
Storage Systems
Dr. K. Gopinath

Department of Computer Science and Engineering
Indian Institute of Science, Bangalore

Theoretical foundations
Lecture – 33

Theoretical foundations of Distributed Storage systems _ Part 2: Commit Protocols
continued, Paxos Algorithm for the Consensus problem

Welcome again to the NPTEL course on storage systems. In the previous class, we

started looking at some problems relating to commit protocols, and we looked at 2 phase

commit and 3 phase commit. Again to refresh a memory we had also try to understand

the difference between commit protocols verses consensus protocols. So, we started

looking at commit protocols. So, I will just briefly try to summarize 2 phase and 3 phase,

especially as why they have the problem that we discussed.

(Refer Slide Time: 01:08)

If you look at 2 phase, we mention that it gets into a blocking situation. Why is it

happening? We just quickly look at it one more time.

(Refer Slide Time: 01:25)

So, this look at 2 phase commit, you will see that after this point it is all preparation. All

this while we just preparing to do something; the only time when we actually do, when

you really make some movement, least at this point.

See when we get ready from all, we have we decide that. Now I can actually make the

move; that is previously that sort of uncertain not clear what is going to happen, but now

it is all clear, I am going to make a move. So, this is a critical point in some case. Now

similarly when you look at 3 phase commit.

(Refer Slide Time: 02:07)

You try to avoid that situation that is why you get into a pre commit situation. In the 2

phase commit we actually do this flushing of your, the coordinator flushes his state,

unless no need to go back. Here what he has done is, he decides. I cannot really do it

right away, because I am get into a blocking situation. So, he say, I am going to see how

this situation develops, how I am going to do it. I am going to tell everybody what I am

going to do. Again I will look at one more time in a slide different way. So, that we see

the difference between the 2 situations ok.

So, I mentioned before in 2 phase commit, we get ready t from all, then you commit.

Again just let us understand what commitments. Again as I mentioned 2 phase commit

and 3 phase commit are connected with those kinds of systems, for which there is

persistent state. These are distributed persistence or distributed a basis or etcetera. So, in

each party has done something they have some state, that has to be flush to disc. So, this

actually means, what exactly are meaning by this. They flush the transaction and commit

the state, and then only we send the message. As I mentioned before, you cannot send the

message first followed by commit; otherwise in the coordinator could crash in between.

And you already inform that you are doing it, but you are unable to flush it to disc, your

state; that is why it always has to be flush the transaction; that is to make it is stable on a

stable storage, and commit a state. You made a irrevocable step you taken, then only you

send the message. So, the other part is know, what you, that all you did something. Other

part is better follow what I am going, what I am doing. So, basic issue is that, if I have

committed it cannot be unrolled, because all the, let us say buffers etcetera have been

taken back etcetera. So, there is no way to go back, they have committed. You cannot be

delivering too much. If you keep doing it, you get into a. At some point you have to etch

a make a transition. So, this is the place where it is happens. So, our problem is that

having committed, before I send the message I can also still crash.

So, because that happen nobody really knows what the coordinated it; that is why get

into the blocked ratio. I hope this part of it is clear. And basically next thing is from your

f l p result. Remember the result which I mentioned about the Fischer Lynch Paterson

result. What is it say, in a distribute system consensus is not possible, even its one cortex

processor; that is a drastic statement of the theorem. And basically this is what exactly

that is why the f l p result applies here. So, you have to commit then only you can send

the message, but it is possible that after having sent them committed yourself nobody

knows what he did; that is why you have the f l p results of applying in this case. Now

what is situated with this 3 phase commit? Here I do not want to get into situation here.

So, what I want to do is. I want to sort of tell myself. I do not want to flush the

transaction and commit the state to avoid 2 phase commit block ok.

I want to avoid this one. So, what I am going to do. I am instead inform others and what I

plan to do, a coordinator is slightly wanting to, not taken any chances or getting block.

So, it is trying to inform us. So, now, what happens is that if you take this particular

stance, unfortunately gets stuck into the 2 general scan of problem. What is this problem,

as you as I mentioned before, what is this particular problem. There are 2 generals, in

between them there is a enemy. And both the generals have to coordinate to attack then at

the same time, otherwise they will lose. Now our problem is that any messages etcetera

that have to be sent, have to go through enemy territory, and the messages can be lost

etcetera, and there is no solutions to this problem. Now we can see why this is the case,

because now we can map the coordinator to one general, and all next others to second

general. Now because of this you are not flush your state.

And we are trying to make the 2 parties agree, before the coordinator flushes his state.

Essentially you have stuck into this 2 general problem you have. There is no way to

escape from this. So, the only escape we have is one engineering point of view, we can

say a optimistically try to solve the 2 generals problem, till someone succeed, send the

since I am not lie. I am correct, but I am not lie. Here I am blocking. Here also I am

consistent, but I block. Here I instead of blocking I keep trying things. I am at you might

say I am in a I am blocked here, but I am here could be in a live block situation. Keep on

trying new things, things do not work out and I keep on trying. So, the way I can do it is

by having a leader election, to try new coordinators, I keep trying it will someway; I

succeed ok.

Of course from this you can see there are 2 problems; one is that the leader election is

stumbling block, because if you look at it what is the leader election all about, it is all

about trying to figure out who is the leader. Again it is since it is since is similar to our

commit problem. Only thing is that you may has slightly lesser stringent conditions for

this part. So, again we will notice one interesting thing about 3 phase commit, as I

mentioned earlier.

(Refer Slide Time: 08:22)

When we are talking about the difference between atomic commit and consensus. We

also mentioned the following; atomic commits attainable only under assumption that the

process failures are benign. Basically because every party in the proto coordinate they

have some state that has to be carried forward in case they commit.

If you have any, does not end failures; that means, that you really cannot do this atomic

commit, just not possible. So, there are situations where when I am talking about things

like; leader election right. Here when I am doing it taking leader election, I do not really

necessarily have some kind of state that has to be kept forward. I do not have to save it.

For example, I do not have to flush this kind of state then I am doing leader election. So,

in one can argue that this is slightly simpler than atomic commit, because I do not have

some state, persistence state that has to be made persistent, as part of its protocol in case

I agree on something. So, in a sense you can see the atomic commit; finally, you can

devolve to the consistency protocol as a sub protocol inside it. And this kind of stuff is

also important in other context. For example, if I am a, there is a storage system.

And I need to keep a replicas, multiple replicas, and there are 2 types of there are 2

messages I send, and I have to send it to 2 sets of replicas, and it is important for me that

all the messages are send; a sets of messages has send they are receive the same order in

which I have sent, to each are the replicas sites. So, here also there is some problem

relating to, how to make sure that all of them agree that all the message have been

received, and the same order it was sent out. So, this things do not have a persistence

state as part of the problem phase solved. In case it does not happened, you can restart

again, you can retry one more time it is not a problem. So, it turns out consensus problem

is have a slightly simpler aspect to it, if things fail you can retry ok.

But in the case of atomic commit kind of situations, you really have to flush the state that

has been accumulated as part of your, whatever transaction you are doing. So, it is

slightly different problem. So, what we will do is, now we will start looking at instead of

looking at, a kind of commit protocols for which persistence state is so important. We

will try to look at closer to consistence kind of problems.

(Refer Slide Time: 11:19)

And one important such solution is, called Paxos. So, you will try to look at this

particular problem, and this was solved by famous computer scientist Leslie Lamport

Leslie Lamport. It was also solved the other parties previous to this, but here a very

colorful way of talking about it. So, I think divot Paxos etcetera have stuck, but 2 or 3

other researches also have come with single solutions before.

So, let us look at what this particular algorithm is about. You have clients, proposers,

acceptors and learners. Clients are those which are waiting for some. For example some

resource which is shed in multiple parties. For example, somebody wants a right wlock

in a distributed file system. Since is a right wlock only one party should be allowed to be

given this permission. So, clients of those who request, this kind of requests. And we do

not care who actually gets the request, as long as its only one person guess. Again this is

example of mutual exclusion and. So, clients make request some mutual exclusion, and

they wait for response. Then we have a set of proposers, who attempt to figure out who

should be given access to the wlock for example,. So, that the party who should get it is

the value for example, if 5 people are waiting for it you can say number 5 or number 2.

ok.

So, proposers are basically the parties there will be a few of the proposers, essentially the

reason why a multiple proposers is that. In case there is a failure of proposers. The other

proposers who know that this particular request has been made, you have proposers. So,

that you remember that request has been made, even if some other proposers die, and

they try to figure out what value should be decided upon. So, there are 5 people waiting

to get a light right wlock, you should say one of them gets it, we do not care who, but

one of them should get it and by collecting acceptances from a majority of acceptors ok.

So, proposers are saying what value should be proposed, and there will be a majority of.

There will be acceptors, who will essentially access, its fine to go with 4 5 whatever. And

then once it has been accepted, it is possible that there other failures in system, and you

cannot remember what really happened, and that is basically rectified by learners. And

the learners are basically the party who are some kind of replicated information

somehow, so, that the clients can get the information. So, it is a more, like very general

model. Often time many of this things are collocated, but for the proposers service thing

we can assume, that are various types of inter stating system, clients makes request,

proposers solve. Remember what kind of request have been made.

So, that even if there is only single proposer, it might you can dies it is a problems. So,

that is why there are multiple proposers. Acceptors are the parties who actually have

some state, and they will try to remember what happened in the past also. Proposers will

not have any state; persistence state, but acceptors will have. So, in case something has

been decided in the past, they can look up the state and say yes, this particular thing was

asked from bad stuff happened, but I still know what happened in the past, I can provide

that that is why this guys are state; persistence state. And learners are the parties who

actually can, this some kind of replication of that information about what of actually

agreed upon. So, only one proposal can get votes of majority the acceptors. So,

essentially there is some kind of quorum here. Here I am talking of majority, but it can be

some type of quorum ok.

Some of problem is that, if you look at it; what are the problem in the previous case.

What you are trying to do was, to do a leader election. Suppose it is a leader election is

stumbling block. So, instead of doing leader election, I basically say let anybody start it,

does not matter who I do not try to go through leader election algorithm, but say I will

say anybody who sees that something is stuck, he can proceed, he is not going to do a

leader election; that is a basic thing that Paxos does. So, essentially what you have to do

is, when there are more than multiple parties who suddenly say that I see some problem,

let me start a new round, or saying that let us the value be at this particular, I am going to

restart the protocols so that any value can be decided ok.

So, if there are multiple proposals, they turns out that you can wait for each other, and

therefore, there can be some situations simulated deadlock as I say. So, to break those

things, you can, proposer can effectively restart a protocol, by if you see that the previous

proposals, previous attempts to negotiate a value, were not making headway than you

can just drop them and restart it. And if in the past some acceptors have decided some

values, and those values cannot get the majority. If it is, if really clear that those values

will not get majority, then you can ask the acceptors to flush their state, and to start a

new round, and then try to see that they can come to a new consensus again. So, this is a

high level idea about what is being done. Essentially it is slightly different from Paxos.

Sorry slightly different from 3 phase commit protocols in multiple ways; one is that,

commit protocols, there is an issue about state that has to be flushed, persistence state ok.

Which is critical as part as part of the, let us say as part of the protocol. Here we need to

have persistence state only to decide upon the value, but we do not care about what value

we actually pick up. In case something does not work out, I am willing to go with a new

value, it does not matter. Whereas, in the commit protocols I cannot do that for example,

if a hotel has been booked, and we are trying to proceed that what hotel are booked is

important, I cannot just like that drop it. Unless there is no agreement at all then we have

to drop it. If somebody try to [mo/move] move forward and they already said that this

particular hotel is important, you cannot drop it. So, it is some difference in the 2 types of

problems. So, here what we are doing is, we can have without going through leader

election, we try to restart the protocol again.

And one way to do it, is by making sure that, if any intermediate if in the past some

people have decided on some particular values, if you can show that, those values cannot

be accepted by majority, then it is easy to drop them there, is basically the idea um.

(Refer Slide Time: 19:21)

So, again this, I am going to do it in slightly 2 or 3 attempts to make sure this is very

clear. So, I will. Firstly, I take a high level idea. So, before taking a vote, a proposer

checks by sending a prepare n message to all acceptors, n is a proposal number. In the

sense one can say it is like let process 5 get the lock. Let note number get particular lock

number something, thus this is the proposal ok that is a proposal.

So, basically there are various proposals in the system, it will be more atomically

increasing let us say. And acceptors responds to the promise never to accept any proposal

with a number less than n. So, basically idea is that, older proposal do not get suddenly

ratified. There are some dormant or dead person protocol, dead proposals this should not

be accepted. So, basically some guys proposing, some n, and there are various acceptors,

who will, if they accept this particular n, they will basically say that I am going to

whatever I have done in the past, I will make sure that I do not accept anything less than

n ok; that is, I will, its somehow, because of reason why I have this problem is, that there

could be multiple proposers doing at the same time ok.

So, they might be sending something else also. So, their number might be less than n. So,

in which case, I am going to promise saying that I will not accept those. And then in

addition, since he has got persistence storage, in case in the past, he accepted a proposal.

He will send the highest number proposal that the acceptor has accepted. So, the

proposer can substitute this value for its own in case previous value was in fact, rectified.

So, our problem is that, some new guys has come in, he is trying to propose some value,

but it turned out that in some previous situation, a value actually was proposed and plus

accepted by a majority, but before it could be, let us say communicate it to everybody,

the proposal in sort of died. So, know. So, thing is that in some sense, the majority was

found, but the presiding officer died or something of that kind ok.

So, now if that is a case, a new presiding officers comes in. He sees that he is able to

figure out by talking to most of the people, but in fact, some particular thing was already

accepted. So, if the acceptors sends back what proposal number that was accepted in the

past, then the proposal can see if the majority actually got it, in which case you can say

this is a proposing a new value, I will take whatever was accepted in the past. Again we

will go through it one more time to make sure that this is clear. So, if the proposer

receives a response from majority of the acceptors, the proposer then does a second

phase of voting which sends it, where it sends an accept n comma v to all acceptors and

wins if it receives a majority of votes. Again let us go through one more time, what

exactly I am doing. First of all we have a proposer whose sends a prepare n message as I

mentioned the important thing is, if you look at 3 phase commit.

You are basically, the way you are trying to make progress there is, to solve a leader

election problem, but this itself seems to be, as they recalled as a consensus problem

itself, this is does not simply and simpler. So, idea is to, instead of devolving to leader

election, you try to do you, let people propose without worrying too much about if other

proposal are there. In the case of 3 phase commit, you do not do that because there is

state that has to be saved. So, it is a slightly different problem; that is why it makes same

3 phase commit to, try to go through leader election. So, a prosper, he sends a prepare n

message to all acceptors, and then acceptor, he either responds with the promise, never to

accept any proposal with a number less than n; that is, he is basically saying that, I was

involved in something in the past, things did not work out.

So, now you got, you have come around and said I have a new proposal. See nothing in

the past whatever I know about, has not worked, I am going to accept yours, but I am

also going to say, that it is true that, have not heard from anybody whether the previous

proposal got accepted or not. I dint accept, but I do not know whether have any majority,

I could not figure it out so, but I accepted. So, I am going to tell you what I accepted,

what number I accepted. Why is this going on? This is because possible that, he has

accepted a older value, but he never heard about the factors accepted, the majority

actually was there, but somehow all kinds of failures happened, multiple failures

happened, he never heard about it. So, that is why he is taking a stands so that, a new

thing has come to me, I am going to accept it, but the same time I am going to tell you,

that I was involved in some previous round.

Where I accepted this thing, but I do not know what really happen to it. So, now, the

proposal here, he receive a response of majority of acceptors, then the proposer does the

second phase of voting, where it sends accept n comma v. To all acceptors and wins if it

receives. Basically what happens is that if all the guys in the majority, they all say that,

we all part of an old round, we all accepted this guy, because that somehow we never

heard what happened after that. So, this proposal here from everybody, saying that there

also majority. In fact, one who know it a proposal, then this proposer has to take that

value and send it back, send it out. If in case it was there is no majority, then he is fill to

propose a new value v. Is this clear. So, this have a roughly the idea. So, we will. So,

what are safety properties that Paxos guarantees? First is, it is non trivial. What is it

mean? It means that only proposed value can be learned ok.

(Refer Slide Time: 26:13)

It is trivial in case is everybody says always zero or 1 ok, its a trivial thing. So, its not

one of those things. Consistency, at most one value can be learned; that is 2 different

learners cannot learn different values, very critical. These are absolutely critical thing

called distributed files systems, and distributed databases another kinds of systems which

require mutual exclusion sometimes or of. So, consistency is very important. Liveness a

value c have been proposed, then eventually learner l will some value. So, if sufficient

processors remain non faulty. Again there you can see that there is an eventual thing out

here again that is why it is did not like, it is not a, Liveness is not guaranteed here. So,

essentially if what we will talking about right now is that, eventually there will be some

value that will be finally, accepted is sufficient process remain non faulty; that is when.

So, again we have going back to saying that, we cannot really guarantee like this, but we

will if we get to long enough it will happen, this is basically what we say.

(Refer Slide Time: 27:47)

.

So, again I will go through in some more detail to see exactly what is going on. There are

various versions of Paxos, and we are going now talk about the basic version. For

efficiency sake we can do lot more additional things, but we will look at basic one. So,

every time we run this basic Paxos, we can say that each instance of this basic Paxos

decides single output value again this is, like a consensus, basically with sort of

consensus. So, here we have a quorum of acceptance. So, proposer, there are multiple

proposers, and they has to be a quorum acceptors. Typically quorum can be majority, and

why this is important. If you have a majority; that means, is that, its always a case that 2

majorities will always have somebody in common. If we take 2 majorities, that has to be

somebody in common ok.

That is how information leaks from one round to another round. Without this particular

aspect we really do not have any guarantees. So, if you have a quorum, then the basic

idea is that, in case something was committed in the previous rounds, then 2 quorums

will have a common party. See there is a common party, when a new proposal comes

along, then that information is going to, go back to the new proposer; that in fact,

something was committed in the past ok. So, basically this has got 2 phases; phase one

and phase two. Again this is a somewhat similar to what we saw in 2 phase commit or 3

phase commit. I think is looking closer to, its elaboration of the 3 phase commit 3 phase

kind of model. In phase one there is a proposer p, let us we can also often called leaders.

Leader sends a prepare message proposal n ok.

And important that the p should know that he cannot be sending any message which has

a same number as previously I send, has to be greater than any previous one send by p

himself to q, basically its sending it to quorum of acceptors. So, that the bunch of people

who are there he is going to send it to them. Now once it has gone there to the quorum

acceptors. Now it is a turn of the quorum acceptors to promise something. What are they

promising? If the number n that has been received in this round, is greater than any

previous proposal received from any proposer by an acceptor, then acceptor must return

a promise to ignore all future proposals less than n. Again we discuss it before it is

basically that there are concurrent proposers now. So, what it is means is that. This

particular acceptor was involved in something in the past, and he is going to now

promise that he is not going to accept.

If he accept this particular promise; that means, he is not going to, he is going to ignore

all other future proposal that could come, because they can be delayed. See various they

could be. The assumptions here is extremely general, the messages can be duplicated, it

can be delayed, can be arbitrary delayed, dropped all kinds of things. So, some previous

proposal could come to me now, and that number could be smaller than the one which I

have ok. So, the next acceptors must return promise to ignore all future proposals. Again

you can notice this is similar to in 3 phase commit. The pre commit phase is basically

some kind of a promise, it is basically promising to everybody else, that I am ready to go

forward, I want to flush, but I am going to form to all of you guys, that I have agreed, but

until I hear from you I will not flush; that is a basically false, something similar is going

on here. If an acceptors accepted a proposal previously, it must include previous proposal

number and its value in its response ok.

So, now what is happened is that. Again as you discuss before. If this acceptor actually

was part of a previous round, and he had actually said I am going to accept it, but he is

somehow has not heard about how it progress in the past. He just not heard anything

after that. Then it is possible that, by sure let us say sort of circumstances the. Actually

that particular previous thing around actually succeeded and they agreed upon it, it is just

that, I did not I know how it again; that is it one might has to include previous proposal

number and its value in its response. Otherwise the acceptor can ignore the received

proposal, previous drop it on the floor, does not have to do anything ok.

(Refer Slide Time: 33:13)

So, this is second part, but then the set third would be accept request. If p receives that is

a proposal receives, enough promises from q, it needs to set a value to its proposal you

get it. The question is what value ok.

So, there is enough quorum, now in a quorum. So, it needs to set of value to its proposal.

Any acceptors in q had previously accepted any proposals, p must set value to that of the

highest proposal number reported by q. If none in q had accepted any then p may choose

any value. This one is easy if none q had accepted any then p may choose any value, that

perfectly fine, because there is no nobody recognize the acceptors. So, if any acceptors in

q had previously accepted proposals, p must set value. Basically it turned out that there

was a quorum actually for some previous value, then it is duty bound to put that value. In

that case it either puts that value, or the one it is; it selected, because nobody, there is no

quorum for any previous values, it sends an accept request to q with value.

 In 2 b basically now the proposer has actually send an accept request n with the value,

then all the acceptors they. If they receive a accept request it accept it, if it has not

already promise to only consider proposal greater than n. So, notice that, it must accept it

if an only it is not already promised only consider proposal greater than n. So, again it is

a n wlock in aspect, like what we saw in phase 2 phase 1 b. So, if it accepts then you

have to send the value v, you can accept message to p and every learner. Else you can

again drop the request, completely basic noted. So, the roughly the access algorithm,

basically the rounds fail, when multiple proposers are there and they send conflicting

prepare messages, and there all. They get inter first each of his request, and each party

can decide that, I cannot I do not want to be the part of this round. So, then the rounds

fail for a reason, because there not enough people to agree on a particular value ok.

So, you basically have to restart the round with a higher proposal number. What is just

thing about this is that, this particular protocol, it was survive any failures from here.

Whether it is proposers, acceptors, it does not matter who fails, how this fails does not

matter at all, it can actually survive those things, because it guarantees that it is if you

have particular value has been decided upon, the majority of people, that will be picked

up again. There is a consistency condition is guaranteed. And this is very critical because

in a if you are talking about locking situation are mutual expression situations, the

consistency acceptors are critical; otherwise we have, we can have in consistency

system, but the basic problem here is that, once you have this kind of system, is no

longer guarantee like this again; that is again an issue.

(Refer Slide Time: 36:58)

I have taken some diagrams from Wikipedia where it gives us say. So, we will look at

quickly some of these cases. This is a client which wants particular service, it will

mention that. If you look at Google, there are something called a chubby service, these

basically the clients, these are guys are making what is a equivalent of chubby codes.

These are basically making request like that, give me that particular lock, give me that

particular value that all of us agree upon; that is what this is. So, proposers, there is one

proposer who hears this request, they could multiple of this guys. This particular hears it,

and is tells the acceptors right. I am going to propose a value one. Do you guys all agree.

So, it is basically is in prepare one, and all this parties, now say promise one and they

have not seen anything in the past. There not been in a part of any round, for some

rounds has happen so far back in time, that everything has been become quotient.

So, we will say null in that case, this nothing there. So, we will basically saying that, I

promise that I will, let us say I am basically saying that I am willing to go ahead with

(Refer Time:38:30) proposer, and I do not have any previous things that have, all being

part of. And once all this messages go back, the proposal in turns says. Now that I got all

right responses from all 3 of you guys. I will send and accept showing that has

proportional number one. It will value which I decided. Again here proposer which has

eigenvalue v. We cannot any of this guy, because they all sent null .And then once I get

that again the acceptors now essentially handshake back, saying that we accept what you

propose. Here is a basically comment say accept, it is basically we are saying yes we

accept, and the null is basically keep track of the information.

So, that in case it request, it can be responded to back to the client ok. This is roughly the

outline of the sequence, in case the first one itself is successful. So, very obvious case,

but what we really have to worry is, what happens in the proposer does something and

dies somewhere, somewhere here, or some acceptors dies somewhere or the learners die

etcetera. We have to figure out what are happens. Here I am not go through all the cases I

am just going to go through few of them.

(Refer Slide Time: 39:52)

So, let us look at a case where this a failure of acceptor. It is also simple case, but we say

quorum size is 2 acceptors. Similarly here also client makes a request, and then proposer

proposes a number one as a proposal number. Since it all the acceptors, and it turns out

that one of the acceptors dies, but there is a quorum still, because it is a quorum and both

this parties basically say that, I was not involved in any previous round, I have value null

right. I am willing to go with your proposal number one ok.

That is why this is, and the proposal finally, sends back saying I decided the value v for

you, take it that is what this is. And here basically what is happening is that the acceptors

now having got the value v they basically saying that they are sending saying that yes I

solve a value v, I am going to take v as the value, and acknowledging it. And no once are

there to be able to relay information back to client. So, that in spite of whatever happens

here, one of this there is some called additional levels of redundancy or application here.

(Refer Slide Time: 41:26)

This essentially it is consider the information back to client. This is again is a simple case

what about, the failure after doing something he dies. Again same story, clients makes a

request x as prepare one, and then all the parties here, they all say the promise saying

that, yes I heard you they were not part of any other previous round.

So, we will go with your proposal, with proposal number one. So, this send it back, but

while this trying to send thing back, he dies. So, basically what happens is that, this part

is do not get this value, whatever was accepted ok. So, what he was initiating, it was

trying to say accept 1 v a, but somehow it did not get through. So, because this particular

proposal die, you can have some other proposal, come in the picture, who were seen that

some of there is something not in this system. We do not care when it comes up, how it

comes it can be anything. He decides to, say that I have a new proposal prepare to, and

this is similar to what happen in the previous case. So, here I will list this; Wikipedia

article talks about the re election, but it can be actually concurrent this actually can be

somewhere concurrent.

(Refer Slide Time: 43:25)

Because this guy can decide to, arbitrary decide something is working somewhere, and

decide. Some will come to that kind of situation, where there are multiple proposers

operating at the same time. You can also have slightly more complicated situations. This

one is slightly more involved. Here what happens is that, just like previously this client

make a proposal, he says prepare one, and all this parties have basically saying yes I am

ready to go with you, but this leader fails, the newer comes in, he starts the new protocol

again, saying prepare to. And he sends all the second part, because all this guys are not

heard about what happen to the proposal number one, when you say any proposal, they

decide we will go with this new guy; that is what they doing here promise to null, null,

null, because they dint accept anything. So, far ok this is promised that. So, ok.

So, they send back this particular promise. Now the old leader can recover, and he can

try to, because he knew about one. So, it is going to try two, but it says prepare for two,

then on this acceptors they can send an, saying that we no longer comfortable what you

are proposing. So, that is what this is the new acknowledgment, and then the only, the

tries what did I do. So, now, the, only the tries 3. So, prepare 3 is sent out. Now again

these parties, this acceptors I am not sending progress with respect to 2 also for some

reason. So, they will now say, I saw a 3, but now I will no longer accept anything kind of

two, because there is not going anywhere. So, it is now says I am promising, to see if 3

can be made to go forward; that is what this is, and now the new leader came in now it is

a accept, but if this is accept.

Because this guys already said, that they are trying to see how the proportional number 3

is going to fair right. They cannot accept what the new leader has proposed after the first

leader died. So, that is why there is a lack again here, and the new leader tries 4 and it is

a prepare 4 for some reason. I can prepare 3 was not going anywhere, they will probably

decide to go with round 3. So, you can actually have the situation where multiple

proposers keep on overtaking each other, and it might not really converge that is

possible, but in point in case that is a minute, there is any convergence and majority have

the guys agree on a value.

Because of the quorum kind of property even if one party agrees on right, the other the

any new quorum that starts, they will know about that particular value. It is a same

principle that is formed in committees. If you look at a government system will find out

lot of committees in variably, there is always few one or 2 parties always common to

certain, multiple committees, and because of that what happens is that, any decision

taken in one committee this always known to other committees also, this is a part of the

way most governmental systems work.

(Refer Slide Time: 46:51)

So, let us this again summarize Paxos, is run by set of proposers they are highly non

deterministic, they can start any time they like and without persistent storage, but guide a

set of acceptors, this parties have or determines persistence storage, that survives crashes,

because they have to remember.

What they were doing sometime in the past. If for example, they were part of particular

proposal and that agreed to commit the particular value right. If you agree on particular

value they had remember what were do. So, that that is why they need persistence

storage. What is interesting about this is correct, no matter how many simultaneous

proposers there are, and no matter how often proposers acceptors fail and recover, how

slow they are or how many messages are lost delayed or duplicated, it is a very

interesting property its non trivial. What is important also is a terminates this particular

protocol. If there is a single proposer for a long enough time during which the leader can

talk to majority of proposers twice. Again you can see why this twice because we look at

the phase one and phase 2 we need at least twice. Again if you remember the time d

synchronous model we talk briefly mentioned, there also the model is that, it is mostly

stable and once in a while unstable ok.

So, single if it is stable enough then you can get something, you can get forward progress

again at. So, on the similar is going on here also, may not terminate if there are always

too many proposers, guaranteed termination is say anyway not possible ok.

(Refer Slide Time: 48:25)

So, it turns out it can be something slightly better, if you want looking for liveness, you

can combine Paxos with a; that is called as sloppy timeout based algorithm for choosing

a single leader. So, the basic idea is that, if you are able to choose the single leader, then

that particular persons value can be make to stick; that is basic idea. The sloppy

algorithm leaves us no leader for more, or more than one leader at a time, because a

partitions etcetera it is possible, that there can be more than one leader ok.

So, for that reason it may not terminate, but if the sloppy algorithm ever produces a

single leader for long enough, the algorithm will terminate, no matter how messy things

were earlier. For example, in example the sloppy algorithm for choosing a single leader

(Refer Time:49:25) suppose the proposers have clocks max time to send, receive and

process a message known. Suppose we know this values, then every potential leader that

is, up broadcast its name. Now a proposer becomes a leader, one round trip after doing a

broadcast, unless it has received a broadcast of a bigger name basically what it is doing

is, everybody broadcast, and then because it knows about the max time to send, receive

and process messages known. It decides after one round trip, that it is a leader. So,

mostly the things were reasonable in the system, only one guy will ruling, because

everybody is following this protocol.

That it has if it has received a broadcast of a bigger name it is says, I am not anyway I

cannot be the leader. So, the biggest guy wins, but if so happens is that there is some

network problems and what not, or the system is very unstable, then multiple parties can

believe that within, because I have some kind of max timeout right, have some max

amount of time here. I can decide that I am not heard anything bigger than my name

therefore, I become a leader. While it turns out that multiple parties can come to that

conclusion.

And so therefore, again you have a situation with multiple proposers with multiple and

they need to have to dwell it out, but if the system is reasonably stable, then only one of

them are essentially win, and you can proceed. So, in a sense you can slightly make it

easier, instead of the completely, proper situation with the Paxos, where anybody can

propose any time. If you use this sloppy method, you can essentially try is this system is

reasonably in a sense it is state, with a too many failures, it will actually very good. So,

this kind of algorithms are used, in many large scale storage systems, and as I mentioned

Google has in therefore the various clients, they have a locking service, which I am told

these are Paxos we connect.

So, many other various other large scale persistence or web scale systems also used,

Paxos kind of models and. So, I think I will conclude here today, and I will continue with

a similar set of problems, but no close to what is called group communication systems,

where you have to order the messages, and this again is quite critical for storage systems,

because they might want to keep some material term which is consistent amongst

multiple notes, and they have to exchange messages to come to that consensus, and it

turns out that if messages sent out, going different orders for 2 different SMS I send.

Then they could be some confusion about what really happened on their receiving side.

So, there is an important aspect in last case storage system figure out how to do, reliable

message delivery so that multiple messages I send, they going in the same order, or

similar types of constraint exceptions have to be guaranteed on the receiving side.

And we look at that one we will again connect that particular problem, to the kind of

problems we saw before, either commit or consensus kind of problems.

