
Storage Systems
Dr. K. Gopinath

Department of Computer Science and Engineering
Indian Institute of Science, Bangalore

Design Factors
Lecture - 31

Design of Large-Scale distributed Storage Systems_Part 2: How current Storage APIs
like POSIX/NFS/S3/Zookeeper handle

Locking/Synchronization/Commit/Consensus Problems, ACID Vs. BASE Models,
Commit & Consensus Problems defined, Relation between Atomic Commit &

Consensus

(Refer Slide Time: 00:14)

Welcome again to the NPTEL course on storage systems. In the previous class, we were

trying to understand why it is not easy to get the kind of consistency in storage systems,

basically because we have to solve some coordination problems and, in this coordination,

problems have inherent difficulty in the context of failures. So, we looked at some of the

issues for example, we briefly looked at the 2 generals problems which is looked at the

(Refer Slide Time: 00:58)

Kind of problems that will be there with. I just mentioned something about the FLP result and

then the fact that you cannot even have a reliable communication in the face of crashes. So,

various interesting results are there which basically show

(Refer Slide Time: 01:14)

That there are some problems. We also looked at briefly at the cap theorem which basically

tells you that certain things are not possible that is,

For example, you cannot have consistency availability and tolerance to partitions at the same

time.

(Refer Slide Time: 01:29)

So, I also briefly mentioned about the kind of differences that exists between file systems and

databases, because files systems usually do not have application level information. So, they

can only attempt to be consistent at their own in their own data structures and their database

typically has much more information application.

Therefore, they can do something better. So, I think we also try to briefly look at some issues

about why in practice also this is very difficult we gave you some I gave some examples of

some interesting problems that we come across in real life.

(Refer Slide Time: 02:09)

So, basically the issue is that detecting when some system is dead or alive itself is a difficult

problem. So, it might be that the system is extremely slow and therefore, it is almost

indistinguishable from a failure.

The question is do you wait for that system to show signs of life or you decide that it is not

possible and move on. Now this is a very tricky issue to be handled depending on how you

handle this issue different kinds of models is possible. For example, if your system varies

about consistency very carefully because it involves lot of real world implications. For

examples it involves money etcetera, then you may want to wait for the system.

To correct itself there are some of the situations where either it is not important therefore, it is

to proceed, or you are under a real time pressure you have do something right, you do not

have all the information, but you still have to do something right for example, you have an

aeroplane tracking system, air controller kind of systems if some part of the system has failed

it does not stop moving from having to act do some acts. So, that aeroplane still take off and

land smoothly.

Even if there are failure we still have to proceed somehow. So, because of this different kinds

(Refer Slide Time: 04:01)

Of situation we will find different kinds of models right. So, we will try to look at some of

these issues in some detail. And so, today I will talk about the straightly more what I say

detailed way with respect to these problems. First thing I think as we mentioned before

distributed consensus is not possible. That is the basically there is a fisher (Refer Time:

04:33) patters and result and basically shows that distributed consensus is not possible even if

one faulty processor. And therefore, if distributed consensus is not possible, distributed

locking also is not possible, because what is locking basically it is a you have k number of

parties who would one of them has to doable to enter the critical section or the area which is a

shared region which has to be modified.

So, distributed consensus is not possible; that means, there is no way to say where one party

can be in that shaded region is not possible. Similarly, distributed synchronization is also not

possible in many cases what happens is that multiple parties have to step through a certain

steps they have to go through several steps in a particular order you want to synchronize there

the way they execute.

So, distributed synchronization may also be not possible because we can always reduce it to

the problem of consensus, that is I want to know whether I am in stage 5 or stage 8 across all

the parties were involved. So, this also is considered to be impossible. So, by the same reason

it turns out that if I am trying to do consensus sorry consistency, which is the issue for

clustered or distributed file system and databases.

They essentially have to agree on whose value has to be used to update the most recent

version of the of the some piece of data; that means, they all have to agree therefore, in some

sense the commit problem also is connected with this issue. There are some interesting

connections with some other types of work what is called wait free synchronization, where

the idea is to synchronize and, in a way, which does not prevent you from making progressive

and in spite of failures. They are somewhat similar actually this result also has some bearing

on this particular area.

But we will not get into this one. So, what we are what I am trying to say is that once we have

this FLP impossible result there are lot of things which get affected by this particular result.

So, you do have to look at engineering solutions which actually take care of this problem

because in theory it is impossible, but in practice we have to find somewhere to solve this

problem. It will be certainly fail in some situation not only engineering due to.

But that is the fact of life we have to live with it. Now just look at you just quickly look at the

kinds of systems we might come across and what kind a how they what kind of guarantees

they give for example, it might be distributed locking or synchronization that is stepping

through pieces of the program or the computation or agreeing on a particular value to be

committed etcetera. So, let us just look at how they are doing and why.

(Refer Slide Time: 07:41)

So, before we proceed I will just go over the slide which we saw some time back. So,

basically there are various types of models there is POSIX model the NFS kind of model that

help model that 1980’s people came up with the amazon model which is a more recent one.

And ZooKeeper also is some recent one, yeah, I am just giving you for examples, of the

trends of properties they get POSIX has certain it tries to give you some interesting

guarantees and of course, the guarantees are finally, based on what the devices can give it for

example, in POSIX you can write something and unless you verify that what has been written

is the same as what you wrote.

We are essentially trusting the device to have done it now this is next interval, but it turns out

that devices do malfunction. You can ask it to write it on a particular track it is possible for

you to write on some other track this what is called off track writes it is possible. It is also

possible we are going to write it, it tells you that it has done written successfully, but actually

it is not written it that also is possible it is going to happen because if you are talking about

disk systems the disk work on the basis of what is called Bernoulli effect.

That is the disk heads are hovering over the right surface about some few microns above

actually fractions of a micron above and if there is any let us say small dust particle etcetera

then essentially it goes over it. And we are writing of that point it may not succeed in writing

with the magnetic strength that is required to write, because it is no longer at that same few

fraction of micron height it may be at much higher one before the write might not be properly

done that also is possible.

So, the only solution for if you want reliability in POSIX kind of models. After writing it you

try to read it back if you read it back and if it same as what you then you know that it is bent

up this is basically what is called write verify actually there is a scsi command which does

this and this is very important because in some situations especially when it very cold it turns

out that sometimes there are some problems with the disk and they can actually start

malfunctioning, or if you end up going to some place like tibet where the air is quite thin it

turns out disks not work there properly for the same reason.

So, if you are thinking that POSIX will give you some guarantee it is actually dependent on

the kind of guarantees that storage the disk device is giving you. So, that is kind of one kind

of device determinant kind of guarantees. We look at NFS this basically, because of reasons

of throughput or latencies we do caching and because of the caching purposes it turns out that

the value that if we look at the attributes it may have a stale value and we might still proceed

because it has not timed out.

So, issues of that kind that are there at NFS. If you look at Amazon S3 the problems that are

here are because of what you discussed the previous class, because of FLP or cap related cap

basically you cannot have consistency, availability and resilience to partitions at the same

time; that is because so this Amazon S3 can give you much weaker type of consistency model

and that is basically reason why you have to be you have to be careful about the model that

they provide.

Similarly, this is ZooKeeper which is hierarchical file like service and this one also has a

slight different model we will actually take quick look at exactly what it does. So, what is S3?

S3 is basically a key value stored whereas, ZooKeeper is a if you are familiar with the proc

file system in Linux it is something similar to that. So, the idea here is we want to provide

certain information in a tree like fashion, and this is memory based and various clients can

actually get information about some particular state of the system from this file like service.

So, basically in some sense we want to coordinate between multiple users and they all put

that information into a hierarchical kind of a model. And it is a memory-based system. It is

replicated and it provides primitives to construct more complex services synchronization I

mentioned synchronization basically as I mentioned earlier. You in a distributed problem it is

possible that you want to sequence multiple users through the same steps that is all of them

have to have begin step one then only you can go to step 2 then all of them have to finish

whatever they are doing in step 2 then go to step 3.

So, we want to synchronize those things or we can have issues like group membership often

times when you are a trying to make some value the same in all places for example,

consistency you might want to send messages across when you are sending messages across

it is important that all the messages be received in all the places in the same order sometimes

is very important. If things if there are 2 sets of messages one modifying a and one modifying

b and some messages that go to certain clients of a that intersposts with messages of for

updating b sometimes you can have very peculiar results.

So, and this becomes even more complicated when things fail. So, there are whole model

called group communication systems which guarantee how messages are sent and the order in

between messages as received by various clients. So, these are very tricky area and it turns

out to have some connections with the problems we discussed before that is FLP result

etcetera. So, this also turns out to be impossible if you make the most general assumptions,

but engineering wise you can settle do something about this also.

(Refer Slide Time: 15:01)

So, as we discussed before I am not going to go into this before, as we discussed it before this

S3 basically stores the data ending buckets we have some API.

So, we have a bucket or something like a directory an object is accessed through a key. So,

we have seen the this particular API before. So, this is one type of storage.

(Refer Slide Time: 15:26)

The ZooKeeper as I mentioned earlier is a tree-based information model. It is it is like a

pseudo file system just like slash proc in Linux. It is fast and simple it is based on memory

and each node stores one or more piece of information for example, just like in Linux if you

go to slash proc CPU info it gives you some information about the CPU. So, this is also

ZooKeeper also does the same thing except that this is a coordination device. It is basically

used so that, multiple parties can pick up information and update information and ZooKeeper

does that.

We can thing is to make sure it is highly available. So, it has to be repeated and if multiple

parties tried to attempt to update the same to same at the same time then there has to be

ordering happens. So, this has a very simple programming interface you can create a node at

the location at tree. For example, if you take again the Linux model then it has some

information called slash proc slash sub x I can create a node which says slash proc x slash y

for example, I can delete a node. I can check if a particular node exists at a location. I can get

the value or set value. I can figure out all the things that are there at for example, slash proc x

that there is something called y z etcetera and or I can I also have a model say sync what does

it mean it means that; some changes are taken place I would like to wait till it all stabilizes

So, essentially it is like the model could be something similar to what you have in regular file

systems there you can do what is called f sync and idea is that you want to ensure that the

values get updated on the disk. So, there is a similar procedure that provided to make sure

that we can wait for till it propagated and you will get signal saying that it is done then only

you can proceed.

(Refer Slide Time: 17:25)

Now what are the things that they provide? S3 actually has some model of called eventual

consistency. What does it stand for?

It stands for, when no updates occur for a long period of time eventually all updates will

propagate through system and all the replicas will be consistent. What is that? Listen to that

how long it is, if they say is long enough. Now this this of course, is a problematic thing. And

so, essentially it is very closely connected with the kind of system you are, thinking about it

could be wide area network system it could be local area network and this is long period of

time depends on that particular aspect. Actually, ideally it should be this long period of time

should be adaptive it should be based on a current load on the system.

If the load is very high probably should be longer time, if the load is very light it should be

smaller number of time. If you look at the time disynchronous model that I talked about

earlier it actually attempts to be adaptive, but eventual consistency only gives you this model.

No updates occur for a long period of time. Then everything will be consistent. This has been

often called BASE, it is transfer basically available it is a made up acronyms as per I know it

is stand for basically available soft state and eventually consistent it is a long name some

cooked up name and there is reason why it is called basis, because there is a different model

of ACID we looked we talk we talked about earlier which is used in databases and storage

systems and architecting systems and this is basically ACID.

So, what is I will come to this earlier we discussed a bit about this we come to we will talk a

bit more about it. So, basically because this model is ACID this model called is called base

and this cooked up name called. So, in ACID what is the issue here? We are talking about

multiple transactions and we want to ensure that either the transactions go through or the

transactions does not go through. Let us look at the one example suppose I want to do I want

to go someplace, I want get the railway ticket booking plus I want to get a hotel booking and

probably it a ticket for some event that I am interested in.

So, I am interested in doing it only if I get the railway ticket slash the hotel plus the ticket.

So, I am talking of the transactions in which you try to do all of them if any all of them does

not work out them I am going back out of it. So, the issue that I am interested is either the

transaction completes or does not complete I do not have intermediate state where I have a

hotel booking, but I do not have a train booking slash the event booking that does not work

out. So, I want it to be either all of them to happen or not going to happen.

So, some updates are making to some system all updates should have to happen or none of

them should happen that is basically atomicity that is at this model atomicity is somewhat

different from what different operating systems good quality in atomicity atmospheric

temperature in general we understand it includes there are 2 operations a and b nobody comes

in between that is usually the model that is what they usually call as atomicity whereas,

databases is a slight different model because we are talking about applications here.

So, here what they are interested is not the fact that somebody has come in between what they

want to make sure is that either I did something or it is the same steps before that is what

atomicity is. Consistency what is consistency here? It basically says that there is some model

of how data in my system there is some invariant that has to be satisfied that invariant always

has to be satisfied.

So, whatever any transaction does it has to keep the invariant intact if you are not able to

keep the invariant intact then you are not consistent. Now again if we talk about a file system

nobody has told it how you should touch it is data how you should handle it is data there is no

model therefore, file system does not have a model of consistency, whereas a database has a

model of consistency because there is some schema and there is various other things right

which tells you how what has to be done. So, the database has a consistence model.

So, it is not really as a systems person suppose we build in a system this C is actually not part

of a system definition that is why a file system does not worries about this at all. The only

thing it worries about is it is own model of it is metadata it has to be consistent what is

internal to it that is how it bothers about. What is I? I is isolation. isolation basically means

that if you have multiple concurrent transactions it should be even if you are executing it

concurrently even if each of the transactions are reading and writing things concurrently,

whatever be the effect of execution of all these concurrent transactions it should be equivalent

to some serial execution that is what isolation is; that means, that each transaction it executes

as if it was isolated from other transactions, it should have that the equivalent behavior that

what isolation is and this is required also for file systems and database all these things are

required for this.

So, the D part of it is the durability part. So, D what does it mean it means that if I write

something it should in spite of failures crashes panics in the system whatever right? When the

system comes up again whatever a rate before the system went down it should persist. So, the

D is the durable part of it of course, the D is the main concern in storage systems. So, this is

an important thing to be looked at. So, essentially when we look at some of the systems

database special database systems specially they have ACID model, but this ACID model is

too sometimes extreme or too difficult to handle and therefore, it is a weaker models.

As I mentioned earlier there are real time systems where ACID does not make any sense,

because as I mentioned earlier your air traffic controller systems where if some part of the

system dies you cannot just say that I am going to ensure that the system is coat completely

consistent across all the parties. I need to take some real time actions and I will tolerate some

of it is failures and still proceed or do basically what might called as best afford delivery of

the service that I have that I can do.

So, ACID model is not meaningful in these circumstances or it circum circumstances in

which a consistency notion is not itself clear to the party who is supposed to provide a model.

As I mentioned earlier a file system has no idea about consistency of the data nobody has told

it. So, there is no way it can be ACID the way it is mentioned here, but it can be ACID with it

is own data structures, because it knows something about it is own metadata and it can do all

these things. So, the in the sense you might see the file systems actually implements in

equivalent ACID connect thing for it is own data, but not for the application database that is

the difference between a file system and database.

Now, this ACID has originally was for example, proposed by Lamson and it was picked up

by grey etcetera (Refer Time: 25:33) they became famous there at source. So, the opposite

class it is basically this. So, whereas, where you do not really guarantee a consistency until all

the updates propagate through a system and then only you can say that replicas will be

consistent. So, let us look at what ZooKeeper does ZooKeeper also says something similar

the clients where the system is guaranteed to up to date within a certain time bound. So, for

example, in the ZooKeeper model you might keep an information about which machines are

up which machines are down. Now it is possible that within that time bound, if you wait long

enough then it will all be consistent, but in the if it is much before that it may be that some

machine is thought be allow and it is there and vice versa it is possible.

And this can create lots of complexities in dual systems and that is why as I mentioned earlier

it is something called group committing systems which attends to solve this problem we will

take a look at it because some storage systems use group committing systems as a way to

make the programming job in the kernel easier, because when you run systems in the in the

certain parts of systems are in state number of state it is very difficult to program in that

context. So, you need some kind of infrastructure which it shields you from this and it can be

kernel infrastructure which can be used. So, that it can this is possible.

(Refer Slide Time: 27:10)

So, we just looked at in some detail with ZooKeeper consistency model. This ZooKeeper

consistency model guarantees the following sequential consistency, updates from a client will

be applied in order that they were sent it is not the cases that it will go in different orders. As I

mentioned earlier web does not have this property that is why cricket scores, the cricket score

may not be monotonic it will show 365 then it suddenly it shows 360 meter it is possible

atomicity this is just what we discussed update succeed of fail no partial results.

Single system image the client will see the same view of the service regardless of the server

that it connects to basically as I mentioned to you earlier ZooKeeper is replicated. So, that it

can scale with respect to number of clients and also to make sure that if there is any failure it

will crash of the systems some systems, then without losing all the information. So, it is

important to the client will see the same view of the service regardless of the server that it

connects to. Again, this is also guaranteed by group communication systems group

communication systems they go through what is called views and they ensure of course, it

cannot be an absolutely because I mentioned FLP results are prevented from it,

But they try to ensure as far as possible that each client has the same view of the system and

all the messages that are sent and received they go in a particular order. And so, good

communication system also do give you some they attempt to do the same thing reliability.

Once an update has been applied it will persists from them until a client over accept it update;

that means, what they are trying to say is that if you write something the bits will no rote it is

possible right for example, sometimes what happens is that on a disk you write something

and you read it after about 3 years there is a small fewer chance that

It will develop a that is called latent sector here. I think this is happens for all the cd roms it

happens also for floppy drives which probably nobody knows now not nowadays, but

happens in all these situations in case of cd roms it turns out that it happens because it uses

certain organic polymers and organic polymers degrade our product time. So, because the

degrade of period of time. It can turn out that what has happened (Refer Time: 29:50) let us

says once one or 0 can be indeterminate.

It cannot be indeterminate basically the CPU’s are picked up when the river cd rom reader

tries to read it does not give a clue a 0 or one it is possible. So, in the sense if you want the

reliability; that means, that we have to be able to overcome all these kinds of issues; that

means, somebody is actively scrubbing the information. What is scrubbing? It means that

somebody is attempting to read it every. So now, and then. So, that this kind of a bit rot does

not happen. Somebody has to reading it every. So, often and writing it to some other place.

And so, keep the data alive in some sense.

The level which we are interested about consistence is in this part timely timeliness the

client's view of the system is guaranteed to be up to date within a certain time bound. This is

a the critical thing. So, again this is basically what is called eventual consistency model,

eventual consistency model. Only big issue for us is the time bound is not mentioned it

depends on different you have to know the system you are working with and come up with

that particular time bound and then work with it there is no automatic (Refer Time: 31:06)

figure on what it is.

(Refer Slide Time: 31:08)

So, let us just summarize again some of the discussion so far. So, there are 2 models the

ACID versus base models.

As I mention to you earlier the reason why we have different models is because they have

different domains in which we work it could be the real time systems domain it could be the

file system domain database domain and our (Refer Time: 31:34) each of them they have

their own particularities and issues they have to solve. So, they will do it in different ways

So, in ACID the issue is strong consistency isolation, but availability is not seriously looked

at, because it can because availability has to be thrown out approxly because if you want to

have strong consistency the (Refer Time: 31:59) results comes into comes into way therefore,

we cannot have strong availability in consistency. It turns out to be conservative; that means,

because of this it is not consistency it will block it will wait for some situations to become

ordered before it will proceed. So, it is pessimistic it has seems the worst has taken place and

it will keep waiting till things everything seems then we are going to proceed.

Whether it can also have nested transactions basically. So, the top-level transaction depends

on what has happened to the, let us say sub transactions. And so, there is some issues of the

correctness of it based on the correctness of the sub transactions. And typically, this basically

typically this system evolution any system based on ACID model has a slighter difficult

system evolution slightly because you have to specify about the system consistency model is.

So, once you specify the consistency what does it mean it means that you have to give it

some new variants and they have to be carefully specified.

So, anytime I had something I will take out something you have to again revisit consistency.

Is this I added this piece of stuff does it again is my invariant still valid or invalid I have to

keep thinking about all these things and turns out to be non-trivial. So, whereas, in the case of

base it is weak consistency it is to provide stale data once in a while, it is not catastrophic. Or

it may be that for reasons of progress in the system we do not mind certain parties not

responding in time we just proceed. So, the most important part is availability again as I

mentioned earlier this is required for some critical systems which need to make progressive.

We have to make progress we have to just drop some issues consistency being one of them.

We always best effort and approximate answers are again you think about it if your car has

crashed sorry if your car has stopped moving you would like to somehow get it going

somewhere or other we do not really care about the most elegant way to do it or the most

correct way to do it or if I am most way I am doing it just not keep it going till you get to

some place where it can get to do it. So, same thing here. So, base is basically that model it is

optimistic perceives that because you are not you are being weakly consistent there are

certainly going to be problems, but it is optimistic sense says that you hope that somehow it

can be pitched can fixed later it is not catastrophic.

Things divergent values some are able to reconstruct them later that is why it is optimistic. It

is aggressive in terms of moving forward that is what it means. So, it has got an easier system

evolution because it does not have various strong notions of invariant properties, and that is

quite true for large systems. If I am talking about large systems there is no real nobody comes

and says that this is the ingredient that has to be followed.

Suppose we take a look at the case of some major problems that we face in the world right

now, right? There is question of some parties which want to blow off some places right there

is no such says that you cannot that all buildings have to be for some systems right? So, there

is no such invariant available that has to be satisfied.

So, therefore, it is possible because there is no invariant you can add things and remove

things without worrying about (Refer Time: 31:36) invariants of course, it may not function

the way you want it, but it allows you to make progress locally. So, it is may not be the best,

but it always progress that is most important thing.

(Refer Slide Time: 35:48)

So, we will try to see this in connection with let us try to understand this problem with a bit

more in some certain depth. So, we look at an abstract problem related to consistency this is

basically the commit or consistence protocols. So, basically there is this problem called

atomic commitment called let us call it AC and consensus I will come to the differences soon

first let us look at atomic commitment.

So, what is it how is it defined? Basically, you have set of processes and they either have to

vote yes or no and before they decide yes or no there could be in some undefined state, but

they have to move to yes or no. Now what is the thing that we are thinking about they all

agree on basically this is a simpler problem what we are saying is we are just talking about 2

decisions yes or no. You can from this you can actually construct other kinds of problems like

for example, deciding on a particular value for example, should the value be 7,8 or 100

whatever and, but right now we are going to talk about binary it is yes or no.

So, what are the issues or what are the kinds of properties that you may want to have for

atomic commitment. The first obvious thing is no 2 processes reach different decisions either

everybody is agreed to yes or everybody will be against to no one of these things. So, this is

fairly a straight forward commit is decided only if all votes are yes. So, this is one you might

call accent commit is decided only if all votes are yes, what is it I am not saying commit is

decided if and only if all votes are yes that is the reverse direction is not interesting or useful.

If there are no failures and all votes are yes then all processes decide to commit.

Then there is another one AC 4 if all existing failures are repaired and no new failures occur

for a sufficiently long period of time then all processes will reach a destination. We can see

that all of these things are independent you can have any combination of these things. For

example, what we are saying is that we are not saying if not what happens if some of the

votes are not yes, we leave that decision open we do not say anything about that whereas, if it

is yes; that means, everybody has agreed. So, other thing we are not saying here is

Or the process is correct, or the process is can fail in some strange ways what is called

byzantine ways; that means, they are saying yes, but actually they mean no; etcetera, this can

we are not talking about failures of that type. So, the only thing we are talking about at the

best or if the word called.

Student: staff.

Staff failures; that means, that if they fail they have accumulated some state which can be

looked at then we come up again that is what we are talking about there is no byzantine

failures are or what are called benign failures now ideally, I want this no blocking property all

correct processes reach a decision. Now it turns out as we discussed earlier that 2 general

paradox that problem it makes this particular problem unrealizable something that is the one

cannot come up with this particular situation that is all correct processes with a decision,

Because it is always possible because I am saying that if we decide only if all votes are yes

therefore, if some parties have decided yes, but before they can vote yes if they die right?

Then you can not you are in indeterminate state. So, and this kind of models are appropriate

for databases and file systems, because for file systems with respect to metadata consistency

and for databases for application-based consistency, because they are something important

and it has to be handled. So, using this kind of a atomic commitment protocol we can

construct more complex ones which agree.

On a particular value or which file has to be, which file has to flush it is data to this disk or

whatever we can construct all those things. So, so you can see that there is a there is

assumptions made and this for example, no more failures occur for a sufficiently long period

of time this is looks linear to the eventual consistent model we talked about.

(Refer Slide Time: 41:29)

There is also this something called consistence problem. So, in the previous case here we are

not saying anything about what the faulty processes are doing the faulty process is also have

to say yes which is bit of a peculiar thing whereas, in the consensus problem.

We can exclude the faulty process. So, basically in some sense the assumption is that the

faulty process is they basically crash and then come up again somehow that is the assumption

made in this model. Whereas in the case of consensus faulty processes can do arbitrary things

they can be byzantine. So, that is why we are carefully dealing it in how we make up our

minds on consensus. All non-faulty processes is a same decision again a special reason is

non-faulty process whereas, in the case of the atomic commitment.

We do not talk about non-faulty process it is also a validity issue, if all non-faulty processes

votes are yes, they will all decide to commit if all non-faulty processes votes are no they will

all decide to abort. So, this is validity. Now one thing that one should mention already is that

there are some fundamental problems here itself it turns out to detect if the process is faulty

or not is itself is not feasible even that comes back to FLP again.

So, these things are insensible infeasible a and b together are infeasible you need to have you

need to have some weaker models one weak model is if there are no failures V holds; that

means, that of course, when no failures therefore, you do not think about the non-faulty

processes therefore, this is appropriate then there is also Very Weak Validity both commit and

abort are possible decision values there is an execution in which correct processes is decide to

commit and execution in which correct processes are decide to abort. So, there is lot more

latitude here.

Here we mention that if all non-faulty processes are yes then they will have to decide to

commit and here it is possible that they also in spite of it they can do an abort (Refer Time:

43:54) the only thing that is been said here is all agree or commit abort that is always said

where as this one is stronger it turns out that you can come up with varieties of weaker kinds

of problems starting with consensus problem this is the strong one weak consensus and very

weak consensus very weak consensus for example, is basically agreement and they are very

weak validity.

So, as I mentioned earlier this consensus problem is used in the real time systems community

this air traffic controller kind of situations they actually try to follow this kind of model. The

idea here is that when some part of the system dies you do not you are not going to wait for it

to come up and in the cases of databases or file systems usually when they do some

operations they have some persistent storage which has to be looked at when they come when

they come up again. That is when they boot reboot again there is already some state that has

been accommodated in the previous; in the previous life you might say and that information

has to be used to guide the new booting system. So, therefore, it can take much longer period

of time, and so, it makes sense for you to go for this model atomic commit kind of models for

databases and file systems whereas, for those real time kind of systems consensus is lot more

sensible because you are not going to be you are going to be (Refer Time: 45:40) to

something quickly and you cannot wait for systems to reboot and use the word old state

persistent state to guide what has to happen next.

(Refer Slide Time: 45:51)

So, if you look at atomic commitment in consensus we will see that there are the differences

are, because what happens with respect to faulty processes as I mentioned earlier in the case

of atomic commitment even faulty processes have to say yes for commitment; whereas, that

is not really necessary for consensus.

So, it turns out that atomic commitment as I mentioned earlier is attainable only under

assumption that processes failures are benign whereas, it is not valid for it is not valid for

byzantine failures. We can quickly look at and convince ourselves that certain things imply

something else it turns out that atomic commitment has conditions much stronger than weak

validity and various results theoretical results have been shown about the weak validity

model for consensus and essentially what you can say is that everything that have been

proved in that context is actually going to limit commitment also. So, let us just look at one or

2 things quickly and see what the issue is. Now if I look at the conditions 2 3 4 imply weak

validity what is 2 3 4? Commit is decided only if all votes are yes if there are no failures and

all votes are yes then all processes decide to commit.

So, if these things if all existing failures are repaired and no new failures occurs for a

sufficiently long period of time then all processes will reach a decision you can see that this is

connected with a weak validity. What is it saying? It is saying that there are no failures then V

holds. And so, if there are no failures then we can say that if all process is right now all of

them are correct all votes are yes, they will all decide to commit and if all processes which

are correct now because there are no failures or no they will all decide to abort.

So now the reason why 4 is included is because if you have some failures, but no new failures

occur for a long period of time then again, this issue is similar to what is there in the

condition here therefore, you can show that 2 3 4 essentially imply weak validity. The reverse

is not true because as I said earlier in the case of here even faulty processes have to agree on

yes which is not required in the case of consensus. There is also another axiom you can put.

So, that example I had this condition in the case of commit protocols about this part and it is

not there for consensus. So, if I want to make both of them similar then basically I can add

this part if I have this part then I can essentially get the agreement part of it because then at

this so. In fact, that things stabilize right? It is available now for it is consensus also therefore,

it is possible for me to now say that AC one AC4.

And the fact that thing stabilizes after some period of time they imply agreement. So,

basically the attainable theory basically show that there are various conditions various

communities are assuming some condition stronger some conditions are weaker as I

mentioned earlier the storage systems or database community they have much stronger

requirements compared to the other parties who are assuming weaker model because for them

progress is far more important than. Again, if you look at the web community same situation

for them progress or availability is far more important than complete consistency.

So, they have much more weaker models. So, that explains why you can use the web this is

highly available, but it can give you some incorrect information and it should try to make it

consistent then we have situation where it is not possible. So, what we will do next is to look

at in the next class we look at some commit protocols what that is called the true phase

commit protocols and then we look at it is natural progression to 3 phase commit protocol

and then we will go to either models like taxons and then get on to how some of these things

impact a design of large case storage systems.

Thank you.

