
Storage Systems
Dr. K. Gopinath

Department of Computer Science and Engineering
Indian Institute of Science, Bangalore

Theoretical Foundations
Lecture – 36

Theoretical foundations of Distributed Storage systems_Part 5: Basic concepts of
Message Ordering, Ordering Models for Storage Systems

(Refer Slide Time: 00:50)

Welcome again to this NPTEL course on storage systems. In the previous class, we were

looking at aspects relating to virtual synchrony and we are trying to figure out how to

order failure events with respect to other events in the system. Now, I briefly started

looking at ordering semantics with respect to messages last time. So, basically there are

issues regarding how to order failure events with respect to messages and across message

themselves they are two aspects. So, we covered the first part of it in the virtual

synchrony model now we will take a look at the ordering of messages among themselves

when they going to be delivered. So, I think I have went through a few of them last time

and then other no ordering semantics at all or there could be FIFO semantics in which

the process either broadcast or multicast can before m prime no correct process delivers

m prime before m.

So, basically it is clear that processes is doing both of them m and m prime. Therefore, in

every process that survives it should not be the case at m prime goes is delivered before

m. And this will take care of obvious problems that we have seen before I think we

mentioned something about in a email system, you will find that a responds to a message

comes earlier than the message itself that is kind of stuff you want to avoid. Or in the

case of the crickets scores, you essentially guarantee that if it is FIFO you have more or

less saying that the scores increase monotonically rather than go upon come down, so

this things were avoided with FIFO.

What about for causal if broadcast or a multicast at m precedes m prime no correct

process delivers m prime before m. Now, the solution of precedence I think last time we

mentioned that there is a way to order events in a distribution system that is due to

Lamport. And basically it is a event through it a bit last time basically all its says is that

if for example, a process executes e and f in that order then e is before f than e proceeds f

either that. Or we are talking about messages in a system, so if e is the broadcast or

multicast of some message m and we look at the delivery of m at some other process

then we can say that e is before f, e proceeds m because e has been centrally are

therefore, it can be delivered. An obvious reason why e has to be before f or there is a

transitive closure where we are saying that e is before h and h is before f, therefore, you

can say e is before f.

So, basically if it is causal, in case if cast of m precedes m prime then you want to make

sure that no correct process delivers m prime before m with respect to total basically here

what we are trying to do is we want to order all the processes somehow. So, what choice

is if at a correct process p m delivered before m prime when m will be delivered before

m prime at all destinations they have in common. So, if m is delivered before m prime at

a process p, then it should be at all destinations m should be delivered before m prime

these are total ordering it is a very strict and for a sometimes unnecessary illustration, but

this is one model.

(Refer Slide Time: 05:04)

So, let us take look at an example. You see this is some messages m 0, there is some

message m 1, there is some message m 2. Now, m 0 does a multicast A and B. And you

notice that the message m 0 comes to A at this point in time; and then B in turn does a

multicast to C and D. Now, in some sense you can say that this event I seen from A it is

later than this one. Now, the sync is this may be causally related to A or may not be they

can this could be something and come this completely independent, but our distribution

system not having this applications semantics or higher level knowledge as long as

finding out whether this is actually independent of this. All we can say is that as a

process landing at A, we know that this happens later than A.

So, a safe assumption is that this is somehow connected with this, it may not be true in

principle in all cases, but it is a safe assumption it is a conservative assumption. So, what

you want to ensure is that if you look at m 1, you want ensure that that deliveries of C

and D should be causally order with respect to deliveries of A and B. Example here you

notice that a followed by this therefore, C should be definitely later than A and D should

be definitely later than A. If there is a system it does not guarantee this then they are not

causally related. There is something else m 2 which has no connection with m 0 because

notice that the only way I can say that m 0 is may be causally related to m 1 sorry m 1 is

causally related to m 0 is because there is one common place A where I can see that this

one is definitely earlier than this. If there is no such thing then I cannot really figure out

what is going on.

For example, this m 2 goes to C and B, and there is no way in which I can say that for

example, here I see this is before this here I can say that I cannot really order this with

respect to what is happening at A. And C is the event happened here for sending it out I

cannot really put m 2 m correspondence with respect to other itself before or after there

is m 0. Now, if I am thinking about total order you will look at B, suppose my timeline is

like this m 2, suppose has been delivered at B before m 0 at B. Suppose I extent this

particular message multicast to C also, then if m 0 also deliver to C, then should later

than m 2 (Refer Time: 08:35) because in this case it turns out that m 2 was delivered

before m 0. Here you can say that m 2 has come before m 0 at the therefore, if m 0

happens to be also it is a multicast it to C it should be later than that of m 2 because m 2

has come is before m 0 and B. So, in the sense it has to be a global ordering.

Like in all this cases also these ordering can also be let us say divide in two types

whether it is weak or strong and it is corresponds to whether things are dynamically

uniform or not. As I mentioned before in dynamic uniform, you look at those processes

which may be involved in it, but they die in between. So, we are saying that we want to

guarantee those things with respect to those process also, then it is dynamically uniform.

If it only talking about guaranteeing this with respect to only surviving process is then

that will be a weaker model or a non dynamically uniform model.

(Refer Slide Time: 10:10)

Now, when we talk about this precedes relationship, there is a way to order events in the

system and a semantics Lamport is defined it. And the formal notation comes from the

notion of what is called logical clocks. And basically what we do is we associate a

counter with each process and message in system. Let us say that at process p there is a

logical time p it is a counter correspond to that. And L T m is the logical time of message

m suppose. There is a new event, what can do the new event it could be because the

process p got a message or it doing something else. Suppose, it got a message then what

you do is you look at the message and see its timestamp logical timestamp.

So, because it just received the message and if it is so turns out my current notion of time

is smaller than the notion of the time as seen by the message that are just received. Then

I tell myself anything that I do in the future has to be later than the message that I got

therefore, that has to be my current notion of current time is going to be the most recent

event that of this message plus 1 that is what is basically I am updating my notion of

clock. Similarly, it so happens that I have done many more other things after a particular

message has been received I just have to increment my own time plot by one. Here I put

greater than equal to it is just technical thing because simultaneity in a distributed system

is essentially impossible, so but in case it happens you can still do this.

So, if it is not because of the message is because any other event I can also increment my

clock. So, this is how I keep track of the time events in that system and every event has

got a counter sorry every event has a number which basically is a current logical time;

and then in every new event, I have to do something about increment in that clock. So, it

is basically logical clock. Now, this kind of system works well if you have that is a

number of process is that keep on changing with good time is dynamic, the number of

process is in system is dynamic. So, it is a very general model, but it turns out that there

is a more accurate clock as possible with static number of processes is called a vector

clock.

And if you are looking at something like causal models, this vector clocks are quite

useful that is say for example, many implementations of causal ordering use vector

clocks, because by definition in a group communication system, you are going to be

managing membership. Since you are managing membership you exactly know how

many processes are there during for that epoc before the view changes. Therefore, we

can assume that between failures events definitely there has to be fixed number of

processes. Therefore, you can use a more accurate clock the vector clock when we look

at the vector clock.

(Refer Slide Time: 14:00)

What is a vector clock is a vector of counters one per process in set. Basically if there is

an event e, what are vector time corresponded event, what it is basically is for each

process in vector it essentially tells me how many events occur in that process causally

prior to e when e occurred. For example, suppose there is a message m and I say it is 4

comma 5 comma 6. What is it mean; that means, that there is the message m is let us say

has that it has been sent and basically an event has been received at this process p that

means, that four events happened causally prior to sending of m a process p, 5 at q and 6

at r. Essentially we have a fairly a detailed information about what all happened at each

place each of the nodes p, q, r.

But we look at logical one it is all gets put into one counter because we do not have that

discrimination. So, I can essentially make final distinctions with a vector clock then I can

do with a logical clock. So, for example, I can know for example, that my for example,

the number of events causally preceding some event at my place has not changed where

as if in a logical clock it will be a different number because other events and I cannot

configure it out, whereas here I can figure it out. So, suppose I has a notation V T p and

VT m these are the vector times associated with process p and m with process p and

message m.

I also have another notation V T of p as I mentioned this one per process in set V T of p

means it is a entry in vector corresponding to process p. So, this bracket thing issue the

entry corresponding process p whereas, this events are different vector clocks vector time

sorry these are different two vector times. So, each of them might will have some vector

corresponding to that fixed set of processes.

Now, how do I update a vector clock? Suppose, I am at process p, my vector time is this

V T p, I am going to do some event right now. I want to label that particular event with

some vector time. What do I do, because I am at process p I just increment the

corresponding entry for process p, I say V T of p equal to V T of p plus 1. Whereas, if I

get a message from somewhere else and basically say V T of p equal to max of V T of p

commit because it may be later than where I am right now. So, I am at a particular point I

am not doing anything right now and I get the message from somewhere else.

So, I have to assign a particular time for the event that the message has been received by

me delivered to me that means, it has to be connected with either the most recent time I

have or the most recent time has as reported by the message itself, but what is incoming

message. And since this is a vector we have to do the a entry by entry max that is what

we have to do because this is our vectors. So, max is basically there are so many entries

of fixed set of entries and we have to do max of each one of them. So, this vector clocks

give you lot more precision in terms of the exactly the kind of things are going on the

system. Again just to remind you basically if you took at a vector time, it basically says

for each process in the vector how many events are occurred in that other process

causally prior to when e occurred, so that gives you fairly good view of what is going on

a system. And you can use that to determine which is before which is after.

So, again if you are designing the causally ordered thing, we have to do this vector

clocks if you and then because any way as I mentioned in a group commit system you

know how many process where there so therefore, vector clocks are definitely feasible.

And then we can figure out what things are let us say causally ordered, and then when

you do the delivery you look at the times or the vector clocks and decide whether to do it

or not. If it is causally or depending on the vector clocks, you can figure out whether it is

which order it is coming and then do the appropriate delivery.

(Refer Slide Time: 19:22)

So, now the important thing to notice is that the lot of orthogonal choices in your design

of this kind of system messaging systems. For example, the atomicity a failure atomicity

for example, does not specify delivery order. And also we want to ensure that the

delivery order for example, could be FIFO causal or total. It can be uniform or not

uniform basically you are deciding to say whether some whether you have concerned

about processes that fail or not basically I want correct processes or not correct

processes, so various possibilities. It can even be timed by as I mentioned earlier that

synchronization is very difficult, but it is possible that you can design protocols with

time also into an account. Basically if you have some kind of timeouts and then you can

decide whether a particular multicast or broad cast has be timed out because not received

in particular amount of time. So, various choices are there and different designers have

decide play around with various aspects of this.

And each one of them has certain difficulties for example, dynamically uniform is for

more difficult, similarly causal requires you to keep set of vector, timestamps that is

more difficult than for example, if you do not have any delivery order of specified

etcetera. So, this also requires some kind of synchronization, so one to gets a various

levels of difficulty in all these models.

(Refer Slide Time: 21:14)

Now, let me just mention that this causal model actually can be sometimes misleading.

So, one has to be careful you have to see exactly what its capabilities are for example,

consider a replicated database and we have two copies of bank account on two sites.

Now, it is possible that I have multiple operations going on. What is the first one doing

first one says deposits 20 units of currency. So, what is equivalent of that I have to

multicast add 22 x, but. So, this one user is doing this.

But bank independently add some fixed point time it can add interest every so often and

says multicast add ten percent to x. What is that these two things are not causally related

the fact that I am depositing 20 it is not connected with bank add in interest. But what is

a big problem the problem is depending on when I do this right I can get different results.

For example, if I do at 10 percent x before I do this I will get one result, if I do this first

followed that 10 percent I can definite do that right. So, this things are not causally

related, but if you do it in different order, so you can get different is also. So, what is the

understanding that you have to have its not specified by this causal model, because this

an application level understanding, the system has not given us enough information to

decide what is to be done. So, it can happen any order. So, you cannot guaranteed

anything.

There has been a big controversy in this virtual synchrony models and those people

working at application levels as I mentioned this whole year as full of controversies from

with respect to mathematical models with respect to whether this virtual synchrony

should be done at which level should be done at the application level, should be done at

the system level etcetera. So, depending on all this things we have different results we do

at system levels often time we do not have a application level inside. So, you may not

able to do anything you might think it is not causal related. And we go ahead and do it

and might get different results depending on which one actually happens.

The other issues similar to this if you take a look at let us say that we have two entities P

and Q. P is publishing certain values it is computing, it is basically it is a published

subscribed paradigm. So, P is publishing this various values and Q is picking up this

values and it is computing some value. Now, because Q is receiving you can actually go

with a causal model because once x 0 has been published definitely Q will get it, and

because there is a message between P and Q. Therefore, this will be causally connected

and therefore, you can guarantee that f of X 0 is basically come receive the after X of 0

that you can guarantee. But our problem is that you may not able to figure out which one

is which. See this you may think that X 0, X 1, v of for example, I want to operate and

therefore, x 0, but it may be that I can actually take X 1 and compute and think that it is

connected with the first one, whereas actually it is connected with the second one.

So, the thing that is correspondence between the value that has been published which are

coming on a stream and what I do with it they might be not causally connected. So, if

you want to do that you need to have additional information which says that this is a first

value this is a second value etcetera, the causal ordering does not itself give you that.

Again this is related to the fact that we do not have application level inside into what is

going on and all I can do is I see values and I am doing f of something. So, this protocols

have to be carefully constructed, so that this kind of confusions do not occur. And now

any problem is our system level we do not have this kind of application or information.

So, you really may not be able too much. So, if I concerned about those semantics, which

are depend on such things we have to take control at higher levels it can be done at lower

levels.

(Refer Slide Time: 26:22)

So, with that I want to start moving to a slightly different topic. So, we are looking at

how to order events. And we are talking about how things can fail at the messaging level

I want to start thinking about what happens in case I do it at the storage level. We

previously looked at NFS model and because of the way does caching, it was not going

to be completely consistent. So, now, let us take an example of a different type of file

system the echo distributed file system that tries to be giving you good semantics as far

as possible close to unique semantics posix semantics. As I mentioned clustering kind of

file systems are basically these essentially same as this distributed file systems which

give you posix semantics.

Now let us see how this particular design was attempted exactly what we are try to do

what kind of ordering that they wanted to put in and how this if you are thinking in terms

of is virtual synchrony models. How they could actually be used here and why storage

itself act somewhat with the types of issues into the picture. So, we will try to look into

some of these things. So, what is echo distributed file system, it has got replication. So,

were many servers and we want disks are implicated, servers are replicated it is got a

caching as an important part of its design. But it wants to guarantee single copy

equivalent. Now, these are different from NFS because NFS has a semi looser notion

therefore, it cannot really guarantee this single copy equivalence.

Other thing it has got global naming again this is defers from NFS essentially it has got a

single system view. We notice that in NFS depending on very mount the file system you

get different names for a same thing, whereas here you want to have a single system

view, so that global naming also is an important aspect of this particular system. Again

there is an important is that, if I writing applications you look for a particular file in the

application and it has been mounted somewhere else then their application will fail.

Whereas, if you have a global naming that does not matter if you always be at the same

place. So, it is slightly easier thing to work with when you have global naming which is

not there in NFS. They also want to look into distributed security. Now, we will not

spend much time on this part of it here.

So, what is the one of the most important thing they did was what is called coherent

write back caches for both files and directories through ordered write behind. So, again

this is where ordering comes in. So, what is the write behind, it is basically something

which is written back out of fixed amount of time. I think as I mentioned earlier in many

file systems you have various models you have what is called synchronous models where

you going write it. The application waits till the write has been committed only when it

comes back and says it is done, it will proceeds that is a synchronous model. And it is

quite slow because you are actually going to be suffering displacency which is going to

be considerable compare to what CPUs and memories can work the speed at with they

can work at.

This other model is a synchronous model where you say something more relaxed model.

What do you do is you go to the storage system and say please store it for me, but

knowing fully it is going to take a long time, I do not want to wait till the completion. All

I am guarantees it that the request has been queued, but I hoping that I am extremely

optimized I am just basically saying it will get done sometime that is basically what is

the model of asynchronous. I take the table to queue it, but I will not wait for it to

complete I just go back and do something else that is the synchronous model.

Then another ones call delayed writes, which is basically the write behind. Delayed

writes is basically I do not even queue to the disk I leave it in memory and I hope that

someone or whether system or because some other reasons, all the stuff which I have

written and made duty in the memory it actually gets written back to memory in some

fashion. I am just hoping what other parties to flush it to disk, so this is basically these

also write behind. Now, what is a issue with write behind, the write behind essentially if

you it is not ordered then something which got dirtied much later can get flush to disk

and then we can suffer a crash and in the previous write which now made into disk may

not there in. Sometimes you have there is a inconsistent version of the system of the file

in the system.

So, I want to do ordering of if I can do ordering of write behind then I can do something

reasonable that is one thing which this particular echo file system attempts to do. So,

again this particular system as got a large caches then this things are suppose to be

completely transparent except one fault and caches that is even that is a cache problem

system except when there is a problem. And as I mentioned earlier this particular design

tries to avoid certain drawbacks such as incoherent caches like NFS. NFS also does some

close on sync that is whatever file is closely caches to disk, but it does not do the same

thing with respect to directories, we also look at this open file problem. If it is deleted, I

think we mentioned that NFS has a certain work around for this problem, but this is not

complete in all aspects. So, the other issues in NFS which has to be handled and so this

particular model tries to do this.

(Refer Slide Time: 33:16)

Let us see what they have do. So, again if you able to do this they have a particular

model basically file system data changed only the write that is logically done at distinct

point in them that means, even if it is done over a period of time, you can logically see it

has been done at a precisely one single point in time. So, it is essentially similar to what

we discussed in the case of serializability in databases or when it comes to the closely

synchronous model or message delivery we can this also tries to do something similar.

So, from the same reason if a fault occurs, this causes certain writes to be discarded

again this undone at a distinct point in time, so that you can reason about it without too

much trouble. So, again when there is a network partition we have a block or you are told

that there is a time out similar to NFS hard and soft models. So, there is a read operation

system and there are write operation system. So, see it is roughly the model of echo.

(Refer Slide Time: 34:45)

And we will like to exactly start modeling as facilitating to the ordering of writes. So, if

you want to keep the file system consistent, then if you going to drop some writes

because as I mentioned because of faults because of faults some rights can be discarded

because they are sitting in memory system. And we are saying that it is undone at a

distinct point in time and we do not want any inconsistent results. Basically in some

sense it should look as of time is also progressing in a forward direction, it is not look as

though time has moved backwards for some operations, but it is something done and

something has moved forward.

Those kind of inconsistence should not happen so that is why I need to do ordering and

ensure that it consistent way of flushing writes to stable storage has to happen; for

example, this one of the condition some of the condition that we have to satisfy, write

requested by one client and observed by another. So, basically if that is a case is already

the observed by another that means that it has to be stable. The minute I request write to

be done and it has been seen by somebody else. Now, I cannot just living it in the

memory and is it there is power failure I can just drop it because that has been observed

by somebody else observed, because this party who is not me has actually seen it before

that means, I should definitely be stable, so that if somebody else looks for its also

available.

So, this is one critical thing. Write on same subject should be stable in logical order. So,

if it is I am writing to the same object they should also become stable in same order,

again this also is related to what cache also requires. Cache also requires that if I send

multiple writes in some order they should get committed in the disk in the same order

that also easier. Now, only thing that they try to relax is respect to overwrites.

What are overwrites, basically I am not increasing size of the file, so that the file. For

example, take megabytes and I am always writing inside that 8 megabytes I can I am not

really extending the 8 megabytes. So, if there are multiple writes somewhat for example,

1 megabytes, somewhat 4 megabytes, somewhat 5 per kilobyte or set of some multiple

blocks, then it can be reorder as an optimization.

So, this is one thing they are willing to relax. So, in this particular file system, they

decided that this is not something critical. There is in being, but if you do not want to

relax taking other quantizes across multiple files is because you might use of files in a

way to know when to order events in the system. Whereas, doing it on the same file is

often times not the common idiom it is not done that much that is why this not they have

decided that this is that can be relaxed.

And that is even why they have this particular motion that over write is basically failure

atomic, it is only one block is modified. Again why this is the case because notice that if

you want to do overwrites, it is basically a read modified write you have to read it update

it and then flush it back to disk. If you are going to have this reordering as an

optimization, then you cannot really guarantee failure transitivity which is not possible

that is why these two things are connected. Now, the other thing that they have in mind is

some ordering operations fsync is quite well known it basically is a command that can be

given by application level to synchronize the file contents which are sitting in memory it

can be flush to disk that is f sync. So, it is possible to do it on directories and files, so that

when it become stable means it is sitting on persistence storage like disk.

In addition to this they are something called forder, because notice that fsync is only on

particular directory or file at a time, but suppose I am interested in constraining order of

multiple files at the multiple directories. I want to specify the order in which some

particular operation takes place on certain files then forder can be used, and this is

something which is not there in posix. Fsync is there is posix, but further is something

which is there. So, that you can essentially satisfy this conditions various design aspects

about coherent write back cache etcetera for this things you need forder. So, this is

something is a new thing it is not part of a posix.

So, other thing that is different what infsync and forder is fsync basically you wait till it

is committed to disk; that means, it is a synchronized operation. And only reason why it

is called fsync is because it is f synchronous. We are sure that at the end of it we have

done it. Whereas, forder it constrains ordering of write, but it returns immediately unlike

fsync. Basically this is yes telling you what order should be where intimating to the file

system that please take this, please flush in this order it is not a we are not waiting for it

to do it, we are just telling it whatever you do keep track of this. And in the future if I am

going to flush it please make sure this happens and it has to be in spite of whatever

crashes whatever is happened is that of follow this order that is all I am telling you. I am

instructing the files include.

For example, suppose I say forder f 1, f 2 etcetera then basically this f 1 f 2 etcetera,

etcetera they are logically performed before any operations after these have to be done

before any operation that come after it. Now, reason why this important is that consider

for example, a rename operation. Rename is a fairly complex operation for a file system

angle, because what are they doing in rename, this is the source, this is the target and

basically what we are saying is that I am going to graft this tree at this place that means,

it is a whole trees getting move from one place to another place. That means, we are

going to modify the directory a, directory b, a slash f b slash f. As a basic these are all

actually they are more than that, but and simply state we can say it is equivalent before

operations and if you are operating at four different places on the disk, we have to ensure

some model by which in spite of failures, it is being something reasonable.

Semantics is slightly complicated either you can do the following. We can say that I keep

track of the way it is happening in case a crash when I come back up again I remember

where exactly I was and I redo the rest of the thing that I did not complete that is one

model which is typically followed by file systems. Or I can say that I do something and

then when a machine crashes I undo whatever I done so far. Now, since file system

usually do not have extremely long running transactions, it is simpler to go with redo

models.

So, for redoing I need to have some information about the way I have to flush this into

disk and that is what forder can be use as a way to tell it which way it has to be done. So,

and this can be arbitrarily complicated because this tree etcetera can be arbitrary

complex. So, the standard way it can be done is for transactional models and most

general in file systems do this kind of operations using some log, and idea is instead of

using a log can I do forder. Forder also can constrains ordering something has to be

flushed. And some of this things are also used in some commercial file systems similar to

forder. For example, if you look at the b s d file system, flush file system they use

equivalent of forder. There is a particular scheme in that system by which all the buffers

which are dirty we keep track of the dependencies and then you when you flushing it you

look at it dependencies and then you actually flush them in that particular order.

So, in a sense b s b file system has some notion of order, but it is it is not available at the

application level because you notice that fsync is a available application level and so is

forder. Whereas, what b s b is doing is done it in the common level it is not really it is not

available at the user level as at to constrains that means, that they have to do some

specific things on top of this. So, it is basically slightly less elegant solution than having

something is forder.

(Refer Slide Time: 45:06)

So, let us look at further details. So, in this echo model, you need to have two things one

is data dependency and one is the ordering in which stable writes are going. Again what

is a stable write a stable write is one which is persistent in disk, this persistent it means it

cannot be we cannot go back it has been once it has been equivalent of committing to

disk. And both these things are required because basically what is happening is that there

is something in memory, something in disk and you want to carry the contents of the

memory to disk in a particular sensible order, so that is why I am keeping track of data

dependencies. And also keeping track of how things have been ordered in the disk. It is a

partial order because sometime there is no ordering required it can be go in any order, but

sometimes are require a particular order that is why there are two relationship and then

let us see exactly what they are doing.

So, it turns out this partial order for stable writes is a subset of data dependencies it has

to be because if it is not dependent then you can do it in any order. So, if it has to be

order in particular way, it is because there is a reason why several things are going in a

particular order that is why you are going to have the stable writes the order in one way

and data dependencies are going to be a superset of this particular set of things that has to

be done. And these two things are transitive.

And just look at some of the conditions they have imposed. If o 1 their dependent o 2, so

what is it mean it means that o 2 is dependent on o 1. So, o 1 first and o 2 is later. o 1 is a

write and o 1 o 2 have an operand in common, o 1 performed logical before o 2, o 1 not

discarded when o 2 performed. That means, that you take the distribution system and if

somebody says o 2 has been performed then o 1 cannot be discarded that is even if it is

sitting in memory whatever it is you have to some of flush in some particular order in a

such a way that o 1 in no circumstances will ever be discarded, the minute to say o 2 is

performed. Because o 1 is prior to o 2 and there is a data dependency is there.

If o 1 there is a partial order with respect to o 1 and o 2, what is this saying if this is a

case only o 1 is or let us say o 2 depends on o 1, o 1 and o 2 are writes, but not

overwrites. So, what are we saying here, we are saying that if you are going to do

something because these two are writes, I am trying to ensure that if o 1 goes to disk then

o 2 could be discarded, we are not really saying o 2 should be the fact that o 1 has gone

does not mean that o 2 has to be also be (Refer Time: 49:04) does not matter. This one

already saying is that there is a order in which these two have to become stable that is all

it says. They already have a connection with respect to the dependence, but I am also

telling it how it should happen in the case I flush to disk.

What about this if o 1 followed by this arrow o 2, o 1 discarded implies o 2 discarded.

So, this is opposite of this, basically in case what did I saying this is basically o 1 should

be if in case I am going to make things stable then if it is turns out that o 1 has been

discarded that means, o 2 should also be discarded, this another condition. Now, if o 2 is

dependent on o 1 and o 1 and o 2 on different clients, o 1 stable when o 2 performed. So,

if operation o 2 is done on a different client, I also have to make sure that o 1 is stable, so

that other parties also can notice it. So, if it is not stable then I cannot guarantee that o 2

is performed that o 1 can actually crash that write to operation cut the node on which o 1

was done can crash and then there is no way to do that is what o 1 has to be stable .

Now, if o 1 in terms of ordering for stable writes if o 1 is has to be made stable before o 2

then if o 2 is stable that means, o 1 has to be stable and if fsync of f successful, f is stable

now. So, you have various rules of this kind which is basically tell you how you should

structure your flushing of disks. There is also as I mentioned earlier is also forder also is

there. And this also will tell you if it is logically performed that means, it has to be made

stable in which order has to be done. Now, you can use both forder and fsync and fsync

will be heavy handed approach, if your file system is able to use forder if it has got that

motion then the application level ordering through forder can be used while the file

system to decide which order should flush it and then while keeping all this in mind.

So, the basic condition is a following is that if we have a partial order for stable write

you have to ensure that it happens in that particular order. The data dependency is

basically just tells you what is let us say what is dependency of one operation or other it

does not say anything about what will happen on failures, it does not say anything.

Whereas, this one says what should be done with respect to the flushing with other

failures, so that is why we need these two notions. And what we are doing here in all this

when we describing all this things is to take care of the situation where you will only

have the writes in the way this particular order has been specified. We want to make sure

that they all flush to this in this particular order and using this you can come up with

models for things like the following.

For example, when we talk of rename etcetera we can actually sit and workout like

exactly what the application or the let us say the application high level application has to

specify and that can be used to ensure that this really happens. Unfortunately this forder

is not really part of the current API and posix. So, what you have to do is to do fsync has

able to order things. So, it is turns out to be for more let us say costing. In future when

we have things like flush storage and other kinds of flush storage it probably I think that

will be lot more concurrent activity in the storage system, I think at that time probably

people will probably start designing API s which correspond to think like forder and that

might actually make lot more parallelism possible.

Currently the reason why it is not done is the number of disks is quite small typically.

And the need for parallelism across the multiple disk is not that very high it is there in

big databases and some other systems. But in most systems the number of disk are rather

small, therefore we do not have this particular need to figure it out how to have some

partial order, so that many things can be flush to disk can relax orders. And only those

syncs that need to be order in the particular they can be specified and then flush to in that

particular order. So, I think with storage class memories are etcetera what will happen is

that this lot more let us say subdivisions in that storage system which can be run in

parallel. And then I think all these things were also I think I suspect that this part of the

storage system will get essentially new APIs, so that this can be done at effective.

I think I will continue next class based on this particular model. I will show examples of

how rename etcetera can be done with this particular set of operations.

