
Storage Systems
Dr. K. Gopinath

Department of Computer Science and Engineering
Indian Institute of Science, Bangalore

Storage Interfaces and Device Drivers
Lecture - 18

Device Drivers Part 2: Spinlock synchronization mechanism in Device Driver,
Linux Concurrency Model, Introduction to Block Devices and the Block layer

Welcome again to the NPTL course on Storage Systems. In the previous class we were

starting to look at a device driver, and what is functionality the device driver was to

count the number of interrupts. So, we took a look at some aspects of that particular

program.

(Refer Slide Time: 00:44)

And for example, we went through the right case, right? In the write case what are we

doing? We are essentially determining the size of the buffer that has to be allocated in the

kernel right.

We also did some just did some sanity checking out here.

(Refer Slide Time: 01:09)

Then we allocated it here, right. Then we set the recording on. And then what would

happen is that now that the recording is on, every time there is an interrupt, we will enter.

(Refer Slide Time: 01:22)

We will it on the entry of the interrupt we will do this, at exist we do this, because we

have defined penter irq to with this, penter pleave irq to be this, and this is an extern its.

So, it is an extern function pointer; that means it is actually linked with this other outside

code. Where that is getting called on interrupt right on interrupts these 2 things.

So, I think we looked at some part of it last time. So, we look at this enter irq one more

time. But assuming that wherever it is being called this penter irq, it comes with the

request routine and the CPU and that basically what is wrote here. And first what you do

is please spin lock irq square. Now the thing is where do we do else a spin lock, because

normally these things are very fast operations. If you try to put somebody to sleep, it is

too costly. Basically, because you have to context switch, it is too costly.

So, for example, it might take a context switch about, possibly a good for good part of a

millisecond. Where is the spin lock it is just sitting and executing instructions.

Instruction can be about few nanoseconds, 10 tens of nanoseconds. So, if you got able to

get a job done quickly, within tens of nanoseconds trying to sleep is going to be about

almost 4 5 orders of magnitude more costly. So, I do not want to do sleep if it is possible.

So, that is one thing an addition on the interrupt handlers are not supposed to sleep this

one, there is no we will come to back.

So, what is this guy doing? It is basically trying to ensure that you save the state of the

interrupts, because there could be multiple interrupts, some interrupt may be on some

interrupts may be off you want to save the state and that is being done through flags. The

flags is the thing that is going to keep track of the save state. And the log that you are

taking is this one. You are spinning on this lock. This lock was initialized somewhere

here. We remember that when I loaded the module, it was initialize out here.

So, may I think we need to study a bit about the kind of mechanisms are available for

mutual exclusion slash synchronization in the kernel. So, we will take a look at that one.

I think some of it already we have done, but let us take a look.

(Refer Slide Time: 04:42)

So, basically what is the issue? It turns out that there is often shade data between

different parts of code in kernel. Some are accessed in the user process context and some

interrupt context. I think it should be clear about what is user process context means,

does not mean executing in user space. It means that you could start a user space once

you come into the system call, you still enter into the supervisor mode, but you still have

the same context, because you got called through a user process.

That means, that you still have essentially the same thread is running starting from your

user code what you written, and then you walk into the kernel you are still having the

same context in some sense. In some sense if inside the kernel I would say something

about that my current process is this, it is still valid. I am talking about something which

is out there which is corresponding to the code is I am running inside the kernel also.

There is a correspondence between what I am going to do inside the kernel and outside

world, because the user process, whereas interrupts context is a different thing.

Basically, what is interrupt context mean? It means that you are executing some piece of

code, which has more relation to what was just being executed and it is got interrupted.

Because interrupts can come any time, I am doing something and some unrelated

interrupt for example, a disk interrupt or a anything can come which is unrelated to my

work or a tape interrupt. Let us say I am not dealing with any tapes at all. I can still get a

tape interrupt. So, there is nothing to with my current process, but I said I am doing a

user process what I mean is I have a system high initiate system call in user space.

So that means, there is a connection between my user space program, that context from

which I came and all through the system call then I am executing inside the kernel. There

is a connection. So, what happens is that sometimes there is some parts of cold in the

kernel (Refer Time: 06:52) shared, even though one is user process context and interrupt

context. A good example is suppose they have a dc driver, and in the user process context

we have doing something about allocating buffers; using buffers whatever. So, you might

be manipulating some qs. Qs Corresponding to buffers.

Now, interrupt context is also can deal with the same thing. Why because suppose you

initiated some activity of reading some block; when it is finishes the interrupt, context

will has to say that this particular block was read, now I can insert it into the list of valid

buffers. So, what will happen is that both the context that came through the system call

inside the kernel, and then at completely autonomous interrupt context, they can refer to

the same qs they might actually manipulating the same qs. Because they can be

manipulating the same qs, they can be a problem if while the system call is doing

something with respect to the q links right, the pointers.

Is interrupt comes in end it might find it in a inconsistent state, because the interpreting

come ends at any instruction boundary. Because normally qs have a certain invariant for

example, let us say I have a w linked list. So, you might have an invariant about that

forward if I go this direction there should be point in the reverse direction. So, I am at a

modified only one part, the reverse might not to be modified right. So, the invariant can

be spoiled. So, you need to have some way of doing mutual exclusion. So, in

uniprocessor system, you can do it by setting and clearing interrupt and flags, there is

some way to do it.

In SMP, normally you have many there are many methods of doing it here, we just talk

about spin locks. There are 3 types of spin locks. You might have what is called the basic

one, read write, spin locks and big reader. So, again lot of this keeps changing with

Linux versions; this just a simplified version in the slightly the older version. For

example, nowadays you has something called read copy update RCU, which is

extensively used. So, whatever I am saying is not really widely used currently, but it is

used here in there.

So, everything I am saying you should examine it carefully in the context of a current

Linux kernels, because things are changing all the time. But anyway, read write blocks

basically when there are you have many readers and few writers, it turns out that you

might use the read write spin locks. The vanilla one actually has no preference further

read or write. We have read writes spin locks. Basically, if you have to preponderance,

the readers you might want to keep preference to readers than writers.

For examples we have a system with lots of file systems. So, the file system so are in a

linked list; and most often times you are walking it to get some information, but you are

not modifying a file systems. The time when this information on the link list changes is

when you unmount and mount file systems. And that is usually a rare event. So, most

assign your link list is not changing; that means, that read operations can be many more

compared to write operations.

So, someone this spin locks can be optimized for reads compare writes. Because those

writes happen very, very infrequently mounting time unmount and mount a file system

for example. So, they are also other thing called big reader spin locks, it is a type of read

write spin locks. It is even more optimized for reverse and there is a specific penalty for

writes. So, there also some things called semaphores, we will not get into it write now.

(Refer Slide Time: 11:01)

So, let us just look at an example of a spin lock, and you will try to understand how it is

used. So, so for example, let us say that I define a spin lock underscore t that is, but the

name of the lock is my lock. And I initially initialize it to spin lock unlock, it is unlock.

Now, I say my ioctl. Now what is ioctl? Ioctl is a I O control often provided by device

drivers. What is I O control? It is some kind of a way of controlling the behavior of a

device or some file system. It is got essentially it is got all the remaining functionality

that is not mean only be handled by some other mails typically.

 let us say there is some specific functionality read write etcetera, those things are

handled through specific interfaces. There could be some other residual functionality

which has not been completely characterized or proper it is varying across this lot of

variations. So, you do not want to write down to saying the all this variation should be

there in my in my list of functional functionalities. I will just put it into the ioctl.

Basically, ioctl is a way in which I provide some control operations on this I O or I O

devices I O whatever.

So, normally what happens is that I call ioctl sitting from user space. So, there is a

similar thing for files, it is called a fnctl. You might have seen it, if you have might have

seen it in Posix, this only call fnctl. That is also something which does gives you an

ability to control information regarding particular file. For example, you might speci

specify that fnctl 3 fnctl, that it has got what is called the there are some file systems

allow you to specify what call an extent; that is, a how contiguous allocations you are

requiring anytime you allocate anything to the file. Instead of standard 4 kilobytes, let us

say I have multimedia file 4 calibrate is too small for multimedia files. It will for in in

one-megabyte chunks.

Then you can use an fnctl you make a call using fnctl and say, for this particular file

media multimedia file, please ensure that you allocated only in terms of one-megabyte

chunks. Similarly, in ioctl also for example, once upon a time you had floppies which

had one point 4 some megabytes or 2.88 megabytes, single, double all those things right.

So, thing is that you might have you may want to set ioctl saying that now I want you to

write it assuming a double density, or single density, whatever it is.

So, I can make a call. Since I am calling from a user space, when I and it turns out to be

ioctl will be essentially it will come here to a system call. There is ioctl call, system call

and once it comes it comes to appropriate driver routine. Now essentially from user

space a came through system call, and now I am in my driver part by ioctl. So, there is

where I am definitely in a process context, because I came through a system call. I still

have connection with the party who initiated it. And now I since I am coming from cross

context, it is known that interrupts are enabled. Because this is (Refer Time: 14:46) cross

context it means it is not absolutely critical a user stuff can be always be interrupted.

Therefore, he is going to say irq to tell it please disable interrupts, this driver space spin

lock irq. There other varieties like spin lock if I know that interrupts already disabled, or

no race with interrupt context; that means, that I am doing something, and whatever I am

doing none of interrupt handlers ever touch. So, was I am able to figure it out. Then that

can I can use this more simpler surplus spin lock.

So now that you know interruption an able to have to say spin lock irq, and then I do

whatever I have to do so and then I spin unlock irq. So, basically this has interrupts get

disabled for me here at this point. So, I am in a state situation there is no question of

these conditions (Refer Time: 15:44) whereas, suppose I have a my irq handler, this gives

an interrupt handler. There is there is a disk block which got completed, and there is a

call back after the disk block has been read. Now the handler is basically this something

similar to this. And this came in once sometime in the pass somebody did something.

And now that context is different from the context that is the interrupt handler, because

this interrupt handler is happening only because an interrupt. This one has no connection

with what is currently executing.

So, it is in the interrupt context and because in interrupt context it is not it is known that

interrupts are disabled. So, for that reason you may it can take spin lock without having

to do this part. Sometimes it turns out that you are coming from multiple levels of calls,

the multiple subsystems, and you might not know exactly whether interrupts are disabled

or enabled. If you are in that unknowing state not knowing what is going on. You can just

say irq save it will figure out. It will actually make it. So, that you do not have to worry

about the state to be received everything will be fine, and then you do the reverse part of

when you exit.

So, what is the basic permission of a spin lock? There are some interesting things that

have to worry about in spin locks. I have mentioned already your spinning to get access

to resource. If somebody has locked it, you expect the other party will unlock it, since

you are keeping on checking whether lock is available or not. When that party unlocks it

you will get access to it also. There will be a contention multiple parties can try to get

this at the same time somebody (Refer Time: 17:45), but you will notice that there was

some additional thing that you have to be careful about my programming these things in

the kernel.

One thread, basically busy waits on a resource on one processor while another used on

another. This is true for multiprocessor. But notice that your code even though may write

it for multiprocessor. It should run even on a single processor, where n equal to 1. If you

are if you are saying that this particular thing only runs for n equal 2, it never will touch

this kernel there is not something acceptable. Ice power most specifications, whatever

could you run it can run on a multiprocessor, it should also run on a single processor.

Now, suppose if code has to work for example, of all threads on one processor. Let us

say, that I have allocate all the threads from on one processor. And then if a thread tries

to spin lock that is already hellbender that (Refer Time: 18:48) because the single

processor, we find spinning let me other guys are not on the CPU the spinning. Other

guys are there other guy can cannot can never get access to the CPU, because hand

spinning continuously therefore, the other guy who has a lock can never be woken up

and we cannot give access to the lock with this guy spinning on therefore, the divided

lock.

So, why important thing is that we should never give CPU, when holding a spin lock

because I absolutely I said rule; that means, that whenever you have a spin lock in your

hands never give for CPU if you do that your system can handled lock. So, these are

some other interesting things that you have to know when you are programming in the

kernel.

(Refer Slide Time: 19:34)

Now, similar to that let us also talk a bit about top and bottom halves. So, some of you

might a hold of it already this, what is the top half? Executing process context, the same

thing; for example, this is an example of a top half. You are coming from the process

context you are in the kernel that is a top half. And because you are connected with the

system call your whatever you are execute something in the kernel you are still

connected with the (Refer Time: 20:00) you can access the address space or in older units

is called u area of the calling process; that means, you still have access to the context or

the process that made the system call, you can still refer to it.

For example, you can look at how long it has been executing all those kind of you

temperate. There are some there is some information about the time taken etcetera, or the

resources you have to work and all those things you can normally there is a resource

structure it tells you, how much you can use how many files can be open and all those

kind of things. Now inside this top of routine you can actually look onto the all those

things. They make sense because you are executing on behalf of process, which us called

a system call and you are connected with it. And you can also put the process to sleep.

Basically, because essentially, you are putting that particular process, which worked in

through system call to sleep is perfectly fine there is nothing upsetting about it. Whereas,

use a bottom of routines these are asynchronous. These are call because of things like

device completions some read etcetera devices can a completed, they called

asynchronous sleep. They executed system context, and there is no relation to the current

process. Because the there was a current process, and because of their interrupt that

interrupt handled started running, and then it called the bottom of routine. And the thing

is this bottom halves it has nothing to do with the process that was executing there was

being there was interrupted.

Therefore, you cannot access the address space or rear of the current process. Whatever

is called a current process it is not possible. It may not sleep also, because either you can

get in deadlock or you are creating delays you are creating (Refer Time: 21:44) if there is

multiple stack of interrupts, if you sleep then other guys they can get all stuck till the

topmost level interrupt can find that also is possible.

So, nothing is if top of routine is running has to block interrupts to prevent bottom

routines, seeing inconsistent data structures. I already discussed this basically if top of

routine is running, right. Basically, that guy could be manipulate if similar structures. It

might have just done some part of the thing, when it is thing there is a inconsistent, on

this interrupts comes in on the bottom of another ones and that would see the inconsistent

part you have to block it.

(Refer Slide Time: 22:28)

Now, this is a way most unique us is used to be in the early 80's, you will see that Linux

has a slightly different model it is slightly adds to certain additional things inside. We

will skip this part let us look at the kernel part of it. Now the kernel threads are those

which do not have user context. These are things or run independent of the user for

example, you have something called housekeeping activities. There is some stuff which

is kernel memory which is cached which is caching some stuff in that disk and you kept

it cached, and it is not yet returned to disk.

Now, you can have what is called a thread a kernel a kernel daemon which will once in a

while wake up. And ensure that part of it is flushed to disk. Because if you do not flush it

regular times it power fuels whatever happens? You might lose whatever that is there in

the kernel that dirty buffers that are there, you may not be able to flush into disk.

Because of power fuels and you might have the disk might not have the current copy of

what was supposed to be there can be we will do some banking transaction. And you

updated a thing suppose you are sitting in memory and power fuels. Essentially it is

equal into your bank transaction not going through.

So, there is daemon which keeps firing in, and this independent of any user process

context. Because it doing for everybody. In sense as you can call it house maintenance

operations housekeeping operations and these are done for every process. So, it is

nothing not done to any particular process that is why do not have user context, there

also what are called deferrable and interruptible kernel functions. And bottom half art I

talked about previously is one type of it. This is how Linux also started with, but then

they added these things.

Now what is the bottom half in the Linux, within how we started out? We can have

basically multiple bottom halves cannot be run concurrently on several CPU’s, there has

to be only one thing at a time that was all big problem. Another thing is that the bottom

half was particular subsystem for example, a disk will have one particular bottom half

network in subsystem will have one particular bottom half (Refer Time: 24:38) tty will

have one etcetera. So, this is all fixed also that is you had fixed number of bottom halves.

So, because basically depending on the type of devices, that were there that is how it

started out. That is how there is no dynamic allocation. And you cannot run or you can

only run one thing at a time it is extremely restrictive.

Then you came with something called tasklets, multiple taskslets same type cannot run

concurrently on several CPUs. For example, I cannot have the same disk tasklets running

on the same things. I can have a disk running on one CPU and the tape running on

something else on a I can have some other, let us say the network is stop running some

other thing because they usually or 3 different subsystems they usually do not interact

usually. So, that by definition they do not have any things to they do not club or each

others stuff. They can be (Refer Time: 25:34) and it turns out that you can have dynamic

allocated, and they can be this slightly more flexible kernel model. And again, I have not

go into too much detail about this one.

The soft irqs are the most general ones. You can have the same type running on different

CPU for example, I can have I have let us say 700 disks on my system. I can have I want

to run all of those things there are they are doing all these operations at the same time.

All right all this disk running at the same time. So, a few number of them can be finished

some operational disk around the same time. I want to do the interrupt crossing about the

fact that difference reading something or writing something. It will be very restrictive for

me given that I am somewhere in a disks right, to say that we are (Refer Time: 26:27) in

sequence, one after another even there are so many CPUs right.

So, these things are basically reentry; that means that they ensure that the way the code is

written itself. They ensure that they take all the locks to ensure that even if the same type

same code is running. And so, many CPUs because the way that take the locks, they are

able to keep the data structures completely let us say consistent across each of these

parties were running at the same time. So, because it is the most general part it turns out

that they cannot be dynamic and allocated ok.

Again, we have to going to be data that understand why that is the case. I think we can I

am not going to go into details here. So, this is the kernel model in Linux. So, I hope I

given you some free for this part of it is spin lock irq save etcetera. And so, what is

happening on entering? I checking if it is recording. If it is recording you do not know I

will again I am not going to do it. And I am also checking next event is not equal to last

event. Basically, what is a what is happening? I have a set of buffers right. I did the first

one second one I came to the last one. I am trying to seek my pointer e said the last one.

If I already come to the last one; that means, I do not have anywhere to write (Refer

Time: 27:57) that is not the case. Then I am saying read time stamp call. And then I am

writing it into this particular variable. I think I discussed it last time this is the read this is

the assembly language code that does it. And then I am creating an event. The simple

straightforward thing it is basically it is creating some kind data structures nothing more

than that. And then I am saying I am ready for the next event I have set the pointer to the

next place in the buffer, I have to do that this is basically implementing with to the next

location about.

And then once I am done with this, I am going to play this. Again, a music and say

irqsave because I do not know what state I could be in some this making sure that I save

this state. This is an could be that there are so many interrupt possible, because I can

have stacking of interrupts. And I am not very clear about exactly what state I am in

current at any point in time therefore, I am doing this.

Again, living also is something similar, I have basically get a lock, and then I have

basically record that event, I am also going to say that this is going to be the living event

here. I said that it is a entering event this is going to be a living event, and then I

increment to the next buffer allocation. I am also recording for example, CPU data very

straightforward, and then once I am done with I exit.

So, what have we done right now? You first in this code in the right code basically you

allocated buffers, you are start the recording on, and then this interrupts are happening,

and then this read times stag called this assembly language code started recording, which

interact with CPU what time all those things right. It keeps doing it till the whole buffer

is form I give it a certain buffer size right this much and then it completely has (Refer

Time: 30:10). Once it comes to the end of the buffer then it stops.

So, that is what is going to happen. So, whens it is completed, it stops and essentially

what is happening is that even if the interacts happen, you still getting into this code, but

you are not doing it. It is a slightly when one can imagine writing better piece of code, as

soon as you let us say come to end right, you may want to not do all this irq save all the

kind of stuff all right. You may want to do it make it a null function, it is possible right.

That is something you may want to think about. So, but is just doing nothing here it is

just getting this thing and coming out. That it is sitting there out of there.

So now, the trays of all the interrupts I have been captured sitting in kernel memory, I

gets actually virtual the pageable kernel memory as for as sitting there, till you somebody

tries to read it. What is it read? Read a out here. How is the read being done? Read is

being done through this user code.

(Refer Slide Time: 31:23)

So, what is happening out here? You have this is the main of the user code. This is a

regular user space code.

(Refer Slide Time: 31:31)

So, I am going to say read fd etcetera. So, fd is 0; that means, that you are doing some

redirections. Basically, what you are doing is you are going to say that this particular

program is going to have this less than followed by slash temp ints; that means, that it is

slash temp ints will have fd of 0. That is how when you say read fd etcetera, it is going to

the read of this device which I have created; that means, that it is going to call this. You

will see that there is you can see that the numbers of parameters are different. Here is the

regular read call as you are used to you got 3 parameters, fd; it has got the size. And it is

got the address right.

So, you are supposed to fill in that stuff here all right. It is supposed to read something

and put it here right. Now whereas, here we can see, it has got how many parameters. 1

parameter, 2 parameters, 3 parameter, then 4 parameters; that means, that there is

something in between this system call I am where the driver gets it; so like z or some

other intermediate thing will be sitting there and doing it.

Why should at their case? Please you can notice that there is an offset also. Remember

that in the case of read the offset is simply sit, where I am reading it. Because I am

keeping on adding to and keeping on incrementing the implicit offset, every time I do a

read write that is going on. So, I do not mention that pointer. It is implicit in the it is kept

in the file descriptor somewhere that information is kept. And some piece of code is

coming in between that call and here which is actually putting that is all it is offset here.

So, that is one part of it and also you can see it started with file descriptor there it has

been converted into a struct file star. While this is happening, you do not have worry

about it there is solid infrastructure in the systems can taken over this. So, what is it

doing now. So, there is no reading stuff. So, what is it saying? It saying read from slash

tempt ints, and read about what is size of e what is he? Is an event; so I wanted to read as

many bytes as the size of the event? I think if you note if you notice what are you writing

when we what is the information of collecting for an event, that I think we have seen

already. Where is that event? This is the information, or the if you look at the event of the

data structure. It will have all that that piece of information.

So, that is what is supposed to read. Again, it is being some sanity checking out here, if

not event buffer it should not happen, but by share bad luck for some reason, who knows

there could be a bit flip as I told you. You can your memory can lie your disk can lie all

kinds a bus can lie, you could what I mean by saying that some arose can take place on

system. So, if you are good OS kernel hacker, you never trust whatever you see. You

check everything for a good here. What you are doing is just checking, if you can go for

this not somebodys asked to read some stuff, you are worrying whether is there any

buffer at all in the first place, that is what we worrying about.

Most likely all these things usually we are it should the case at the event buffer. So, you

should never get into the situation, but if it happens you report it. Again, if you if

recording. So, by if some recording is still going on. So, I want to make sure that it

cannot record it. Even this it could be that the right as soon it the interrupt routine right.

The minute it came to the end of it right. You should probably start recording equal to 0,

but it is not done it here. One can add that code. So, that recording becomes 0. So, it is

being done here.

So, again you are taking this cli sti as I mentioned these things are no longer available as

far as I know in the current linuxs you have to do something else here. And what you are

doing right now is; you are going to you are now supposed to read from the event buffer,

and copy into user buffer user buffer. Is given by here and e that event e this is a user

space you given to the address and you have to copied from the kernel buffer right into

this one.

As I mentioned to you, you have to be careful about copying stuff from in and out of

kernel that is why you are doing what is called copy to user. And before that of course,

you have to do something about you finding the minimum size. And you basically you

are trying to read some number of bytes and it is trying to figure out what is actually

available and that is what is a big part. And then it is going to copy from user to the event

from the event buffer to the user buffer, and it is going through instead of being a straight

then copy, it is going to copy to user and the copy to user will carefully check everything

whether the user buffer. So, actually legitimate buffer, is it is not a booby-trapped buffer

which when you touch it explodes.

Why is that the case? Because I say no I said best as we discussed last time also. If there

is anything that a trap happens the kernel result to pick it up, right. The kernel itself

actually well it is touching something it itself gets a trap, there is nobody to look after it.

Because the in some sense you know you can not keep on putting one more level kernel

0 kernel one kernel 2 see everybody watching for everybody else that does not work out.

So, the thing is that is say and why has to be careful that is why you use copy to user. It

is ensuring that the buffer that user has given where the information has the event has to

be copied into that is legitimate; and as I mention again there implicit pointer that has to

be updated. And then we do a read and write once you read so many bytes are right so

many bytes implicit pointer changes on that is continuous.

And you always when you do a read we always return whatever you read the size of it.

Because you remember the int there is usually the value that returned after read is int that

is basically what it is. So, these all the read happens. So, what we have done right now is;

I keep reading one event at a time exactly one event write at a time. Once a read one

event, then I am going to let us say, populate my data structure e time and e CPU. Event

dot time event dot CPU, and then I am checking whether it is entry into or the interrupt

or the exit of the interrupt and the number also event number.

And I am also doing some sanity checks for example; it should not be because I am only

in this particular example. There only a 2 CPUs it is checking whether 2 CPU server.

This is some straightforward tracking of the time. In case I was just starting about when I

am just starting about, it tries to if it is 0 then I am starting. And so, is taking care of that

part. Once I have already looked at the first event, then this is the code. If you look at

this some there is some peculiar thing here I would like you to look at it closely. This

1263 is coming because if I remember right, my student was looking at 1.263 gigahertz

machine in those days.

So, the 1263 is coming from the 1263 megahertz that is what is coming through.

Basically, these things are clock ticks. And if you really want time, you have to look at

the clock frequency and convert it into microseconds or milliseconds. So, that is what is

going on. Again, he is checking the sanity of the whole thing, he is basically if it is enter

he is pushing it onto a stack, and then it is to the corresponding exit also and this should I

will match. And so, that is what basically is doing. If some of these things do not work

then mail is something went wrong. So, is that is this stuff has already been captured is

checking the sanity of or what if already been captured.

Basically, then interrupt should nest properly. The nesting is what is doing. That is why

steps some stacks is got some 2 CPU stacks, and this is this stack cannot is the number of

interrupt levels. So, that is what is doing whatever. So, I think this more or less and then

finally, he is outputting it into some files. Basically, he has got 2 files, out dot CPU one

these are all the interrupts. All the trace of all the interrupts on CPU 1, this is the trace of

all the interrupts at were handled by CPU 2. So, he is basically writing to all those things,

depending on which CPU it is right into fd 1 or fd 2, all right.

So, this is roughly the code corresponding to a device driver that is counting interrupts.

The one thing which I have not covered is what happens when you want to unload this

module. This is what will get executed again if it is still recording for whatever reasons

you said recording is equal to 0. You free the event buffer because it you allocated kernel

virtual memory, and this kernel is running all the time. Any time you do not free then

basically something like you lose that virtual address space. So, you have to free it is

what is called soft might how what a called memory leaks. If you do not do it then the

kernel has memory leaks one did the kernel will choke up and die.

Basically, because the even though it has got gigabytes of virtual memory, you are

running so many of these things and a kernel is supposed to run for days and days

together. So, every time we are lose few megabytes, if you just do it enough times then

you finally, will exhaust address space you are dead. And you also do not want to call

this again because remember this p enter irq if it is 0 means you are not calling any of my

driver. If it is set to these values all right enter irq or leave irq here right, where is it may

be sit it oh, it is here see only because I said this is that I am getting controlled into these

2.

So, I am going to set to 0 saying that please do not call my driver at this point. And then I

am also unregister in, I am saying that this device I know I want to release the major

number. So, anybody can use it this seems to a bug here this 233 and 6 6 6 I do not know

what the stories, so this roughly the whole of this device driver. So now this is an

example of what is called typically called a character device driver. It is not based on

blocks it there is no boundaries you can did here. There is events or the some kind of

boundaries you might calling, but this is not something hard and (Refer Time: 43:53) up

it turns out to be the let us say the data structure, the event has been defined to me.

So, that there is some kind of structure to it, but these are not at the level of what you

normally considered blocks. And there is no caching going on typically in in block

devices, there is some kind of caching going on. So, here this would be typically

considered a character device driver. Of course, this distinction between what is called

character device driver and block device driver has been now always even a fuzzy thing.

So, you do not have to give it anything you can just skip it, but ok.

So, we will move on to the next part which is I will just briefly discuss block devices, we

will go into more detail later.

(Refer Slide Time: 44:50)

So, what a block devices? The good typical good examples are things like disk tape CD

ROM’s all those kind of things. Now you notice that in the previous case the character

devices provided certain functionality. You had things like what are the functionalities,

we had open close they are read write open. At least often in other unix it will call

closely these in the Linux it call release. So, you have read right open etcetera. Whereas,

see we will notice this is the kind of functionality. Open, close possibly size strategy,

hard usually do not have read write routines.

So, this one major difference we just go through it open, what is it is basically can bring

the device online or initialize some data structures correspond to device. It may also set

the flag for exclusive use. For example, it take device only one user is using it. Because

it is you can have the rewind operations going on right. So, you want to ensure that only

one party says if 2 are 2 parties, comments a rewind it is going to be big close. So, you

may want to set it by closing this also. You might have a close let me said done with the

device. You can size you may want to look at the device and say what is the size of the

partition and those kind formation, how many partitions in their etcetera. You can have at

called a strategy.

What is the strategy? Basically, if you want do any reading and writing you go through

strategy, and basically this bottom half, what it means is that this is not being initiated

because of your system calls. This being this is being done as part of other activities,

basically what is happening is the device is certain q, you q the requests to them. And

then they are these requests are managed through strategy. Of course, the word strategy

is not used in Linux, but it is the world uniques name for it.

Basically, the reason why you have a strategy is because the minute to give a request. It

may not be right and to do the request immediately. Why is that? Because as I

mentioned, in block devices especially disks you want to do what is called clustering.

You want to get instead of doing the request immediately as soon as you somebody gives

a request, you want to wait for few more requests. And hopefully you have instead of just

doing a 4 kilobyte or one kilobyte request. We want to do some 100s of kilobytes is

possible. You want to cluster them.

That is even why the guys make a request and they disappear. The user process context

walks into the kernel makes a request and the runs away, goes away. And the strategy

routine is a guy which wakes up and sees that it does all this clustering etcetera, and tells

it is now I have seen enough stuff. Now I can use my disk to some reasonable efficiency

level.

Now, I will do it. So, none of the users are doing it parse. It is being done by the strategy

routine that is why it is a bottom of routine. It has no context it is no it does no user

context. And because it has got so many requests, it can reorder requests. Because on a

disk if you go all over the place randomly. So, I am going to be a costly. If it is possible

for you to go in up a more disciplined fashion through the disk.

So, that you go through in a certain order the request, that I that you have seen it might

make sense of course, the reordering requires can create problems for the application, in

case they have to be done with particular order. And in that case, you have to do what is

called you might want to insert what you called barriers. So, the barrier will essentially

ensure that you force, the system to completely finish certain operation for you take the

next ones. But in general, the idea here is you are doing a request most of the unix kind

of programs or synchronously written programs.

What it means is that; you are not really doing is synchronous I O; that means, you write

and then you wait; that means, this nothing this is going on right. Typically, a single

thread programs single threaded only when you have multi-threaded programs then you

have a problem. So, your single thread programs, it make a request, your process is

struck anywhere. And then there are other parties in the system, they do not usually have

anything to do what I am doing. They also make requests. So, another thing is I can

easily take your requests and reorder them without any worry, because they are all

unrelated requests. They coming from different people they are doing probably different

things. And so, I can reorder them without too much trouble.

Of course, if have a single program with multi-threading. Like java, for example, or

using Posix threads whatever. Then they might be some requirements for different

threads might make requests and they might have to follow certain order to get certain

guarantees with respect to what really happens you want to do it consistently what gets

updated to disk in that case you are do something special. So, the you not say that this

particular design is for the old Unix in the 1970’s Unix where synchronous I O was more

or less standard. No threading was there. And multi programming was doing a lot of

people are sharing the same system.

In that case ordering requests is perfectly fine. And this operates asynchronously.

Synchronous means with respect to the process who initiate the request (Refer Time:

50:41) this is no connection with that particular ordering. So, when somebody wants to

start a new request, if the device is busy you just q it. Or it could also be the case that

there is a slightly different situation. It may be that you need a free buffer, we will come

to that soon there are some buffer caching routines are there. And you need to allocate a

buffer for the one particular block. And if it is not freely available, what you might want

to do is you might want to flush a dirty block to make that buff one buffer available.

So, in a sense what is happening is that you are doing a right not because user wanted it.

You are doing a right because, somebody wanted just a free buffer, but you are doing a

write unrelated write, which is nothing to with my request so that I gives a free buffer.

So, the study does all these kind of things, that is why it is a bottom half it is nothing to

with any process context. So now, we have a halt and this basically done not because a

user it is done usually because of some system requirement.

So, usually these block devices, they provide support to the buffer caching routines. Few

with block devices typically have buffering going on typically. There is caching

extensive caching going on reason why of course, is typically block devices have been

slow. In the tapes and disk etcetera, because they have been slow, the caching has been a

central part of their design it shows very big (Refer Time: 52:22); that means, that block

devices the device drivers have to essentially provide support to buffer caching routines.

That is something they have to do that is a critical part of it.

(Refer Slide Time: 52:24)

So, I just mentioned some of these things quickly you can have things like buffer

allocation algorithms, get block. You can have the buffer release. You can have buffer

read buffer read synchronous buffer write etcetera. Basically, it is because the caching,

what is the thing that you want to guarantee is a following; there is a block, it has to be

there is exactly in one single buffer, it can not make 2 different buffers. Different 2

buffers the inconsistency can raise: that is why there is a strict requirement. And then it

can be in the free list or hash list.

So, now the interesting thing about the system is that; suppose I have a file, which I am

reading. I got it to the cache. I did not modify it. It is quite possible that somebody else

some other user you also may also want the same file. So, even than done with my use, I

can since it is cached I can make it available to the other second user much more rapidly

much more less late and see further processor. So, the thing is what happens is that I get

some stuff and done with it, since I am done with it I can put it on a what is called a free

list, but it is still valid content.

If by share chance somebody else comes along and wants the same stuff. And look at the

free list if it is there I will give it him directly, because nothing has been modified. So,

the system essentially what it is doing is that, if first part it takes the payment getting it.

The other parties can free ride on it. So, the idea basically is that you keep a free list, and

the manager feel it is in such a way that, you always pull out from the free list, which

either totally junk value you observe more content what is over, or does not been used

for quite some time.

So, what I will do is I have a free list, and what I will do is if somebody got some file

into the system, some block into the system, and then I am done with my use I will put it

on the end of the list. And somebody wants a free block sorry, free buffer; I pull it to the

front; that means that my effort is bringing it from a slow device into the kernel memory,

since it is sitting at the end of the buffer guest, right? Till I am completely done if all

these things, I do not have to be it will not be touched. So, there is chance that you can

get reused that is apply.

That is why it can be in free list or in hash list. Hash list means I am still using it in some

sense free list means I used it and I am done with it typically. So, typically all this sub

you will notice that this buffer allocation algorithms they usually call this I can bread for

example, we will call a make a call to the read of the block device. And write will also do

a right on the block device. So, these caching routines depend upon this block (Refer

Time: 55:58).

(Refer Slide Time: 55:59)

The direction of these things it turns out most systems I what is called the block layer.

So, there is a device driver. There are locks or device driver as possible. Now you can

have a device driver for a tape, you can have a device driver for disk etcetera. Or you can

have it for CD ROM etcetera. Now it turns out that many of them might have some

commonality. So, because they are all talking intrude of reading in size some certain

block sizes. They are talking about how to take care of interrupts etcetera. There is some

commonality of functions.

So, most operating systems typically provide a block layer also. So, the device drivers

use the block layer infrastructure to get their job done. So, in a sense you can see a

hierarchy developing. You are something like a file system on top typically. Then you

have a buffer cache layer next to it. Then below it, you might see a device block device

driver. And bellow it might say a block layer, you will see. So, with lot of functionality

that is plate a cost. And basically, this abstracts away the common functionality. So, that

each block device driver does not have to reinvent the whole thing, but because it is

doing it across so many different (Refer Time: 57:28) devices getting it right is not easy,

but so, I will see that a Linux there has been lot of changes in block layer design quite a

bit.

So, this has been changing quite a bit. And getting it right is non-trivial. We will at some

point in later you might actually take a look at this block layer design there is (Refer

Time: 57:50) saying it is because, one of our one students subarna in in our department;

she has designed the 2.5 Linux, 2.6 block layer design. She has done good portion of it.

We will talk about it later.

So, basically if you think about this whole system, you will see that lot of interfaces lifec,

Posix, device driver interface, and you have to very be careful how to use the

infrastructure. If you do it try then it is easy, but there is a lot of functionality at different

places, you have to an exact what you use.

I think we will stop here for the time being, and then we will continue from next class.

