal everything is handled in the library code some of this is not handled I

am not clear. So, this particular design is simple, because it avoids concurrency issues

because the; appends basically take care of without locking it does it.

So, it avoids some other concurrent issues. Because the file system guarantees atomicity

of appends and the consistency is avoided. Because you have a relaxed model you do not

have this stringent const requirements that process will have. So, you basically such that

some other complicated things are there, but the application become slightly more

complex, but the idea is that the library code handles all of it. So, the file application itself

may not have to struggle that much. And according to this paper which again, I am not

very clear that duplicate removal this mat handled by this library code. So, that is the only

thing that the application handle, but that one can be simple, because as I mentioned there

are unique ids in records.

So, as long as this unique id is or something anyway you need to name application

entities. And therefore, if there is a duplicate these unique ids can be used to figure out

that this a duplicate. So, again as I mentioned there is no distributed lock manager

required for this got it. For especially means you have atomic appends. And let us look at

how this because you have multiple replicas, we have to figure out how to apply those

changes to all the pla replicas there has to be some order, how is this decided each

mutation is per performed at all junk replicas, right. Replica by definition should have the

same information like any other replica (Refer Time: 39:26) therefore, any operation that

you do should have at all synchronous. If it is a very large write or the write that straddles

chunks, right. That is there is a write which begins in some one chunk and ends, in some

other chunk that is of the boundary of 64 megabyte. To simplify the system, you break up

the client code. Sorry, it is broken up by the client code, sorry.

The client can breaks up that write so that each write happens to be on the same chunk.

So, one way to do it is by padding. So, basically what it do is padding. So, that the chunk

becomes full. And then you can start with the new chunk. Or of course, you can break up

the write itself. For example, if it is a if padding is not is not efficient, it is not a good

thing to do then you can break up the write itself. So, it uses leases to maintain a

consistent mutation order across replicas. Basic idea here is you have a primary replica,

and the primary decides how the updates are done in which order. So, and basic idea is

that if in case of primary fails, then lease will get broken. Because what is a lease it is for

the master gauge one of the primary chunk servers, right. A certain pre-language it can do

the primary for all the replicas.

And if it does not respond back, or read basically try to get the lease again. It can give the

lease somebody else, or it possible that a primary it has failed. So, because you have the

lease model, even if the primary fails, then it would not reconnect with the master to

remove the release. Therefore, the master can actually give it have it a somebody else.

You do there are it is a different, I think important thing is that it is not acid it is a kind

lock it is take a lock. Then you have to do something you have to have to figure out how

to ensure that the lock is broken which is a bit of problem. Whereas, the lease it is only

(Refer Time: 42:00) of time. If it is not renewed it goes away automatically, and the

master is absolutely that clean with the clear idea it can give it to someone else.

So, master grants a chunk lease to one replica, primary and chunk locations basically what

it does is it grants a chunk lease to one primary, and it also gives you where the chunk

locations are there and these are cached by the client. So, basically what happens is when

you write when you write is requested, we have to find out who was the lease, and where

are chunk locations. And this information is cached by the client. And the client pushes

data to all replicas, and this data is cached. And then all the clients I acked in it, let us look

at a diagram here.

(Refer Slide Time: 42:50)

So, this is a client here just trying to do write. And so, first if it is writing it has to find out

who is the current lease holder if there is one.

So, if there is a current lease holder, then that information is given by that is a primary or

if this none it will take one more the replicas, the chunk server corresponding to that

replica and make it a primary and send it back. And thus, they receive a all the chunk

locations of all the replicas. So, the client must to write. So, first it has to query the

master to figure it out how the primary could be and the primary save the master. Either it

is a lease holder or the primary the master decides who could be the prime primary. And

then all the chunk locations (Refer Time: 43:47) and then as soon as the client gets it

starts pushing it immediately. Now what is that they similar to do in the case of if you

remember we were doing virtual synchrony models. There you notice that are 2 different

things. There is a the some order in which some message goes to nodes, but there is a

delivery order also, the 2 are different.

You get to the information, buffer it somewhere and then that delivery order tells you in

which order it has to be given to the application. Same here also as soon, as we get the

information from the master, about the primary and chunk locations, the client can push

data to those replica chunk servers directly, without waiting for a particular ordering. But

once the data has been pushed out as soon as possible because these are all large files lot

chunks 64 megabyte, that is why the idea is to push it to the clients as quickly as possible.

Replicas chunks as quickly as possible. And then later what happens is once the data is in

all the (Refer Time: 44:57) in all the replica chunk servers, then the write actually write

operation actually the is committed in some case.

We will look at that how that happens. So, client pushes data to all replicas. So,

immediately without waiting for any pertaining or anything of that kind, as soon as if you

have got do the replicas send it out immediately. Basically, is decouple data flow from

control flow to improve performance by scheduling expensive data flow based on

network topology regardless of which chunk server is primary. I can one of the things are

decided in this particular design was that through pot is important very critical. So, the

idea is that there is a control flow, control is what it basically tells you in which order

something has to be updated, but there is also data flow. Which basically tells you how to

move this 64 megabytes or whatever amount of information move across the network.

So, if you want if you are doing big writes, you have to make sure that your network and

is used to the best it doing best possible way. And the idea is that the topology of the

updates.

Should be determined independently from who is a primary. So now, the way this is the

data is updated is based on the network topology, somebody else is deciding. This guy is

near to this guy therefore, you should go through him for example. It might be that the

primary is 2 steps away from the client. Whereas, one of the replicas is only one step

away. So, the way this they do it is they send it to the first replica even though it is not the

primary. And then that replica will actually in term forwarded to the primary.

So, it is not by it is not the pay they you sent to the primary and primary will send it to the

replica even though the replica is nearer. So, this is not a good idea for when you are

transferring a large 64 megabytes chunk (Refer Time: 47:07) or big writes choose writes.

So, that had to decouple the data flow from control flow to improve performance by

scheduling expensive data flow based on network topology regardless of which chunk

server is primary. Now what happens is that. So, at this point the client has already

figured out who the primary and to chunk locations are the data has been pushed to, all

the primary is a secondaries it has been pushed all in. Now that write has not at actually

commenced all that is happened is that whatever that has to be written is now sitting all

the secondaries. And primaries one primary or secondaries. The data is already there.

Now there at actually (Refer Time: 28:04) the acknowledgement happens comes back to

the client saying it has written, these date that had to be written. It has not at made to the

file, this has gone into buffer in some sense. Sometimes LRI buffer is sitting there. That is

all it has gone to. So, once all the auto acknowledgments come back to the client saying

of the data has been written, then the write actually starts, this is part. Then it says the

write command is sent to the primary. Primary picks a serial order for all mutation to

chunk.

Now the primary the client is telling the primary I have sent all the data to everybody, now

you decide the order and actually do the actual write. So, primary picks a serial order for

all mutation to chunk, all replicas follow this order when applying mutations. So, write

acts come back after the data is been transferred to all the secondaries and the primary a

client, now sends a write. A primary now decides order write it has to be that A has to be

done first followed by B etcetera.

Sorry I made a mistake. There are multiple chunk writes are going on. And those that is

what is being ordered, sorry I made a mistake. So, you are having multiple writes

concurrent writes are going on, and you are ordering them, and each of those secondaries

will actually of try those updates in the same order. So, everybody every client will

actually see all the updates in the same order. That is basically what it is. And this is

possible because all the datas already sitting there. This like in the case of our group

communication systems, right. In the virtual synchrony model.

There is a messages are sent, they are going to be let us say buffered, and then based on

the ordering model weather is total order or it is causal order, then those messages are

given the order that is specified by that model something you assume that it is happens

here. So, and then once the secondaries have been told to write, then they will again

respond by saying that I am done, that is what this is. And once the primary is done, the

primary get acts from all the secondaries that they have done updates of the chunks, then

the primary again comes back to the client saying (Refer Time: 50:41).

Now, this can incorporate either done or something happened bad here, that is going to be

an error. Out here there as you can have. So, all the replicas follow this order when

applying mutations. What there can be errors? Basically, write may have succeeded at the

primary and some subset of secondary replicas. If they does not succeed at the primary

cell the whole thing is off, that is the obvious case. So, it may have happened at the

primary, but a few of the secondaries not everywhere modified region. Left in an

inconsistent state, that is the reason why you mentioned that it can be inconsistent

because some places have the new information completely some have partly old

informations some have partly old information that is why it is inconsistent modified

region left in an inconsistent. So, client code handles such errors by retrying failed

mutation.

So, the client was the party who initiated the write it again tries to write data. So, what is

the what is the model here? The minute there is an error because only some party

succeeded in doing it you can retry the whole thing again. You it maybe because some

data could not make it. So, it tried re sending a data or it could be because some other

errors. So, if you e even after re sending data if it does not succeed, then you retry write

from beginning. Because initially how did with they started they started with a client write

that is where we started. And you it could have been broken up for (Refer Time: 52:37) of

reasons. So, you are doing one thing at a time, and then again if they are unable to

continue, because of repeated errors right. Who try and see if you can start a new write.

So, the file region may end up containing fragments from different clients, but replicas

identical. So, our basic problem is that because of some of the errors, right it may contain

fragments on different clients, but the you do not report success until all of them act back

same definition writing it. So, the that is why the replicas are identical. So, region maybe

consistent that is everybody say same information. But undefined state in the case of

failures this will not even be consistent, it could be inconsistent. So, here is the case when

you talking about concurrent writes happening in which make the file region in undefined

state. So, basically the global mutation order is this chosen by the lease grant order

chosen by master. So, it tells you who actually gets a lease. Therefore, that decides the

order, and within a lease serial numbers assigned by the primary because of primary

decides which order each of those mutations have to take place that serial numbers here.

So, basically if you have multiple concurrent writes, the way the master gives the lease

decides who actually that started. And then within the release the primary orders various

updates various mutations, and then that same order is followed by all the secondaries.

So, the 2 levels at which things are attempted to be controlled is been with respect to

order.

(Refer Slide Time: 55:07)

So, I think I will continue next with in next class I will try to finish the rest of the google

file system. There is lot more things about this management, then issues about garbage

collection, and how to handle failures. Those things these kind of things also issues. So,

we will talk about all this later. And hopefully we are done by next class, will be done.

Thank you.

