
Storage Systems
Dr. K. Gopinath

Department of Computer Science and Engineering
Indian Institute of Science, Bangalore

Design Factors
Lecture – 30

Design of Large-Scale Distributed Storage Systems_Part 1: Design issues in real
storage systems, Impossibility results, Brewer’s CAP Theorem, Designing real

storage systems for CAP. The Multicast Oscillatory Behaviour problem

(Refer Slide Time: 00:14)

The NPTEL course of storage systems. So, in the previous class we looked at a network

file system, and we mentioned that there are some interesting problems with respect to

consistency management in nfs. So, we started with the nfs 2, then went to nfs 3, then

went to nfs 4. And each of them has it is own model of consistency. And you can see that

was increased to what you can expect from a particular implementation. Now goes

slightly deeper into understanding why is it so difficult to give this consistency

guarantees. It is not an easy thing it is not easy because there are issues like failures in

the system, but create some complications.

We would like to understand this in some depth; that is what you are going to do this

class. And hopefully it will give us an appreciation why is it so difficult to engineer good

storage systems.

(Refer Slide Time: 01:41)

Now, if you look at the some of the issues in a large storage system, what are the issues?

First of all, you have to have if it is a very large system it has to develop a network.

Without networking it is not possible to give you a large storage system; that means, it

has to be distributed, and because of failures if some particular node dies it may take

away it is portion of the storage.

So, if there is something to be avoided you may want to replicate information. So,

therefore, when one can say without hesitation; that large storage systems need to be

both distributed. And replicated in some form it has to be some redundancy it has to be

distributed. Now it for multiple reasons, I just give you one reason for it that was for

resilience to failures. But it can be due to also for throughput reasons. It could be also be

due to disaster recovery. Given the kinds of let us say large scale disasters that could be

afflicted on storage systems, or the computing systems this also is an important issue.

But disaster recovery for example, banks there already regulations which basically says

that you need to have at least 2 sites which are 30 kilometers apart; that means, you need

to have the information in a bank should be available at least 30 kilometers away. I am

sorry, it should be yeah, I think it is between 30 and 40 kilometers. It can not be too close

you can not keep one another site about one kilometer. That considered reasonable.

So, valid reasons you need to do distribute and replicate information. And there is also

other reasons why you need to do such things. For example, for security it turns out to be

a holistic problem; that means, it is even a small little problem somewhere can actually

be magnified into a huge security incident. I think you might have heard about the flower

board, a weak link being a problem right in a chain. But that means, that every important

somehow. Similarly, if you are talking about real time or quality of service. Every small

thing actually counts.

If one part of it is not doing it is job well it can affect the guarantees you can give. So,

fundamentally we can see that you need to solve many coordination problems. So, let us

to me this is the most important problem. You have to solve the other issues, but this

coordination problem if you can solve in you can take care of. And generally, this

difficulty arises from asynchronous nature of the systems and failures a characters with

characteristics of many real systems. If you would look at synchronous systems; that

means, that somehow you have times time synchronization somewhere and typically

time synchronization does not work on large scale it is very difficult.

So, if you are talking about synchronous systems these systems have to be small scale. It

can not really scale beyond certain size; that means, that any large system has to be

asynchronous; that means, that there is no the timing across these systems cannot be

mandatory or centralized. Let us say timing device or whatever it is just not possible. So,

it is a fundamental problem again to repeat is because of asynchronous nature and the

failures.

(Refer Slide Time: 05:22)

Because of this there are a lot of difficulties in designing a good high-quality storage

system is can guarantee many properties if you look for. I will give you some simple

examples of the kind of problems, that we can get into.

Let us take the case of we looked at nfs last time. We were look at how nfs can get into

some peculiar situations. So, let us say I am there can be what is called a directly lock up

in nfs. What kind of problem is this? Suppose there is a file which is locked. And this is

taking a long time for some reason. I am not we are not going to discuss why it is taking

a long time. It is taking a long time if suppose somebody does a lookup on that file,

another independent lookup.

Now, it turns out if you do a lookup on that file, the important thing is you are supposed

to give some information about the file, which is let us say should be the information you

are going to give should be something that is picked up atomically. That is why we are

looking at it, it can not be changing in a sense; that means, only we can do it is by

ensuring that it is parent directory, you take a lock on it to prevent anybody else

operating on the file. So, what will happen is that if you do a lookup on that file which is

actually doing some slow operation some other independent lookup.

The directory actually is going to be also you take a lock on it directly first before you

start thinking of doing something on the file. So now, this lock on the directory is going

to be held until the slow operation on that file original operation itself completes. Now

you can imagine a situation the other request come in, we do the same thing on the

directory also. So, it turns out that you can come up with a cascade of locks all the way

up to root and everybody is locked up now.

So, this is now hostage to the slow operation that has to finish. Only that finishes the

whole system actually makes forward progress. While this is going on, the system looks

highly unresponsive or dead, we do not know what it is. We do not know whether it is

unresponsive which is dead, we have no way of finding out. So, this is not an artificial

problem it happens all the time. Basically, if you take your slash user war etcetera, right

this is a system directories if there is some for some reason in one of the directories there

is some slow operation. It can travel all the way to root very quick which is 3 or 4 steps,

and your whole system looks as though it is dead.

Those of you have used nfs oftentimes will find that the system suddenly seems to be

dead. And then suddenly moves forward, right. It suddenly starts suddenly seems to be

alive again. It is because of this kind of issues. But the important thing to notice is that,

you cannot be sure whether system is dead or it is actually just painfully slow. There is

no way to distinguish between this. That is a critical thing that you have to remember. Of

course, if you use some other types of a locking mechanisms, it there are similar

problems. For example, I mentioned that in nfs it uses some additional protocols services

like lock demeans. And you should take those things we also have a similar problem

there.

And this can be on worse because lockd is a user process; that means, that it has to be

scheduled in for it would be any useful thing.

(Refer Slide Time: 08:53)

Now, let us take a slightly more interesting example, which is the sometime recently,

facebook had a fairly long outage. I am just summarizing what I understand from the

blog entry that facebook provided, about why their system failed. Let us try to give you

some idea about the their real systems actually behave, and the way they fall apart.

Now, in the system, we will not discuss some of the exact reasons why something exists

in the system, but we will just take it for granted. The there is some configuration values

in a cache. And basically, this system already has been provided with lots of capabilities

of making sure that that configuration values in the cache can get corrupted, and

somebody has to check it automatically. And this cached values come from a persistent

store; that means, that even if you reboot a system that value that persistent store keeps

track of it. A cache is basically a volatile value, but it is coming from a persistent store.

Now, there could be a problem either in the cache, or it can be a problem in the persistent

store. Now this particular automated system that was designed, works well for a transient

problems with cash, but does not really work very well with when the persistent store is

invalid. For some reason somebody made an invalid change in the persistent

configuration value. It is always possible, somebody makes a mistake. Now if there is a

invalid change to persistent configuration value, then what will happen? If your system

has been written well, the alert client will notice, that something in the cached value does

not work, right. We can detect it by because for example, things like crc or a hash or

some such thing we can keep track of whether some configuration value is valid or not.

There is some way some simple way to check; that means, each alert client took some

cache value configuration value, and discovered that those on anomaly.

So, there is some simple procedure for doing it. Also mentioning it can be something

simple like checksum. So now, if it finds a invalid value, then it has to go and talk to a

database, which can give the correct configuration values. Now this database is not get

for high transaction throughput. Because by definition database tries to be we will

discuss it later. It tries to be atomic and consistent, and it provides certain kind of

guarantees. So, it turns out databases usually are not able to scale for very large number

of requests. Because of this it turns out that every client which noticed this problem, it

will try to because it can not figure out who else is also seeing the same problem.

So, everybody who makes the request, along the same time. And because there is a

problem with the cache, it turns out that any new queries, they cannot be made to

succeed in the cache during and just after the fix. Because they do not succeed. So,

basically; that means, that all the new requests also have to go to the database. So now,

what we have is a database, which has been configured for some reasonable

performance. But now all these guys who have detected invalid values they are going

and starting to hit on the database. And any new values which cannot go through the

cache anyway they also start it in the database. Because there is no other way to get the

information.

Now, this database actually is now saturated. So, in a sense what is happening is that the

queues and the database become very, very long and oftentimes what also happens is that

if some value is not responded within a particular time; these systems can also assume

that there is a network problem, they will retransmit again. That means that in instead of

waiting for some period of time like good citizens, they think that something bad has

happened to make sure that they get their response quickly enough. They go and again

retrieve the request again one more time.

So, in a sense what happens is that in a short time you can get so many requests to the

non-scalable part of your system. But finally, what happens is that there is no way to

recover from it. So, in this case for example, when this happened in this facebook

situation. They discovered this problem they tried to see if that was going to resolve

itself, it didn’t resolve they waited for some time finally, decided there is no way to take

care of it. That essentially disconnect the cluster database which was supplying the

cached values, which was supplying the configuration values. And then once that was

done essentially the site became unreachable.

Similar problems exist in case of skype also. If you look at there are incidents of skype

also malfunctioning for multiple hours, and must not multiple hour sometimes even days.

And so, this is not something uncommon. It keeps happening luckily the systems are

engineered well enough that is happens not all the time it happens once in a while.

(Refer Slide Time: 14:06)

So, let us see why failures are so difficult. The first simpler problem is the following, is

something called the 2 generals coordination problem.

Now, in this case, what we have is, there are 2 generals who are divided by an env

territory, and the 2 generals only if they work together that it can defeat the enemy. But

the problem with the 2 generals have is that they can communicate only through the env

tertiary. When the you send any message to the env territory, the messages can be seized,

it can be corrupted, it can be dropped etcetera. So now, you have to solve the problem of

coordination across these 2 generals, who can only send messages through the env

territory.

It turns out there is no protocol that can solve the problem. Given this conditions. You

can see easily a solution by this should be the case with a the following kind of

argument. Suppose, you say that there is some way to this 2 parties 2 generals to agree

on when to attack the enemy. Because when they attack together, they succeed if they

attack singly they cannot succeed against the enemy. If they, if you say that there is a

protocol that solves the problem, then I will say the following.

Make sure first you remove all non-essential steps in the protocol; that means, finally,

you are left with only essential steps. So, there is a protocol, first of all I do I do is take

off non-all the take out all the non-essential steps. Because I take out non-essential steps,

everything has to be everything every step is non-essential. But I already said that if I

send something through the env tertiary, the protocol step can be seized duplicated

corrupted etcetera; that means, I just drop the last one. For example, that means, that the

2 parties cannot really conclude the protocol. There is no way for them to conclude it.

So, whatever argument is say, I basically will tell you that if they are succeed in agreeing

it the last step should be the one it is leads to agreement, I just drop that one. Therefore,

there is no way for you to say that they can agree on it. So, this is a some kind of a

simplified or high-level argument, why no protocol. So, say the protocol can exist. So, in

some sense in under these conditions coordination is impossible. That is first problem.

There is a another problem which is called FLP result, Fischer lynch Patterson result; it

stands for impossibility of distributed consensus with one faulty processor.

They show that in a distributed system, if you want everybody to agree to a particular

value, if even one of these particular entities can be faulty then the distributed consensus

where all of them agree on a particular value cannot be satisfied. It is not possible to do

it. Not just that you can go with some other results also. There is a result called

impossibility of reliable communication in the face of crashes. If you have machines

which crash, the result is basically shows that; there is no way to have reliable

communication.

What do you mean by reliable communication? Either a message goes or it should go

and exactly once. It cannot have duplicates in whatnot. So, this also has been shown to

be impossible. You can even go further down, some other results have been derived,

which basically says that let us this take the case of data link layer in a network protocol.

If you assume that nodes can crash, it is asynchronous it is memoryless; that is when the

do when the nodes for example, do not remember what they were doing previously. That

is there is no stable storage by which they can figure out what protocol step they were

doing previously.

If you have memoryless, and lossy. lossy means that I send some packet it can be

dropped. It turns out that there is no reliable data link layer that can exist in this model.

So, the foundation that we assume in a iso stack with a physical layer on top of data on

top of fitted data link layer, it basically says that this is also impossible. This is of course,

they are all let us say, extreme kind of results you might say. But once you assume that

machines can crash that there is a synchronous there is no time synchronization

memoryless; that means, the notes do not remember what they were doing before they

crashed.

And if you assume that packets can be dropped, then this also is not possible. Actually, it

turns out the situation is even more horrifying, actually this paper they show that a

system can be driven by sequence of crashes to any global state where each node is in a

state reached in some possibly different run, and each link has an arbitrary mixture of

packets sent in possibly different runs. I will suggest to look at this paper to get an idea

what all this means. But this is a pretty awful result. Basically, what it means is that if I

am doing something for crash, I might get the packets when I come up again I might get

the packets I might send my packets to somebody else, or somebody else the packets can

come to me etcetera.

All kind of things like that are possible. So, luckily when we engineer our systems we

sure make sure that this kind of horrifying things going to happen too often. And that is

where if it is potent, but fundamentally it is a serious problem it is not something that we

can wish it away. Because they come from the basic issues the once we assume for

example, that messages can be corrupted or dropped or the notes can crash.

(Refer Slide Time: 20:13)

So, following on this, there is another result, which is called a brewers cap theorem.

Which tells you the following. That if you are looking for consistence in the system; that

is, the data that you are that is present in the system is somehow consistent according to

some model. And the data that is there in a system is available for you, availability I want

you able to use the data. For example, I have a file on a system I want to able to access it

availability. And then tolerance to partitions. Basically if it is a distributed system, I want

to have the nice situation where in spite of failures in a system partitions in the systems, I

still I am able to do useful work; that is basically tolerance to partitions. Now this

brewers cap theorem, basically has been shown that it has basically shown in this cap

theorem that not all 3 can be may be satisfied at the same time; that is, either can I have 2

of them 2 out of 3 a data. I can either have consistence and availability without this

property, or I can have this 2 without this property, or these 2 without this property.

So, this cannot all be guaranteed. So, all these 3 things are typically important for us. I

want my data to be consistent, I want the data to be available. I do not want my data to

be not accessible to me just because some partition takes place somewhere else. I do not

want distribution, where I cannot access something just because some failure is taking

place somewhere else. So, all these things are important, but suppose surprisingly or

according to this theorem, it does not it is not possible.

(Refer Slide Time: 21:51)

So, we can see many as may many cases of this. What are the kinds of situations that we

are coming to. For example, I can have consistency and availability only. If you take a

single site file system; that is, on a single desktop system, I can have consistency with

the database. And I can have a availability; that is, I do not expect any failures

essentially, if there are no failures I can give you some something reasonable. So, all the

systems as long as there are no failures they work well. If there is a failure, they just

block. They block or they have to get into some uncharted territory of inconsistency or

availability. So, all the systems basically work well as long as there are no failures.

Or we can go to some situations where you drop the notion, drop the idea of consistency;

you say that consistency it is that hard, I am willing to accept weaker notions. And then I

will try to leave with it. You will see that most of web is based on smaller. In web

availability is far more important than consistency. Because most of the web information

is usually not very critical. So, for example, if I am reading a newspaper or whatever it is

not that critical. Because news often gets updated all the time. So, if I get slightly

inconsistent version the news, it is sort of tolerable.

Same thing with cricket scores. I think, it is a common experience, but when you are

looking at some of these cricket scores; it turns out that after an event has happened, you

might get a another information which essentially invalidates the previous event that has

seemingly happened. For example, my scorecard be 345 for some 3 wickets, and then I

might get a another information saying it is 340 for 3 wickets, right. Later, it happens

because, the information usually travels on the web through multiple routes. So, I got the

first correct information 345 for 3 through one part, and it somehow became the not the

preferred route for this when the second came. And that actually had been slightly more

stale information.

So, it turns out both DNS web caching and disconnected of clients, all these things

usually do not provide consistency, they give availability some information available

some score is available to you. But no guarantees on how good looks score is. Same

thing with DNS also. Because it also does some kind of caching, and gives the

information is incorrectly updated for a small window of time, it can be given to you.

And basically, in all these cases essentially you are optimistic.

So, you are basically saying that it is to have slight inconsistent values. It will be

corrected soon sometime soon, this optimistic way. So, because of this sometimes you

will see that there is a need for conflict resolution; that means, I got 2 scores, I mentally

at least have to resolve what happened. And in the case of crickets scores you might not

do any conflict resolution, but in some other cases you need to think about what could

happen why this is the case. And for example, email might have come one way and some

other email might not have come some other way, and I might have to understand what

really happened and based on that reason something about it.

And typically, here, we have the notion of leases. Basically, because it is difficult to be

strict about consistency. So, what I can say is as long as my I give you some exclusive

access to something for a period of time; and this is governed by time, as long as my

time synchronization is very good. Then the I am reason be safe, but time

synchronization itself is not possible to be very accurate, because there is some it is got a

you cannot do time synchronization to better than few tens or 100s of millisecond

accuracy it is not possible, means that there is still a problem. And that basically means

that, I might assuming that (Refer Time: 26:16) lease there could be some corner cases,

where 2 parties think that they can go ahead and update this thing at the same time. That

is possible.

So, you can also have the situation where there is consistency and what is a tolerance to

partitions. But you do not have availability. And this is a typical situation, your

distributed file system and database and distributed locking. And basically, here basically

what happens is that, if you find that some network partition has taken place, you

basically stop giving access to certain data. Because you are concerned that people can

get wrong data, you basically take the extreme step of say, I do not have any data. For

you look for the time being till things are little bit clear.

So, if you use what is called majority protocols, what is this? It basically you if there is a

partition in the system, what you do is you have something called majority protocol.

Basically, you vote the majority people agree on a particular value, you basically say that

there is a value. So, in a sense you are able to tolerate partitions, but now the minority

partitions, they may not be available. So, that is why there is no availability. So, some

part of it can be proceeding. And there is tolerant to partitions, because some parties are

still able to get some work done. And so, but certain things are not available.

So, here typically it turns out that pessimistic locking is done; that means, you take as

extremes that is possible to ensure that consistency is, let us say guaranteed. So, you will

see that databases usually is work in this area. And I made a mistake sorry. Here is where

web usually works in this area. Databases work in this area. File systems work in this

part partly sometimes partly here and partly sometimes here. We will come to that details

here. Yeah sorry, I will do it right now.

(Refer Slide Time: 28:18)

So, let us just look at high level, what is the difference between file systems and

databases at a high level. What is the file system? It is a persistence and naming service

for all up for all applications. The critical is aspect about this is that, there is no

information from application, and what information is critical. That is not given to you.

All that the system can do is differentiate between 2 types of information data and

metadata. That is only thing that that the system has got accessed to it. So, what can a file

system do, because it has got only 2 types of information, a 2 ways of classifying things

data and metadata. It can guarantee possibly consistent of metadata, that is one

possibility.

Anyway, this is needed because metadata is kept by the file system to manage the

system, manage the data. So, this is something which is file systems. So, it is needed

anyway for file system sanity. It can not abandon consistency of metadata. So, it is

something it is critical. The only issue is that in spite of worrying about consistent

metadata, even then it can get corrupted. If it is corrupted, the file system says I have no

real serious information about what to do next best, I will fix it in some suitable way. So,

the system can function, again I want to make a system available. That is my perspective.

And that is what is some of you might have used something called fsck a older systems.

And even if you have what is called journaling file systems, some once in a while you

have to do fsck, it is still necessary.

You can avoid it to some extent, but numeric corruptions all those things when they

come in you can not really avoid it. So, consistency some metadata’s taken seriously in

the file system, but data consistency may not be considered very seriously, because this

file system has no idea, because nobody has told it how important certain piece of data.

So, the file system optimization is basically following I do not want to be very slow,

because very slow then nobody losing the file system. And all the basically is the most

basic service for persistence in the system if this is slow, then the whole system really it

becomes atrociously slow. Hence the idea here in file system is to sort of weaken the data

consistency model, and main system reasonable responsive; that is a basic idea. And why

is this an important issue, because you are dealing with things like disks, which are

amazingly slow compared to a memory.

They are order of about 5 5 orders of magnitude slower than memory. So, because of this

reason, the file systems usually I take something the bargain they have entered into is the

following that. Since you want some reasonably responsive system, I will relax the

consistency condition for data. I will try to be as far as possible consistent with respect to

metadata, because that needed for my own sanity. So, how does this a file system do it?

It uses a synchronous operations in case, you need to have data consistency. Not what

exactly do I mean by this? Basically, in file systems, you can if some operation has to be

done. It has to finally, make it is way to the disk. So, that it becomes persistent.

Now, I can ensure that I do everything synchronously. Every time something changes, I

immediately flush it to disk that is one possibility. The second possibility is if I say

something, I do not flush disk immediately. All I do is achieve the flushing, but I do

other things after work. That is another possibility. A third thing is I do not even (Refer

Time: 32:08) it is what is called delayed rights, the 3 possibilities. One is, I do it and wait

for the flushing to have happened on the disk. Then only I proceed. That is the most

conservative or the synchronous type of operation.

The second one is, I am doing it asynchronous right. What I mean by that is; I cue the

right I do not know how long it is going to take. So, I do not want to keep waiting. So, I

just go and do other things. That is asynchronous option. The third one is delayed right. I

do not even do not cure it. I will expect there some time later somebody, because of some

urgent reason is going to do it for me. I am not going to do it myself. I am not even going

to cue it. I am not going to wait for it. I am not going to cue it.

Now, because of this, it can turn out that if you use for example, the delayed right.

Whoever is going to flush it to disk, has no idea about the dependencies of each piece of

data with respect to others. So, something which is important to be they might be in

particular order in which you have to flush the data. For example, if you look at that

cricket scores, what you wanted was that 260 runs after 3 wickets should come first

followed by 260 followed by 260 whatever, right? You want a particular all the request to

come right.

Similarly, data also can have certain orderings. But because in delayed rights, somebody

else other than mu is flushing it to disk, they might not know the ordering between these

things. And they will flushing problem in correct orders. And if there is a crash of the

system, you might see in inconsistent ways of the data that has been flush to disk. So,

this is one problem the file system has got as long as you are trying to be make a system

responsive. So, there is a in a sense, we have to understand what the file system is trying

to do for you. It can not give you the guarantees, that you seek for except with the cost of

doing extremely slow. So, that is why it is not the default.

On the other hand, a database uses something called acid semantics. Actually, a file

system also can use acid semantics. It is does that it becomes too slow for it will be

useful. A database other hand usually deals with some a real world important information

like, bank balances and other things. It can not take this approach. Because if your bank

balance becomes inconsistent, it is going to be a serious issue. Therefore, databases in

spite of slowness, they will insist on a particular set of semantics. This is the acid

semantics. Let us do databases cannot scale to the way a file system can scale. So, the

number of operations that number of transactions and database can do typically is at least

one or 2 orders of magnitude slower, than the kind of operations that a file system can

do.

So, what are the kinds of things that a database is let us say trying to guarantee. When it

is atomicity, what is atomicity? It turns out that you want to ensure that either some

transaction happens and what happens. You cannot have some in between situation.

Either your bank transaction happened or not happened. The consistency of data. If you

have multiple transactions, there might have to be consistency across these transactions;

that is example if I withdraw some amount, I try to check from my account to somebody

else’s account. You should decrease from mine an increase in other persons account.

But the amount of decrease should be equal to the amount of increase account. That does

a consistency condition. Again, this is an application idea about consistency. It is not

inherently known for example, to anybody else or an application. Let us the consistent

data. So, database also has to be responsible for this. And isolation from other

transaction; that means, one transaction would not interfere with other in transactions.

Each even if I concurrently run it, it should not be the case that one transaction somehow

negatively impacts other transaction. Each transaction should seemingly in spite of being

done concurrently should seemingly be just as if it was isolated done as an isolation.

Finally, durability, I do a transaction any effects that I should see should be persistent,

that is durability. Now this one part which the database depends on storage system. Rest

of it is again actually it has to handle it itself. Now oh, if the database is running on a file

system, then the file system database it depends on the file system to provide the

durability. And the file system in turn has to find some mechanisms by which whatever

things are happened with respect to database, that has to be made persistent has to be

made durable.

So, that if the machine dies and comes up back comes up again. Whatever changes have

taken place actually can also be seen again. So, this turns out to be the responsibility of

the storage system, and the database can directly do it itself, but it can go to the file

system right. So, if it goes to the file system, and then it has to make sure that the file

system understands importance of whatever it is changing. So, it has to indicate through

some mechanism. Usually, this is done not by through what is called mount options. A

file system can be configured saying that all this operations have to go synchronously or

in some particular fashion which ensures that things become durable in some particular

way.

So, it has to be some understanding between database and file system. Or the database

can directly talk to the storage system, and the database can tell the storage system

specifically please do the synchronously. I am going to wait till you are done. So, that

also is possible. It turns out the durability is not a trivial thing I will come to that soon.

(Refer Slide Time: 38:13)

So, let us some brief remarks. Basically, it turns out if you look at operating systems or

networking etcetara typically they are good at availability. Not so good at consistency.

We already look at nfs as a good example of this right. So, basically in nfs what we are

doing is to avoid too many round trips. Clients keeping on checking whether some data

is valid or not. Sometimes they do cache the attributes therefore, they can takes a

window during which they assume that data is not been modified with somebody else,

when it has been modified.

Similarly, you can have in a cluster, it is possible to have consistence and availability, but

generally it is very hard. And basically again because of reasons for failure etcetera. If

you have distributed file systems are databases, they are better consistency, but they are

not good availability. Same is the case with wide area databases, or disconnected clients.

There are some problems here also. So, basically you have to decide what kind of model

you want, and make sure that the system is engineered for the particular reason.

Let me briefly mention durability. Why it is so hard? First of all, if I am talking about the

large storage system which is going to guarantee durability; it itself is composed of many

parts. Now there is a recursive problem you can see now, because if there is a large

storage system, it has lot of data itself. Now how does it keep it is own data or metadata

consistent or atomic with respect to changes? For example, what are the kind of change

that can be there it is possible that one node dies. Somebody has to keep track of that this

particular node are discussed field. This has to be made persistent, because there is some

kind of a table somewhere saying that this particular disk died, right.

And other people could be referring to it. So, it has it is own metadata. Now how does

how is this also guaranteed? So, is a recursive problem here. So, in a sense, if you look at

acid property; the first 3 parts the database tries to achieve. But the durability itself is

recursive it actually can be lot of people say in the storage systems area, that to give you

that quote acid property for this storage system they might again use acid, but again the d

part of that acid with storage system itself does we can be guaranteed through some other

mechanism.

So, there is a fairly tricky issue here itself. And so, these are basically done by some

careful engineering to ensure that the problem becomes smaller and smaller so that

finally, you can say with some high probability. I guarantee that something is persistent

therefore, the whole chain can be made to a stand on that particular assumption.

(Refer Slide Time: 41:08)

So, basically all I am trying to say is that, it is true that there are many impossibility

results, right. For example, we looked at all these cases, right all these issues.

So, but that does not mean that you cannot do certain things. I will give you an example

about a protocol like the TCP protocol. It we know the web is very widely used because

we use TCP protocol. And TCP protocol really works quite well. But we notice that there

is a result which basically shows impossibility of implementing reliable communication

in case of crashes. So, it turns out if you think carefully about TCP, it has been possible

that TCP really works for us because, our extreme very well carefully done engineering.

Let me give you an example of the kinds of engine that has to be done.

Suppose, what is that TCP connection identified as? This identified as IP address and

port number on the source file, and IP address and port number on the destination side.

Now you should think about this, this is a finite sized piece of information. Now that

means, it is a finite system. In a finite system you can always repeat. In infinite system, it

is difficult to say that you can keep repeating. But in an finite system, for example, if the

number of possibilities is 2 to the power of 16. It is always possible for me to if I keep

reusing port numbers etcetera, I can possibly repeat that thing, right.

So, because at the finite size, if I start a new connection, and by shear bad luck, I have

the same signature as this one; that is, it has the same IP address port number of source

and destination. Then it is possible that some packet of the previous connection, which

was hiding somewhere in internet somewhere. Suddenly comes and drops into my

current situation, then I might have what is called a packet insertion problem. Why is this

and not unlikely. Because you notice that if I am talking to 2 machines, only 2 machines.

The IP address on the source on the IP address on the destine are both are same, anyway

it is not going to change.

If I am talking to the same server on the destination side, the server port number also is

the same. The only thing that is going to be changing is the port number on the source

side, right. Now if I use my port number I cycle through port numbers very fast. Then I

can essentially repeat the same identifier for the connection. So, because of this, there are

various methods in a TCP protocol. If you look at the rfc tells you what all to do. To

make sure that this kind of packet insertion is as unlikely as possible. I do not have time

to go through all the details exact how to do it.

But there are many methods by which you will do it. There are something called

sequence numbers you might have heard about which are used it has got something

called 3-way handshake, which is also used to prescribe at this particular problem.

Again, the details of what why it is 3-way handshake, not 2-way handshake; it is because

of priceless this reason. And in spite of all the methods they have used to avoid this

problem, just as a fallback in case all these methods fail, this have one more requirement

if you look at this section 3.3, they tell you that a node cannot reboot faster than within a

2 minutes after has crashed. That is the machine crashes, it should not reboot the thing it

has to reboot at least only a 15 minutes some such rule is there.

Or we have to ensure that, it remembers the last sequence number before cash; that

means, that anytime you have any sequence numbers, you have to put it on stable

storage. It means that it has to be any time you change the any sequence number, because

you send a packet which in the sequence number. It has to be available in there in a

stable storage generally you can send the packet. Now you know that sending packet is

going to be much faster than saving it to stable storage, because stable storage nowadays

means typically only disk.

So, either you do the hard thing of remembering last sequence number which is very,

very slow. Essentially you cannot send packets faster than disk operations. Either that, or

you have this rule and there is other rules and typically this rule is one which is not very

well known. You cannot reboot a system faster than 2 minutes to avoid disk (Refer Time:

45:56). So, it is lot of engineering that has gone in to make sure that you still survive all

this impossibility results.

So, that is the reason why TCP is still surviving, if it was not done well there was no

chance it would work on the scale and web acid designing. So, our idea is that even if

you have some problems with various impossible results. It is possible for you to do

something reasonable.

(Refer Slide Time: 46:27)

So, a various ways to get around some of these problems; I will just go through a few of

them right now. One obvious way to say is why do not you avoid failures in the first

place. Now this is not a trivial thing to do. Because we are talking about real systems,

and real systems are main types of ways, in which you can fail disk can fail batteries can

fail, the CPUs can fail they can get overheated or (Refer Time: 46:57) that are there.

So, this thing is almost impossible. The only other thing you can do is to reduce the

chance of failure and usually if you try to reduce the chance of failure we are talking

about extremely expensive systems. So, and this these 2 types of operations are also

types of approaches are also followed. I think some of you might know that look at

google file system. They decided that instead of trying to reduce the failures. They went

for trying to manage the failures, whereas, if you talk about what is called enterprise

systems, they try to reduce the chances of failure itself.

So, by having redundancy and other kinds of things so that design becomes typically

expensive. Whereas, if you are able to manage failures. Typically, if you do it well you

can reduce the cost. So, this approach of avoiding failures is typically extremely costly.

Other possibility is make sure partitions are repaired within latency requirements for a

request; that is, something fails you someone make sure that the partitions get repaired

before the next request comes in this also is a hopeless task typically.

So, or you try to go to slightly more relaxed to situations. One example of a approach is

what is called timed asynchronous models. You basically assume that a real system has

unstable periods followed by sufficiently long stable periods. And there is this particular

aspect has been worked out in some detail. And this is something called failure aware

design, and unfortunately this has not been seriously taken up. Because there are some

interesting projects that were attempted with this particular model.

But somehow it could not be need to work. Because this particular design failure aware

design is fairly complex. This also has failed in some sense to me it looks as a very

promising approach. Somehow, it has not taken up other thing to do is do not do

anything when partitions are present our big problem is that even if this looks nice on the

surface. It is impossible to in detect failure, when failure has taking place, because as I

mentioned earlier sometime the systems can be arbitrarily slow. You do not know

whether it actually failure or is it slow.

And I gave you that facebook example where the queues can build up to such an extent,

that system is unresponsive and even after 2 and half hours nothing is going on all the

requests are just sitting there somebody finally, has to disconnect the whole system. And

drain out all the requests and then once everything is all the queues are cleaned out then

you can send any. So, this also is sort of a not a feasible thing, the other issues of other

ways to handle it also.

(Refer Slide Time: 49:48)

For example, one researcher has suggested that the reason why these things are

happening is because of some root causes. Why do not you attack root cause itself?

Let us try to understand the example of a root cause. Once as data center networks

become bigger and bigger, it turns out that the software stack increasingly becomes one

to many communication patterns, multicast take facebook or twitter all these things right.

Basically, you are talking about one-piece information there has to be sent to multiple

parties at the same time, multicast becomes very common. And it is also the case because

if I update something in a replicated system update in one place, it has to be replicated

the update has to be replicated to multiple places.

So, this multicast is a very natural phenomenon if you are trying to either because of the

way the new communication patterns are showing up Facebook or twitter or because of

availability on the reasons. Multicast is a very common requirement. So, essentially there

is something called publish subscribe models. They push data to many receivers

simultaneously. And also, as I mentioned earlier, they allow clustered application servers

to replicate state updates, and maintain coherent caches.

So, it is the fact that you need multicast is I think fairly clear now, but the issue is that if

you want to do this particular kinds of a multicast, right. It turns out while it is necessary

it has certain problems. For example, it does not have flow control; that means, that it

can essentially push the system into very unstable situations. So, IP multicast does not

have flow control. You can try to understand why that is a case, but the ones we have

flow control across such a multicast. It is very difficult because you have to manage

multiple nodes all those things it is just to totally hopeless. That is the reason there is no

flow control in this.

Similarly, you can have issues about security. It is (Refer Time: 52:16). So, basically for

this reason big users like amazon for example, they tell you that you cannot use

multicasting applications. They tell you mandatory it is not possible. So, on the one hand

it is very critical, but it is impossible to provide that kind of support. It turns out to be if

it is provided it will break the system someday. So, we are in a very peculiar situations

where it is necessary, but you cannot use it. So, and it turns out the reason why this flow

control problem comes in some people have suggested, is because the IP multicast

addresses are scarce. Because you have small numbers of this IP multicast addresses.

Therefore, it turns out that if they get used up, a hardware limits of these multicast

addresses get used up.

You finally, have to depend on some other facilities manufactured by the kernel for

example. And because it is now down not done in the hardware it is now in the kernel, it

turns out the system again can get over burdened. So, one of the things that people have

succeeded is that, there are some problems why not increase your resources of for

example, multicast addresses sufficiently. So, that you are always away from it is costly,

but that is one way to handle. It is a lot of cost to it, but if you do a good job many of the

problems that we talked about disappear.

So, this one way to do it through money at it, but it is not widely used.

(Refer Slide Time: 53:54)

I will stop with one another example of the kind of problems, that we often face in large

scale systems. Of course, storage systems also fall into this category. Sometimes you

have if you are using multicast, they also have what is called oscillatory behavior. What

exactly is oscillatory behavior? See nodes, we are talking about a large-scale system.

There are many nodes. Each node is doing something. For example, it could be

responding to some requests from a and therefore, it might be doing java execution. Java

has something called garbage collection. Well, garbage collection is going on. Usually

this it pauses. It can not do other things.

That means the node actually is for the time being not responding to certain things.

Similarly, Linux scheduling delays could be there or somebody is flushing data to disk.

All this things are can create certain disturbances in the system; that means, that while

that node is disturbed, it may prevent the node from forwarding packets. Because the

application thread does not respond, etcetera. So, what is the issue here? Because the

node is not forwarding packets to downstream. But the upstream something is still

coming in. So, the route is still continuing to send it. So, I still getting the packets.

So, finally, what happens is that if it is engineered well, I am going to send a response

back saying, I am not able to send out something, but I am still getting too much stuff

from a from my upstream guys. So, I will tell the upstream guy, please stop sending it.

So, because of this the previous gather the upstream also face a same situation, now he is

not able to send out things. But he is getting stuff from his parent also. So, finally, the

whole of this network it the disturbance at one level travels all the way to the top.

So, essentially all the buffers on path from root to the node become full, and the roots

sending throughput drops to very low values are 0. So, again once this particular thing

that disturbance passes away. Again, they will slowly come back towards normal

situation it takes time. So, it goes on oscillating between reasonable throughput and very

low throughput keeps happening all the time. And actually, people are shown that if a

very large tree let us say 10,000 to 60,000 nodes. And this is a actually a small system in

currents current days for that.

I think google has for example, at least at least one or 2 orders of magnitude more

number of nodes. In a very large tree, they are shown that when each node is disturbed,

only for one second in an hour. We have so many nodes, each node is disturbed only

exactly one second in one hour; that is, one in 3600. The throughput degradation can be

as much as 90 percent, even the message loss is negligible. So, it is a dramatic drop even

for something like one in 3600 kind of disturbance for each node.

So, that means, that your behavior of the system is somewhat problematic. You can not

really say when some system is working, when it is over loaded, when it is dead, you

really can not say any of these things. Because of this it turns out that your anybody

using in timeouts in the system. They might sudden discover that system is unresponsive,

because it is unresponsive you think it is dead, or you basically say that I will retry it hat

hopefully my packet has been lost somewhere, I will retry it and see if it goes through

the second time. Somewhat actually I had more work to the system, and that actually

keeps building it up and that might actually derive the system to some really a bad

situation.

So, there are various reasons why you can not really say what is going to happen in the

system. And so, your ability to guarantee availability or resistance to partitioning etcetera

becomes that much weaker. We will continue from here in the next class.

