
Storage Systems
Dr. K. Gopinath

Department of Computer Science and Engineering
Indian Institute of Science, Bangalore

Types of Storage Devices and Systems, Long-term Storage
Lecture – 11

USB Storage: Introduction, Layers, Linux USB Framework, Core APIs

Welcome again to the NPTEL course on storage systems. Today we will look at one

widely used storage medium slash storage system ok.

(Refer Slide Time: 00:35)

What is that one? That is the USB mass storage device. We just go through it a bit it has

got a lot of interesting aspects and many of this aspects are there in any other two system

typical also. You look at it carefully we will find similar aspects, that is why it is

interesting to look at it.

So, I am pretty sure that most of you have used it right. It is widely available and it came

out first about 2000. Now and if first came out 64 megabyte was considered big, 32

megabytes considered big now it is close to 64 gigabytes can we get. Somebody

actualize now there is somebody has come with a 1 terabyte USB stick. So, it is the

progress in this when comes to density has been phenomena and what is the technology

that is fueling it. It is something called flash storage. Flash storage is a type of storage

which is personal type of memory. It is similar to semiconductor memory, but it has got

some differences we will have going to details about those thing because its not part of

our discussion here ok.

So, it essentially semiconductor storage; essentially there is some kind of a potential we

will that is created under trap some electrons. Whether electrons are there are not that

basically says 0 or 1 and because it is an electronic technology, it does not have

mechanical components. So, some of the issues that are there with the disks are not there,

but in spite of that it turns out the electro mechanical technology still in terms of density

much better than what we can do with flash ok.

For example you might have seen that 4 terabyte hard disks are available, 3 terabytes are

easily available, 4 terabyte you can face spend some effort you will find it, but getting

this flash at that the same plus point is still not easy. Flash is about a factor of 10 times

costlier than disk. So, anyway say tells out this us there is a based on the flash to flash

kind of semiconductor technology, you can build a mass storage device using USB

protocol.

What is USB protocol? It is basically a way of connecting some functionality in the form

of some device to the some system. It could be a PC, it could be a laptop, it could be a

camera, it could be a printer etcetera right there are so many types of technologies, this

basically the USB protocol is a way of having a electrical connection on top of it a

communication let us say protocol on top of it so that some of the transfers that are

required for the device to operate with the camera or the PC can be made possible.

Let us quickly look at what is there in the systems. USB has a micro control that handles

USB protocol. Again we will go a bit into more detail, but the handles USB protocol and

media controller that handles device specific part example storage in the storage. As I

told could be different kinds of USB devices. One could be doing storage, one could be

doing Wi-Fi also right, one could be doing a printer also. So, there is part which is

connected to the USB protocol, the part is connected the device part of it. For example,

the storage will be it is own for example; it is how something called SCSI commands

SCSI. S C S I ok.

Now, that is specific to a storage device, but it is not what a Wi-Fi device, that is not

necessary that is something different right. So, if you are talking about the USB mass

storage device, what are we doing right now? You are basically we take the device an

insert it into a laptop or a PC. The question is what happens we will slightly taken look at

this one.

First of all usual to detect and respond to generic USB requests and other events on bus

because something on the bus; because an electrical system I put it in and then there is an

interrupt generated the electrical connection and basically once that happens then I need

to know I need to tell the device now putting a information on the bus I want to know

who you are. So, requests identifies at devices and this information is in the device itself,

usually in a non-volatile part of the device so that it can it does not have to be lost

anytime you remove power And also there are some specific things to respect to traffic,

means whether it is whether data should be going from this side to that side from the PC

side to the USB or USB side to the PC etcetera and also the power in the bus. I think all

of you know that the USB device the storage device have does not have power of its

own. So, it has to be powered by the PC it goes to the sock the USB socket and that

power is given to it right and there are this power in the bus also happens to that let us

say there is a specific aspect of how to power it also. So, detect and respond USB mass

storage request, one is the generic USB requests, this one is the USB mass storage

requests such as status or actions from device.

For example I might want to know please are you ready for example (Refer Time:

06:57). So, for example, it may be that I need some information about the status of some

previous action (Refer Time: 07:09) and since it is a USB mass storage, it turns out they

decided use something called SCSI commands. We will go a bit into it later, but basically

SCSI commands are a way of interacting with storage devices. It is become the most

popular protocol for interacting with storage devices and this SCSI commands or things

like read from particular block, write from particular write a particular block and it could

even things like retry the previous request because I could not you send me something,

but I cannot make sense of it. Keep the information about your previous whatever

happened last time, I want to know the status of that one (Refer Time: 07:57) this SCSI

protocol has command of that kind and such as read and write blocks of data in the

storage media, request status information, control device operation and these are the

SCSI level, there is also one more thing at the file system level ok.

For example, you know you will notice that most of the USB devices are formatted to

something called FAT32 file system. That means, it has got a particular notion of how

the, let us say the file system metadata where is it kept. So, and then since you know

where the file system is metadata is there, you can do what is called a mounting the

device. So, let us accesses were the file system. What is it mean to say that the device

accessible of file system. In a UNIX kind of system this particular device now is in the

name space of the UNIX system. For example, I might have it as slash dev USB on a

lying system and then I can CD to that slash dev slash USB whatever slash dev slash

whatever and you can change the directory do that, and I will it would just look like to

look to me like a regular directory once it is mounted ok.

Again what is the mounting operation? You have a raw device, you insert it into the

device whatever and then some control actions take place and then you finally, draft the

file system that is sitting on the device, onto the that is attach it to at some point to the

UNIX file system, and then from then onwards you can change directory to that place

and we can just do we can navigate up and down the file system structures just like a

regular directory or a regular system.

So, and you will notice that if you are having a camera for example, the assumption is

that the files are stored as in FAT32 form everything is using FAT32. So, that you can

incorporate some intelligence in the camera itself, that is the FAT32 file system and you

can start using it. The way a FAT32 system you get. Some other file system that is a big

problem, somebody has to make sure that that particular driver for that particular file

system is there. That kernel the (Refer Time: 10:50) the device driver for that file system

is there.

So, what is happened is that people have assumed that FAT32 is a common denominator

everybody can assume that itself. Now, that is independent of your accessing things at

SCSI level, the file systems are no (Refer Time: 11:08) level high. For examples, SCSI

only talks in terms of blocks. It does not have the notion of directories etcetera. But the

file system has a notion of directories. It also has a notion that this if I if there is a

directory, I can talk about parent of the directory. There is in some sense I can have a tree

like structure. A SCSI command other hand does not SCSI protocol has no notions of

parent of a particular piece of formation, it does not have this kind of information.

Basically in some sense directories are not there in SCSI. So, what is useful is a file

system it basically I was said to name things and retrieve it using easily remembered

names. That is what a file system do, its suddenly much more complicated and what I am

saying right now, because when it comes to concurrency and caching and so many things

its quite delicate it is not easy to get in making. It is very difficult to get all this is

working very well. But impossible what is doing is, we are giving assigning names to

piece of information and be able to access it later ok.

 In a directory in a tree structured form. So, you can see the multiple levels at which you

are operating. One is at the level of hardware with basically senses the device; second

thing is the transfer information across the PC and the device; for example that the some

kind of communication infrastructure is there. Then you need to able to look at this

information that at the block level that it is basically SCSI command level and if you

want it to be even more intuiting, you want access it at the level of files then it one more

level. So, there are multiple levels at which you are operating.

(Refer Slide Time: 13:00)

So, I just picked up this picture from the USB specifications the diagram that draw a

something similar to this. Let us see what is this? So, there is a USB hardware here and

there is a host controller and then there is a serial bus which is connected to this and

basically there is a device driver in the kernel it has got a function of abstraction of what

it is doing. For example, this device driver is for let us say it assumes that there is a

capability for accessing certain blocks, some name blocks that is what is assuming and

this host controller. What is it doing? Its basically preparing for data to be transferred on

the serial bus it is noting when the transfer is complete. It also good for example, be a

DMA. It can do DMA access so, all this part of it is here ok.

So, there is also a device abstraction basically, you have lot of interfaces, a good example

is suppose you have a camera. Sorry let us take a instead of camera let us take a printer.

The printer has the functionality of printing and also sometimes scanning, faxing

etcetera. That have various interfaces so, the question is which kind of interface you are

referring to all those things come into picture here so, sometimes there is only one

interface that simple. But sometimes you can have multiple interfaces and you have to

decide to choose which interface. For each interface you might want to consider the

device also in different ways. Remember printer its not require certain configurations

which is different from what is required for scanning all that is handled here.

So, the sense your applications are somewhere here they are accessing it through some

file system and then finally, the file system access the device driver and then that in turn

goes through this part and then comes up this. In a sense there is a connection between

the device driver is talking to the USB at a functional level. The host controller is talking

to USB hardware at the electrical level or bit level you can call it bit level because

nowadays I can even do the following. I have what is called the think client right and I

want to put the USB device on my think client, now think client is talking to server

somewhere else.

I actually wanted to make the server pretend as if it is the USB is connected to the server.

Right somebody is going to do some faking out here. Instead of a serial bus which is

happening at the electrical bit level. It might be happening at the bit level, but using

network that also is possible so, in a sense you will see that there are different levels

abstraction in the system and you can understand this whole thing only if you understand

these levels. We will go at bit into more detail some detail further detail as we go along.

(Refer Slide Time: 16:47)

So, again to repeat what are the USB layers. The lowest layer concerns itself with aspect

relating to serial transformation. The next upper layer handles USB protocol specific

aspect; which is common to all USB devices. The next layer is function specific for mass

storage this involves SCSI commands. So, devices like camera have another layer, this is

the file system layer as they should be able to store picture taken without any outside

help because you do not need of PC for that. We should able to do it itself so, it has also

that this is might be call it the file system layer and might even have a camera might

even have some other higher-level things on top of it.

It may be also be that you can attached legacy device which USB support. Alright, we

already talked about if you want to keep data alive for a century it is not revile. So, what

I want to this is I have a floppy now I want to read it 100 years from now. What can I do?

I want to emulate the legacy device the device of 1990. I want to emulate in 2015, but I

want to use USB protocol for it. That is all somehow figure out a way of connecting that

particular floppy device, floppy disk I will electrically do something interesting. So, that

it can be some off it in to the I can connected to a USB let us say type connection USB

type device suppose. I am able to do it, but still there is a piece of software that has to be

there right so, that has to be also emulated.

(Refer Slide Time: 18:43)

Now, USB mass storage specification provides that is call a block interface. What is it

mean of block interface? It means it is accessing things are the in units of blocks it is not

at a at a byte level, it is at a block level block level. Block level can be 4 kilobyte blocks,

25, 12 byte blocks whatever that is up to you ok so, there is a block size it is accessing it

in only in terms of blocks.

You know it is a block because it is a block interface you need to go through a protocol

called mounting. A mounting protocol essentially is a initialization step before you can

access the block device. Basically, what we are doing is we have the information on the

USB device and you want to graft it, you want to connect it into the into the file system

tree that is what you are going to do.

So, once you do the mounting that part of it is done that is you are able to take the file

system that sitting on the USB device and you are now able to attach it to your main

computer systems file system attaching it some particular place so, that all the files that

are there on the device are now accessible from the machine, from the PC and you can as

I mentioned before you can change the directory to anyplace and you can walk up and

down the file system tree so, the only system there is mounted access again thing is if

you are mounting it.

The party you has a mounted it has a exclusive control on it. Basically, the idea is that

before concurrent request come in there is a problem right because if there are concurrent

requests one guy can leave this you sometimes have to modified things. In a modified

things what happens is it might have touch three different places before your operations

complete.

Now, you might have done two things before you do a third one somebody else

concerned does something else. The system is in an inconsistent state. Somebody else is

able to watch sees things in a state before all the operations are complete which is can be

serious problem so, you want to avoid it so, if you want to one way to do is to mount it.

And therefore, only allow one person there are some times you need multiple parties to

access it will be same time so, you might be an another protocol for that that is not

standard ok.

So, for example, camera with USB storage or even if you take one of these android

devices you attach it to USB port. It gives a two options right it says do you want to

think of me as USB device or the storage device and a somebody else right. If it is used

as a USB storage device then somebody has to program that particular android device as

a bits only a mass storage device and that has to be done by the mass arrangement call it

the PC then you can transfer in an all other thing ok so, essentially you have to ensure

that there are certain protocols with by which we can access multiple systems can access

right.

At the same time, but we need some specific support for it. Now you can also attach

some of you might have seen SATA disk that is has got USB interface and attached to

your laptop or a PC alright so, the fact that certain types of commands are possible on the

SATA disk.

For example, something called we will come to this later for parallelism you are

something called NCQ-Native Command Queuing. There are multiple requests to the

SATA device can be queued up and it can essentially allow you to do multiple things at

the same time it can queue things.

Now, even if you have that support does not mean that are the USB level you might have

support for it. The SATA disk might have it, but may not be unless it exported at the USB

level also that is its in something you have to keep in track so, there is just if you look at

the LINUX situation.

(Refer Slide Time: 23:20)

So, basically what is happening is at LINUX kind of system something’s are done on a

system right, something happened the hardware level, some things is happens at the

kernel level. The operating system level you might call it something happens at the user

level. Of course, operating system is both user level things and kernel level things, but

the kernel thing is a protected subsystem right and you where is the one where things are

operating at as a process level right and it you are user is writing this code.

Now, the USB devices here there is a host controller this itself is a device you are has to

another driver for the host controller itself and then there is a USB core which is

basically the thing which does the protocol for USB devices and then there are specific

USB device drivers. For example, you might have the file system layer on top of this or a

block layer on top of it could also be a net layer for example, if its a dongle right for

example, this kind of things etcetera.

Sometimes there are usbfs also available in some systems. The which you provide all this

information whatever has been figured out right through what is call the proc file system.

In LINUX there something called a slash proc file system and if you use essentially all

that kernel information can made available in a tree like structure the proc file system

and anybody who has got that permissions to look at the files can see it and then because

you can be writing your own code because you got the information now about the

device.

What its characteristics are? Now you can write your own driver using information that

has been gleaned out from through the proc file system. Of course, in that still little bit

route if it if you are not route in order to anything this way. So, you will be able to

because you have special privileges even as person has written user mode driver route

permissions are there on it. Therefore, you can use the information that there of the

splash proc file system and be able access the functionality of the USB device so, user

mode drivers are possible user applications are possible let me user application directly

use this part.

For example, you are let us say your browser for example, is using it wants to upload

some files from the USB device so, the file system is already attached mounted

therefore, the application using standard f freed and all those things. It accesses it and of

course, somebody translating it into file system related calls FAT file system calls. And

then that in turn is going to use the device driver and finally, all the way up till USB

device where the information to talk ok so, there is USB frame out that is available in

this kind of systems in LINUX kind of systems and it is got multiple levels.

I just want to mention that this is typical of any storage system you will find that there is

somewhere hardware. It could be a disk it could be a flash device tape whatever it is

there is some hardware related things some way to control those things. Some protocol

related things because finally, what is happening is that the devices are all the all the time

changing right.

You will find that the tape of 1950s it is not the same tape as of today. They will use

some different types of technologies and certain things what a feasible there may not be

feasible. There something is the technologies all the time changing, but if everything

keeps changing all the time then you get into your problem so, what you want to do is to

abstract away certain things so, that certain core things do not change and user using that

core we are able to talk to even newer things that come out. So, the USB core is basically

one of those kind of things is a protocol level protocol specific things so, that you can

talk to there is a some specific set of operations that you can depend upon using that you

can do you can handle old devices or also new devices ok.

And any specific thing any specific thing, but for example, storage or itself Wi-Fi

whatever it is that is handled it specifically through this so, specificity comes from here

generality comes from here and the hardware related aspect come from here.

(Refer Slide Time: 28:35)

So, let us just try to understand what happens when I insert a USB stick into a system.

First of all the hardware senses an interrupts the CPU right because electrically it is

sensed and you interrupt the CPU fairly have to identify some agent. In interrupting

basically interrupting does some basic things and it identify the kernel thread that is

going to be initiated to handle the insertion.

The basically what the interrupting does all it does is it knows which port was there. For

example, whether it was this port or this port usually further USB can have a multiple

ports right its says came from this side or from this side. So, that has to be identify also

the controller who is going to there could be a hub there could be whatever. When they

you might have heard about USB hubs right there could be a hub there are to could be

multiple hubs also there right it has to be have to figure out who is going to control USB.

The speed on the PCI address once upon a time USB the right USBs where running at

lower let us say speeds. Now we have USB 1.0, 2.0, 3.0 somebody has to know what the

speed it is. In a sense most of the designs are some extent self identifying the tell you

what speed at we said can I operate and also typically these devices has some memory

for system memory and that has got all the details about what I/O address is comfortable

with, what are the PCI addresses it should be map to etcetera some of the details are here

ok.

In a sense the device itself gives information because it knows about itself so, it can tell

the kernel which has not. Since, differ device before what are its characteristics so, the

interrupt routine only does on simple things first because interrupt routine definition

should not take too long so, only simple things are initially captured and then the

interrupt controller interrupt routine. Basically, says that this is a kernel thread is going to

do some work and this guys going to use informational (Refer Time: 31:00). The kernel

thread gets scheduled sometime later and notes the PCI information. That it is a use USB

mass storage device whether it is this device that device whatever and then the kernel

thread what is do it. It calls an user program typically it is a user program why because

there is so, many different things you can do USB is you know you can just imagine how

many types of USB device there here.

So, you do not want to put all that function and in the kernel because the kernels already

big you do not want to put too many things in it so, for example, there is a program

called slash has been hot plug. What is hot plug? The ability to insert things in and out

without shutting down the system and restarting it we can put it in analyze system. So,

there is similar called hot plug where I can put the USB device hot when the system is

running and it basically gives you some control at the user level. Where the main user

level again mean at the person using the memory stick. I am talking about the level of the

person who has configured a system so, that this kind of thing can easily used so, and I

basically this is a the policy is now at the user level not at the kernel level.

The kernel level means it is true for everybody it is going to be valid for essentially for

everybody and user policy is not means that you might want to have your own specific

kinds of approaches to how handle the device. For example, it will be that you have an

sbin/hotplug and you are in a very sensitive system, no outside devices should allowed.

That guy immediately says get lost. I think some of you know that lot of the problems

about viruses that are spread usually somebody bringing in outside devices and touching

it to in critical installations and often times there is mathematic program that transfer

insert a particular device like CD or USB.

And that is basically user level policy in some sense what should happen when I put in

and that can be good for most of us, but sometimes it can be bad viruses travel through

this automatic route. So, this program like sbin/hotplug what it does is. It notices that the

USB device with this with port what kind of controller what kind of a device it is all stuff

is, what kind of a driver is going to be has to be used to understand this device all the

since with that. So, it figures out what resources are needed it configure the device it

helps to load the driver. For example, the mass storage device then you might want to do

the it is going to load the driver and using configuration files ok.

For example, more is configure the device it may be that I have to let the device interrupt

at a particular interrupt line. If I want to talk to the device I might have to give it some

kernel memory so, that it can prepare certain command strings. For example, when we

have a SCSI device you need to have something called as SCSI control block. We as

used to talk to the device and vice versa there is some if want the device to send back

information. It needs to know what kernel unity used because the memory that is being

given its not within the device that is going to be use sorry within the device. It is

something which it has to pick it up from the host kernel memory ok so, given these

things you have to do some configuration.

So, how is the device and driver have been initialized? Then basically you can mount the

system and display it to the user. Like for example, when you on a regular system, when

you update, when you sorry insert the device you get some kind of graphical user

interface. You get right saying what you want to do with it right this kind of things all

this things can be done so, let us just look at bit more some more detail.

(Refer Slide Time: 36:09)

Even if there is no drivers for USB device you can still take the USB device because this

is part of the USB protocol specs. That the driver actually does the specific aspect of the

device whether its mass storage or its wireless or whatever it is there is a camera all those

things. That part of it is done by the device specific part of it, but up till that generic part

it is done by the kernel because if it is LINUX kernel which has support for USB

devices. The generic part will always be there; that means, that sorry this part is always

be there because if always there it can get to the point where it can do whatever

generically. It can do this is required for specificity so, hardware detection that used USB

host controller

And basically, the host controller driver gets low level physical information and converts

it into higher level USB protocol specific information and this information is populated

into generic USB core layer this USB core driver so, in a sense the kernel knows about

the USB device. Now if we are not now exactly how to use it that is the different story,

but it knows what devices were inserted. Then depending on the availability of other

drivers interface and applications depends on specific identification. It gives user space

of view of that detected devices. Now, this is what is the thing that gives you the thing

which is user friendly point of view this point. The kernel knows about it, but beyond

that kernel anything because it does not know what to do with it.

You need to gave additional piece of information the specific driver for accessing the

particular USB device. In other case mass storage you need to have a USB mass storage

device driver and USB mass storage device driver assumes that is the SCSI device and it

knows that it has to send and receive. I send SCSI commands and it gets back responses.

(Refer Slide Time: 38:40)

So, again the lot of interesting things about this thing basically there are multiple

configurations for a USB device so, I can have multiple interfaces and already talked

about this so, for example. I have multifunction devices USB printer for example, this

what printing scanning and faxing so, that is why there are multiple device drivers. For

example, like camera will have sorry the printer will have multiple device driver. It is not

that one device drivers actually handles all three functionalities there will be a device

driver for each functionality in typically in these kind of situations USB printer kind of

situations ok.

So, something interesting over USB devices that one USB device may have multiple

device drivers and different device interfaces may have the same driver also that also its

possible both these are not possible so, we will just quickly look at some aspect relating

to how LINUX actually handles it.

(Refer Slide Time: 39:35)

I think if you look at the LINUX kernel, you will find that there are some header fills

some a particular place and that so, this is the notation used usually means have a slash

user enclose etcetera. If you looking there you have this functional it usb_resister and

usb_deregister so, what is this usb_register doing? It is gives information about name of

driver, what probe/disconnect function to use so, basically what we are saying is there is

a you want to say basically what is happening is that I want to I have detect the device.

Once that devices in detected you have to someone gives you additional information

about which driver is going to act on it use it. For example, all that has happened is I had

to say which driver is going to be used because I am at this point here. I want to say what

driver is going to be use on it so, that is what is going on at this point so, what I am going

to do is. I am going to say now that you know that I this device exists, please use this

particular let us say function. This pro function to know that everything is that this is

actually the function that has to be used for accessing this device and the (Refer Time:

41:27) it is by as a name your driver also I give it so, once I am done with the use of this

particular device or can do usb_deregister.

So, normally you tells out that there is a similarity might see you see that file systems

usually register something called the VFS layer. Here the USB the devices due to USB

core. Now that the USB core has been told not this is the driver name, the driver itself

has some functionality one of them is program disconnect so, the USB core. Then uses

the name of the driver in the driver it has got two let us say I said two functions program

disconnect of course, it is the other functions. Then USB core calls a probe function and

convinces also these are right function right functionality.

That is somebody is giving information about how I should be accessed the kernel in turn

(Refer Time: 42:30) again you just the way of checking and then you can do some

specific data transfer functions so, you can send control messages, you can send interrupt

messages. For example, I can cancel the request suppose I am doing something’s. I want

to cancel it its possible in some cases to say please stop that copies that is going on that I

control that is interrupt message and these are basically the things which tell you how to

use how to send bulk in bulk data this one’s ok.

The way you should do all these things is basically you have something called USB

request block and because the devices are slow it uses asynchronous I/O and basically

what happens is you send SCSI commands to the USB mass storage devices the exact

specifics are as follows. So, first of all what happens is that when the driver has data to

send to USB device you have to allocate what is called urb.

(Refer Slide Time: 43:48)

What is urb? urb again is the USB request block ok.

Some piece of kernel memory that is allocated and you also allocate a DMA buffer

because what is the DMA buffer. The DMA buffer is basically web programming the

hardware system so, that they can transfer data efficiently so, there is if there will have it

will send to have something like count also sector so, that keep strike of how many bytes

have been transfer always kind of things so, you also want to shaded DMA buffer where

from your actual transferring things and also I want to program the DMA engine itself.

So, the data that has to be sent for example, if we are talking the write you copy the user

data into DMA buffer.

The user data could be coming from user space and then it has to be copied onto DMA

buffer, but means that there can these is a kernel function. This actually has to be careful

that user is not giving you something which can create from security problems. It has to

be mapped it has to be a legitimate pieces of in the it is not an illegal address for

example, all those things are checked by the kernel and then scrub into DMA buffer ok.

Now, once you have the allocation from urb and you have the DMA buffer where the

data that has to be transferred is already copied into. Then you can initialize what has

been the urb allocation you are look you initialize it and then you send it to USB core.

The urb when its initialized you also send it what kind of functions to use for doing any

by transfers is possible and then also it gives you a callback that is ones a function is

completed who should be called. So, now once it is done the urb is transmitted to the

USB device now this can succeed this can also fail whatever reasons.

Instead of whatever happens the urb is called is callback is done so, that to complete

whatever either it because it completed successfully completed it. Therefore, you might

have to do some cleanup what if something that happens also you might want to be clean

up that also. So, in a sense what is happening is that if you think about this if you look at

this particular framework right. What is going on here? You want to send some you want

to write to something is application out here is wants to right something. Once again with

the regarding user buffer that is above for has to be copied into kernel first and that is

going to be done by the file system layer or you can be doing it directly from user mode

drivers. You have user mode driver you will not got the file system layer you will not

actually directly come through this ok so, that is even my we are talking about copying

its from user space to kernel space.

Normally, it will be done with the file system because normally what is the situation I

have a FAT file system FAT32 files system and user level actually uses the C library and

C library as something called F read and the F write. F write actually it takes it from your

user buffer and copies it into the buffer that is used by the library. That in turn is copied

into the file system it also copies it into a kernel memory there and then in the USB

device driver now know that is already in the kernel space may not need actually copied

into another place. It may be necessary in case that DMA buffers need to be in a

particular place. Sometimes you will find that in LINUX systems, the DMA it cannot the

DMA can only happen if the in the layer 24 bit physical address space the memory.

There are some restrictions of that kind. So, then you might want to copy it into the

lower 32 bit sorry lower 24 bit physical address space. Those kind of this all done by

various subsystems total. Finally, it is in the DMA buffer and then you are now asking it

to you create a urb now because now we are somewhere around this point. You create a

request buffer which has all the data and you are asking it to use a specific type of

command. For example, the I mention the send block right sndbulkpipe sorry use this

particular function saying that use this as a way to transfer information and this might

because I am using way of this might actually do the asynchronous I/O part of it.

And then the host controller there might be some additional things. For example, it may

be that whatever information I have to send has to be chopped up into pieces and sent. It

may be that this guy can understand only some different units. Now is that for example,

if you take your regular USB memory stick it have its it has its own notion of what is

called read size, write size and erase size so, if you ask it to right a small portion alright it

could has to reuse that part.

Somebody has to there was a whole thing then write that part right. So, it may be that

some of those kind of things are happening at this level. It could be that you are writing

in terms of units of what is the size of fast file system block size. It can be 4 kilobytes, it

could be I think with different as a FAT systems you have different block sizes alright.

The thruster some various things are different right so, because there are difference the

unit at which you are writing is different for it.

For different file systems that may not be the same as what is there in the USB device so,

somebody has to do what is what we call that you last time segmentation and reassembly

and that is happening at this point and once that happens the data is sent out for writing

and once it is completed. The host controller USB host controller will get a notification

on the device saying it is complete. It will some then interrupt the USB host controller

actually is notified. It typically host controller will handle all the interrupt for some time

till it decides to interrupt the CPU ok.

Once it has to interrupt the CPU then you know that the operation that you sent out

earliest complete and then in turn what happens is that that callback function that was

registered right will be called so, that the any cleanup activities whatever has to be done

can be initiated so, this roughly the model of how transfers take place and may not really

discuss our things. Like how concurrent operations can take place, but there are some

details that also have to be further looked into ok so, what is interesting for us?

Is basically how many things are involved before you can get USB to work. You have an

user application which actually shows you the GUI, saying what do you want to do with

this thing. They want to think of it as a mass storage device or do you want to use it as a

some over type of device right like I mentioned of android device right. if this is an

option. All of those things are user level applications and then there is a FAT32 file

system typically for USB devices, but what applications are using to write and there are

other pieces of things are already there which have to all work together before we can get

any data in and out to the system ok.

(Refer Slide Time: 53:32)

So, basically many subsystems have to work together and you will find that this kind of

structure is there in where it look at small systems or big systems. For example, suppose

you take a very big huge massive storage system right. First of all, I need to know where

to write to right because I need to know that such thing exists first of all. Someone has

tell me that this device exists, it could be artificially created one. That is it is actually

composed of 10 1 terabyte disk and somebody is making it look as you said 10 terabyte

disk and I need to know that somebody giving me that that there is virtual 10 terabyte

device every day so, some kind of discovery. Instead of some need to know you can have

both the devices whatever name I do it to it so, that I can start incorporating it into my

system so, that I can say that this exists now I can start using it so, there is some aspect

of device discovery there is an aspect about how you can take the information there

which has to be recognize has a file system.

For example, somewhere has to mount it once it is mounted then the user know user

application has know where is mounted so, and then once it is mounted. Then you have

some notions about at in what units of granularity, you want to some information and

that might be different from what these devices are comfortable with. Somebody has to

do some translations all the sense are required. You will find then this is true for almost

any logical system, you will find that there are a lot of multiple aspects are to be handled

different interfaces will be there which will be different layers will be there which will

handle different things.

You will not really talked about things like encryption decryption etcetera. It could be

possible that you want to encrypt things yourself because nowadays you have so many

USB so, you can leave it here and there and forget it. And somebody can look at some

sensitive information so, you might want to have encryption somewhere. Now where

should the encryption be should be at user level or should be at this level. Ideally, it

should be somewhere at this level so, that but then there is I guess as talked to last time

that is device the key management information. So, there are lots of issue all these kind I

have to be all looked into and so, a system perspective is important. We will continue

with next time on some other examples right.

Thanks.

