
Storage Systems
Dr. K. Gopinath

Department of Computer Science and Engineering
Indian Institute of Science, Bangalore

Communication Protocols for Networked Storage Systems
Lecture - 10

NFSv2 Problems continued, NFSv3 Enhancements, NFSv4-Overview/Changes/Data
structures/Leases/Security, CIFS, Unix-Windows integration in NFS

In the previous class, we started with the NFS as an example of a network file system.

(Refer Slide Time: 00:33)

And again just to recapitulate with storage area networks we assume that there is a single

application which is managing the storage. So, there is no essentially you cannot you can

say that there are no consistency problems. Somehow, somewhere in the application they

are managing issues relating to consistency, issues relating to quality of service security

etcetera. So, it is not part of the storage system to take care of it. It is in the part of the

some other upper layer typically the application to handle it, whereas, with once you go

to NFS. The idea here is to provide some level of support in some other series. It could

be in the case of consistency management or it could be in terms of security etcetera.

Now, NFS version 2 when it came up it was very early on 1980s.

So, it is particularly simple in its ideas about how to handle these issues. So, we will see;

what are some other problems. I have mentioned some of this in the previous class, but I

think that this reiterate one more time. For example, maintaining UNIX semantics is not

easy for NFSv2, Why is that? When we open file in UNIX right, what happens is that

regularly UNIX checks on first access. Once you have access to the first time, is not

checked here. Once you have a file descriptor that’s it, you no longer have subject to be

checks. Whereas, NFSv2 being a stateless protocol. Essentially, what happens is that if

the permissions have changed, then it mainly it essentially it gives different behaviour

than Posix gives you. Same thing atomic I/O operations, it is possible that while we are

doing some long I/O. Let us say four megabytes or whatever. Since, it takes multiple

times and multiple network packets to go back and forth some things can change on the

server.

So; that means, you cannot give atomicity guarantees. Similarly, there is a issue of what

is called deletion open files. This is a standard way in which temporary files are created

in that to make sure that do not forget to delete them, what happens is you open the file

and delete them. And the idea here is that in most it is where it happens is that the open

file is essentially used to available for reading and writing. Whereas, was the protocol

temporary file is closed, then the file blocks were returned back completely. Now, this

semantics and Posix also has some problems in doing supported in NFSv2. For example,

if the server itself deletes the file. Then basically as we discussed previously, every new

file name is reused the generation number increases because of that it turns out that if the

client now goes and asks for the same file.

There open file is has to be its going to get a different let us say generation number and

therefore, we come back and say that it is a stale file. So, you can not really have

essentially the colour medium that is there in Posix of deleting an open file. So, for that

you need to do some other things. For example, in the case of some of these things there

is some checks possible some sorry solution is possible, but there is still a case of

deletion of open files. Suppose, this is a client and one of its processes has opened the

file and some other process on that same client deletes it. Then, since the client actually

all the requests have to go through the client. The client can keep track of such things

coming from various processes in that particular client.

And in case somebody has the deleted a file, open file. It can actually know that this

what is happened. I mean therefore, it can essentially still provides Posix kind of

guarantees, by rename that file to some name which cannot be given by anybody else

and excessively making that particular file still available to the party it has got to open

first. Whereas, but this solution does not work in case of server deletes of file. So, there

are some holes in the NFSv2 can handle some of these Posix kind of semantics. Now,

similarly there are some problems with cache consisting guarantees and basically NFSv2

checks in the modified term of a client or the cached data different from server

modification time. If by this way; it can figured out if something has changed.

But if this works only the server is making changes, if some of the client is making

changes this does not work. Essentially, the client has some modified time and there is a

different time which if it is informed, then it can figure out if something has changed.

But if multiple clients are modifying it they might not necessarily inform the server.

Therefore, across multiple clients this may not work. So, in a sense your cache consider

guarantees are quite weak. Again with respect to security there are various models again

an NFSv2 came on the scene first, there was no serious issue of cryptography. For

example, public key and persistence came out only in about approximately 1977 or so,

by the time various methods worked out it was rather let us say only the next one decade.

So, security that NFSv2 provides this closer to the standard UNIX model.

Where its assumed that across all the clients there is uniform UNIX like UID and GID,

user Id’s and GID’s and therefore, that is the model that has been initially proposed and

this turns out to be somewhat problematic and larger installations and especially when

administration is handled by different multiple parties and similarly the data traffic itself

goes on unsecured networks. There is no notion of encrypting the net the traffic that is

being sent out in form of requests or the data that comes in. Again there is user

credentials is happen is NFSv2 came much earlier before security become important and

local area networks are internet and therefore, getter models attempt to handle this all of

it. You can see the kind of problems about again this area. For example, route on one

machine could be let us say should not be allowed to act like look on some other

machine.

If that is allowed then any user who whose route on a particular machine is essentially it

has complete control of the whole of the network. So, which is a problem and therefore,

there are some elementary methods available in NFv2 to take care of this kind of

problems, what they do is if somebody says your route they are mapped to and nobody.

That means, that even if you came to the route the minute the request comes with the

route as this one it is mapped to nobody on the server side. So, there are some elementary

methods, but there is certainly not very satisfactory.

Similarly, performance problems are also serious in NFv2. For example, you can have

UDP storms. Again NFv2 manage first thing about they initially proposed that UDP is be

the choice of protocol. That in on being one can early 1980s when these protocols were

defined TCP was considered to heavy because taking too much passive in the CPU.

Therefore, UDP which was less of issue with respect to processing actually has that any

processing. Therefore, it was considered to be a better way to get effective through put in

the system. Now, the UDP you do not have any flow control of any kind. Therefore, it

can turn out that you can have UDP storms. So, with that the NFS let us say server can

get overloaded. Once it gets overloaded it looks as that has crashed and all kinds of

problems were start coughing up.

Similarly, because of one critical issue of the NFS being that this the server being

stateless any writes it have to be sent to the server or synchronous. Now, once we have

synchronize right it terms out to be make the server very slow in terms of request. For

example, again if you have discuss your device for synchronous writes.

Essentially you have worked in those days about 25 milliseconds per byte. That means,

you could at the most have 40 I/O per second you could not go beyond 40 I/O per second

or something equal that some other of 40 to 50. So, to handle this problem there are

various ad hock optimization that had to be devised. One of them was to have let us say

non-volatile memory of some form and usually that involve the non volatile essentially

memory with battery backed up which is battery backup and there is other kinds of

models. Other issue about NFv2 is that it requests lot of other infrastructure something

called Portmapper, mount daemon, lock daemons, stat daemon etcetera. Let us go in the

reverse order.

Stat daemon basically is summing of notification and some machines have seemed.

Sometimes you have to do some elementary, you need to know which machines are up

and down and stat d is something that is required this is not part of the NFS protocol. So,

this also have to be taken care of, but your NFS system itself needed to access this

information. That means, it had to go through some other protocols outside of it.

Similarly, lock daemon; now we will have multiple users updating a particular file

system, you need to have some notion of let us say who amongst the file for the time

being while it will being updated. If you have concurrent writes in the same file it is

possible that you do not get any consistent version of your view of the file. So, you need

a lock daemon.

And this lock daemon by definition had to be stateful because that to be stateful it could

not be affect into the NFSv2 model because NFSv2 essentially says that the server is

going to be stateless. It is not going to keep track of blocks it has been given to various

see various clients. So, this lock daemon again sits uncomfortable with restore

infrastructure, there is also another protocol called mount d, which basically helps you

figure out which all systems are available out there and which can be mounted and again

this is outside of the NFS protocol and typically is at done through some user level

daemons and somewhat different from the way the file system model is there in NFSv2.

Which is typically kernel solutions, kernel based models. Similarly, this Portmapper also

was another issue that has crop that came up.

Basically, there were low standard ways in which RPC calls could be mapped to

services. So, there have be some way of mapping any particular service we needed to

some particular port numbers and this port numbers were mach specified NFSv2

protocol. Essentially, when NFSv2 came up networking was still in its infancy. So, not a

many not many things for defined. So, it is expected by that some other models will be

used to figure out all these things. For example, if you had to have this mount daemon or

lock daemon they will be listening on some pokes. The question is; how does the NFSv2

protocol move where this guys a listen is involved. So, this Portmapper had to come to

the picture. So, this also in the beginning was sort of semi ok, but later it became

complicated.

Because it turned out that, this port mapped were mount d lock d etcetera. They were can

get into problems with once you have firewall. Again the security issue of local area

networks was not very clear in the very beginning. So, once you cross local area

networks then it turns out that there could be firewalls involved and they might block

these ports and the ports that were initially used were not one of those system ports. They

were the ports that could be defined by users and therefore, there were some problems

with proper operation of NFS protocols assembly. So, there are various issues of this

kind including some smaller slightly more simpler issues like the file size limit being 4

GB etcetera. So, that NFv2 solve one important problem that of giving access to files in a

local area network quite well.

And so, it probably became very a popular in departmental setting where you have to use

data from multiple big servers. And so, it became very soon, but there was certainly need

scope for improving the way it performed or it the kind of services it provided. So, after

NFSv2 the v3 came into picture.

(Refer Slide Time: 14:25)

About, almost I think almost a decade later and so, basically here you try to be slightly

better with respect to cache consistency let us look at the kind of scene that we can do

here. So, what is that in the case of NFv2 you have a, if you have if you crash some

attributes, you do not look at its anything has changed because of other access used by

other client or server you only look at it if the attributes timeout . So, the timeout

essentially defines your consistency vendor whereas, in the case of NFSv3 what you can

do is; whenever request to NFS3 modifies of file, you basically the server sends both the

attributes that existed before and the ones that you are asking the 2 change it to.

Now, if the pre attribute matches that other client where the client had already cached.

Then we know that the data is valid in the client cache and then you can update the

attributes on the cached data that you can do. Basically, because you know how the

matrix check now you can check it out. Now, the only issues that the client verifies only

on open or when cached attributes time out; so we still have the same as NFSv2 that is if

somebody has changed in between I cannot figure out. But it is little better because I if it

transfers that the pre attribute does not match the; that of the post attribute.

I know somebody has changed it or I can program on some of the resolution protocol on

top of this. I can not part of NFSv3, but I can still do it when it is possible. Now, other

issue with the NFSv2 was the fact that your writes have to be synchronous. Now, to take

care of this they introduced something called the asynchronous writes in to NFSv3.

Basically, the idea here is that when somebody writes to a server. The server can cache it

and keep it in its cache it does not have to send it to disk in its local units storage system

and only the it is only required to do it. If the client says not please commit it then it is

the question will commit it then the server has to committed to disk and then we will be

latency at that point in time.

But then it is guaranteed by it is there is a guarantee for the client that the data will not be

lost and basically the; this particular model now you can be the follower. A client can

write to the server, but it will keep a cached copy of the data and then it can keep writing

and the time when it wants to be show that is actually on stable storage it comes at

commit. Once it gets the response a successful response from the server it knows that has

been committed to stables storage and server side, then it can discard its own cache copy.

So, till that point of time when it gets the successful response it has to keep the; whatever

it has returned there is local client cache. So, by this place what can happen is that you

can ensure that you can write at much you can support higher I/O operations then as

possibility NFSv2.

Other thing what we can do is then any process does when you do a close. Basically,

there is a; you can do what is called you can do synchronize the data of the server. So,

that there is a; some got a blocking operation that takes place. So, that whatever data that

you have on your system actually it can be synced to the server. Now, the other kinds of

things that are added was something called a write verifier. What is the write verifier? It

is some kind of idea that that machine has, every time it reboots it increments it id. So,

anytime; that means, that it keeps track of the number of times that machine has rebooted

in some sense. So, what the NFSv3 guaranties that server will not discard uncommitted

data without rebooting. Either, it has rebooted or it has kept the data until it has got a

commit ok.

Until this told commit you can keep it and only way it cannot do that if it is rebooted and

the client can figure out that was rebooted because the write verifier has changed. So, in

a sense the client now has some additional information that is I asked you to write

something and if it so, happens that is rebooted the client can figure out that is rebooted.

So, there is some kind of elementary guarantee that is available. So, there are additional

enhancements, but basically NFSv3 is did not change too much. It has basically like to

make things a bit more efficient. So, for example, one example in that category is

READDIRPLUS. In NFSv2 READDIR only lists the files. So, example if I want to a

less minus file. It has to first be a re directory it will get the list of files and for each file it

has to go on say get me the attributes of each file.

So, this can introduce lots of back and forth requests and responses again it can search in

the network. So, the idea here was to avoid this lot of chatter between server and the

client, but it was to produce on this part three directory plus which actually in addition to

providing the files it also provides you some of the attributes of each of the files. So, that

common operations like LS minus file can be handled more effectively. So, there is also

other extensions like exclusive mode create request. Again as I mentioned before you

cannot provide atomic operations in the case of NFSv2 because each request can span

multiple net network requests and therefore, it is possible that the kind of atomicity you

are looking for generally possible. For example, in Posix there are certain exclusive

mode create models of available.

And the idea is to see if you can do it also in the case of in the network environment with

NFSv3. So, there is an additional models are created. So, there are various additional

enhancement that for made, but fundamental to the model is still the same as NFSv2. So,

this was the situation for quite some time and once windows systems became very

dominant. There was some need to support the models of the Microsoft windows systems

and basically at this time there was a substantial modifications that was take undertaken

with NFS and this NFS before essentially is a rework model of NFS taking into account

2 main issues.

(Refer Slide Time: 21:40)

One is that of making sure that there is better consistency managed make one making it

will closer in the kind of knowledge that is done with window sold. So, that both UNIX

and windows systems can be clients and also provide better security models. So, there

are various aspects that have been made and fundamental one major thing that has taken

place in NFSv4 is to go for what you might call a stateful protocol. This is quite different

from what is there in an NFSv2 and v3 and again if you look at the windows system they

also had a most stateful protocol and so once NFSv4 going to a most stateful protocol. It

is possible to support the windows kind of semantics and for the some reason it is also

much more complex. The only plus point is that this reengineering was done in the late

90s, but this time a lot of experience with networking had already been accommodated.

So, it was ease it was easier to design a much better system then was available

previously.

So, sort a summation before the most important changes stateful protocol. For example,

it has got something called a open call. What is that in the case of NFSv2, there is no

open system call? There is no there is no open protocol, there is no open protocol

message is meant this standard thing is to do a lookup and then we have to get what you

do with there is you do a look up on a on a string of string that represent a file name and

you will get a file handle and using the file handle you proceed and there is no such thing

as an open call. Here, what it is you have open and this is where everything is taken care

of with respect to lookup, creation and what is called share semantics? I will come to that

soon.

Basically in windows you have the notion of a share. The share is basically a way in

which you can say that. I am accessing that file and I don’t want anybody else to be able

to look at it till I am done. So, I can essentially have a work process lock and till that

particular system is alive. So, till that particular process is alive it has got exclusive

control over what happens to that particular file because there is something which is

there in the windows word and windows word called the share semantics and that is what

there was incorporated here. So, let me close you can if you have accumulated a lot of

state you can ensure that you release the state through various flushing mechanisms. So,

that the state that is across the servers and clients in the crowd they are somehow made

more let us say harmonized. So, again what are the various models we can have locking

at a high level?

We can do it at the process level or we can do it at the client level. So, there are three

models that are available NFSv4. So, locking is the regular locking that UNIX also

provides which is basically at the file level. That means, that I can have a file open for

read and nobody else with if I lock it in the read mode nobody else will be able to write

it. I can at the same time I can, I will have multiple parties to read it. But if this file lock

it in the right mode I am only the part the party which clocked it in the right mode only

has exclusive access and nobody else can write it. Similarly, in the case of I already

mentioned about shapes about delegation basically it turns out that oftentimes a client

can take responsibility for a particular file and completely and that means, that it

manages all aspects relating to a particular file.

So, the idea basically is that a server can be supporting multiple different activities and

these activities could be most likely disjoint. If they are disjoint then it does not matter if

multiple clients are accessing this particular file server. All that we have to ensure is that

somehow each client accessing a portion on the particular files exported by the server

and if that is done then it is sort of delegated it makes it each of those particular files

each of those clients which need that. Then it is possible that the client does not have to

send any network messages to with respect to consistency. So, certain groups of files can

managed by one the writing or reading whatever and that party is going on want to look

at it. So, if I have a delegation for that part that portion of the file system they essentially

do not have to actually be they do not have to that client does not has does not have to

send any messages to the server to check if number has modified or not that basically

delegation.

So, so this things is also have been provided and for providing these things blocking

shares and delegation you need to have a statement protocol. Server has to keep track of

the state there is some state that is kept by the client as in the previous cases NFSv2 and

v3. But there is now state that this NFS were also has to keep track of especially what all

delegations have been done what shares are the existing in addition to what locks has

been taken what have been taken by various tracks.

So, all these three things have to be done and there has been the because of the state there

has been accumulated. It turns out that if there is a failure they can failure some multiple

reasons. It can be failures because of client crashing or the client or the client crashing

server crashing or that could be network partitions because of all three possibilities the

stateful protocol is going to be complicated. It essentially I figure out how to manage the

recovery process in when some of the scene happens. So, so there is lot of complexity

and if you look at the specification of NFSv4 it is quite long and it discusses all these

issues what happens when the server dies, when the client dies what not. Other thing that

has to be done, so that has been done in the case NFSv4 is that it gives a single view of

all exported file systems.

Essentially, it provides to each client a single of all the things that it can access. In

addition many times what happens is that you have on a server you wanted you want

certain parts of the file system to be exported. For example, you may be interested in

looking like slash a, slash b and you also might be interested in slash a, slash b, slash c

and slash d. Now, I want only access to slash a, slash b or slash a, slash b, slash c, slash

d. Now, in previous cases in the previous NFS notions you need to have 2 mounts and

both these mounts had to be handled separately. Here it comes out that because of this

single view they close out had a uniform view of what the server is exploiting and it also

when it even when you are doing the path traversal it comes out it figures out that you

are going through.

For example, some little maybe at nodes which are not reduced supposed to be seen by

the client. So, all those things are done by NFSv4, the other aspect that NFSv4 does is

integration of mountain locking protocols. As I discussed before it turns out that NFSv2

has to interact with other infrastructure like Portmapper, mount d, lock d, stat d and they

were complicated for multiple reasons. There could be security holes in each of these

programs that is one possibility. Suppose that there could be different model security

programs because there are different programs. So, there could be firewall issues. And

so, various issues on this kind kept cropping up again and again. So, finally, NFSv4

decided anywhere you going for stateful model and you have to make sure that they are

interoperate between multiple systems which might have different mode of the security,

etcetera.

We may need to have some uniform way of handing this and therefore, they eliminated

all these things and for example, in the NFSv4 there is a port number 2049 which is fixed

for NFSv4. It is only TCP this may be and because there is no UDP some other issues

with respect to UDP is transfers things or have gone away. So, essentially TCP’s as we

have discussed before has some condition mechanisms condition algorithm mechanisms

and therefore, it is a slightly more stable protocol and because it using TCP. Now, NFSv4

can now be used across intermediate in case it is feasible.

And the issue there in why of course, is become feasible is because they are much more

efficient computation of TCP nowadays compared to all was there in the 80s. And so,

TCP is no longer considered to heat protocol it has been optimized fairly well. So, its

performance is not any inferior to unity protocols nowadays even though it does quite a

bit more like condition avoidance.

(Refer Slide Time: 31:59)

So, let us look at some other major changes that are taking place in NFSv4. First of all it

has got something called a compound procedure. If you look at a NFSv2, it there could

RPC look at the remote procedure calls and for I try to be one RPC is at a time. So, if

you wanted to make some complex atomic change on the file system you have to send

multiple RPC’s and because there are multiple RPC’s one could not be sure that actually

it could be done atomically because it is sent across multiple interactions.

So, this was changed in NFSv4. So, that you have what you call composure. So, that you

can now provide a all the operations in one single package in some sense and send it

across and the business of the server to ensure that all these things are done if possible

atomically. Now, it is essentially the ball is now in the service code, it is not a lot of

interaction between client and server or a specifying multiple operations. Of course, this

introduces some complexities. The question is that of for your handle previous in the

case of RPC if you send some requests you will get another you will get some response

thing without that part of it settled or not and you have to figure out what to do with it.

Here now what is happening is that you have multiple operations in being sent out. So,

you need to get some idea about vary field. For example, if you have ten operations and

it fed on a third one you need to go tell very clearly that I did first 2 of them was

somewhat, somewhere in, somewhere in the midway third somewhere and dead here

whatever. I had to give some additional information. So, that if in case this one client had

to be the picture had to get exact information. So, that some clerk and I handle it could

be attempted. So; that means, at this part of has become much more complex. The other

aspect which had changed also, here is look at look of semantics. One problem with the

NFSv2 was that it when you traverse the file system, once you get a file handle you have

to do it one component data. For example, if I wanted slash a, slash b, slash c. slash d. I

first get a file handle first slash.

Then I look up a then I look up b then I look and it is if it is then basically it was that I

have four or five round trips and that means, you have a lot of little scene here . So, this

one in NFSv4 they made it multi component. So, that you can send a lookup or slash

ABCD and it will give you the file handle correspondent at in one short. So, there are

some other mode that changes that have been made. As I mentioned before you can also

traverse across multiple file systems. Basically, the client has a notion about various file

systems it has mounted it can actually mount multiple different file systems and they

could all be on the same server.

And then as you a traversing it if you are traversing between one file system to another

file system because they incorporate something called a file system Id in some other data

structure. It turns out you can figure out that we are traversing different file systems and

NFSv4 can actually track all these changes and it can provide the right semantics with

respect to look up. There are some other issues with respect to semantics in the case of

re-directory semantics as I mentioned earlier NFSv2 you have to get the each file and ask

for the attributes of each file monitor time. In NFSv3 made re-directory plus, the NFSv4

essentially it is the same as NFSv3 except that because of UDP operation where you

have to send a lot of information example if you take a very large directory.

If you do LS minus L on it. It can have huge amounts of data that is coming already to

you. So, the UDP sending such chose amounts of data it can create some difficult

situations. So, NFSv4 is essentially has modified re-directories, re-direct semantics. So,

that we can say how much did I actually you can send. Essentially some kind of flow

control at the protocol level so that something else. So, you can see there are various

changes in the NFSv4. So, it is a fairly substantial change from the previous mounts and

it is v3. We essentially has something called named attributes that is you can because you

are in cooperating with multiple different types of systems UNIX system, window

systems and other systems.

You can you can discover what attributes are present and so, there is some the idea here

is to be able to at one time figure out, the kind of objects that are there and use that to

decide how to interact with the NFS server. So, for that they have a procedure called

open attribute procedure by which you can get attributes and file at directory you can get

directory and then use that information to figure out what to do with it certain things may

be available some with may not be available. Similarly, because now the scale of the

systems is becoming larger and larger they wanted to support things like file system

migration replication. So, sometimes a file system is available in particular place and the

system administrator can move it to some other place either for temporarily or if for

permanently for reasons of efficiency or management etcetera.

Now, if you are written the application and it has certain model of where the data is

present it is not a very good idea, but suppose it has that such a model. Then there is a

subsidiary protocol NFSv4. Now which you can figure out where are locations there is a

there is something called FS locations and this file attribute will tell you very exactly the

location of the file system is and then use that to actually make the right kind of accesses.

Same thing with replication it is possible for you to come up with some way in which

you can distribute the load also, again based on this kind of model. This kind of

information as I mentioned earlier one of the major changes in NFSv4 has been, better

cache consisting models that it is more complex. For example, we still have the same

model that was there in NFSv3. For example, you can as I mention before both pre

attribute and post attribute file can be are send to the client and you can check whether

did has we considered.

So, this is still there in NFSv4. But because you have models like delegation you are

guaranteed that certain things cannot be change without your knowledge, you either you

basically get exclusive access to something the only way you can fall apart is in case you

have crashes on the system especially when you have network partitions. So, these are

big issue that we are going to look at from soon. Basically our issue is that for cache

consistency if network partitions take place then not much can be guaranteed. So, one

thing that NFSv4 does to make sure that things are more reasonable is that it tries to be

right through as far as possible. So, in the NFSv2 essentially is write back the caching is

always write back; that means, that you can keep some information about what changed

not reveal it to anybody till some other major till something interesting happens.

Whereas, as in the case of NFSv4 some parts of it of the system are made right through.

So, that you can as things are changed you can get some information for example, if have

a delegation; that means, that of a particular file and you are writing it. So, here what you

do is you keep on sending some information like attribute information to server. For

example, you could be sending that changing the size of the file. So, some parts of it can

be made available in server. So, that is change with the other parties can actually find out

that some which is taken these. So, in some places write trough is used. So, if you think

about the carefully you will see that there are too many issues not being trying to be

handled NFSv4 there are some things are like NFSv3 then it comes to pre attribute and

post attribute.

And some models where there is write trough is being attempted there are issues with

respect to partitions which are also expected to be handled. So, there are many things that

are coming in and it turns out that integrating all this thing non trivial. So, the model is

very complex and so; that means, that some of you need to figure out a better systematic

way for understanding while cash consistency or consistency models are not. So, easy to

engineer in a system with networks which is what we look at.

(Refer Slide Time: 41:27)

So, again how does NFSv4 data structures look like basically we have file system

identifiers? It basically identifies the kinds of file systems that are being exported and

you also have a file handle just like an NFSv2 and v3. I think as far as we discussed

earlier in a Posix we have file descriptors to NFSv4 file handles. Now in NFSv2 and v3

file handles were persistent; that means, that once if somebody gives a file handle.

Then server is bound to respect the file handle any time anybody provides it one million

years later they are supposed to produce the data, which is a bit of a let us say too much

to expect. So, finally, NFSv4 I decided that it is no point in the having the fiction that the

file handle is you know it has to be permanent and they has to support permanently. So,

they have come up with something that volatile file handles. So, it helps servers which

do not want to provide permanent file handle is could also be a security issue. For

example, I have some I give some access to a particular file for some time and if I make

it volatile it is guaranteed that I can drop it without because something has changed I can,

I do not have to honour a particular file handling that has been produced to me that is

given to again.

So, that is one small change it also has got something called a root file handle. Basically,

NFSv4 has a notion of a current file handle. So, whenever it is doing any file traverse.

So, it always does it with respect to its current file handle and again this is possible

because NFSv4 is stateful. So, it can keep track of something called current file handle.

So, the way you start in NFSv4 in the previous case NFSv2 and v3 you have to use a

mount protocol, mounting protocol you get a file handle. You basically send a string of a

file name, send it to look up and then finally, you create the file handle. Here what you

can do is you can start with the root file handle.

So, you can essentially say root file handle and then you it basically gives you the file

handle server into a; some buffer that you have specified and that is essentially gives you

the root file handle. Using that you can traverse the file system using lookup calls and

then you can save the file handle, you can also once you have saved it someplace can get

it back. Again all this is because it is a stateful model all this can be done on the server.

Save file handle, restore file handle all these things were again possible right now. To

ensure that you can do server and client crash recovery there is a notion of a set client Id.

So, now what is this it means that different clients will have different client Ids, not only

based on a machine it also it can be based on the specific real carnation of the particular

client.

What it means is that the client also can live under. So, every time it comes up it keeps

track of the; which version of the client which life of the client we are talking about. So,

that it can describe between different lies of the client. So, if the client dies sand comes

up it will have a different client id. So, that you can discriminate between various types

information for client similarly for locking state you keep track of the client information.

So, that if have to be any recovery it is possible for me to figure out who has the current

information who does not have the current information updated appropriately. So, then

all these things we can see it is because it is not removing a stateful model and so, it is

going to be slightly more complex.

(Refer Slide Time: 45:42)

One major thing that NFSv4 has done is using what is called leases. What is a lease? A

lease is a way of saying that you have permission to use this particular file exclusively

for some amount of time. It can be through a delegation lease or it could be through other

kinds of models of sharing and the idea here is that.

If for example, the client dies then a then our lease the server is free to take back

essentially takes back the lease and do it anybody else. So, so the recovery operations

becomes very simple, but this also means that there has to be because it is not based on

time there has to be lock synchronization with an important part of the system the

without lock synchronization it does not work. Now, you know that lock synchronization

is a complicated procedure and typically you do not get very high accuracy in terms of

lock synchronization its usually few hundreds of milliseconds. Therefore, there could be

still a big consistency window even if you use this semantics. As I have mentioned

earlier that you have locking at various levels you have UNIX like locking where you do

it per operation or it can do it at the level of per process.

Like what windows has CIFS like shares reservations or you can have it at the client

level the delegations I mentioned before which we will talk about next. So, basically in

delegations you are allowing a particular client to manage a file. So, for example, let us

take the case of locking there could be multiple processes in the particular client and

once the file is delegated to that client any process on that client it does not have to go

through the server. So, in a sense it reduces the amount of network traffic all is there

similarly when there is a question of closing let us say the file there is no need to talk to

the server.

You actually talk locally to the client implementation NFSv4 and only when the

delegation is taken of then you have to flush on the dirty data to the server. Now, there

are some issues here basically if when I am trying to delegate etcetera you can also take

back the delegation. For example, one client requires something to modify some files and

some other client also can come and say it wants the file its possible for you could get

back or call back the delegation. But it is very critical now that the network is not

partitioned. So, there are various in all these operations anytime what happens is that the

before delegation is given the first check whether you have firewalls and other things

allow you to do a call back you need to check on these things.

Basically you can sometimes there are a symmetric access patterns you can send out that

may not will receive it. So, because of the reasons delegations etcetera are carefully

defined. So, that the very first thing that you do in a delegation is to check whether you

can do a call back if you cannot do a call back then there delegation is not allowed to

happened. So, a lot of interesting things that happen delegation mostly because partitions

firewalls all those things also can create some complications and these things are defined

in the in the standard in some detail . So, as I mentioned earlier you have this revocations

possible via call backs and the most important thing of NFSv4 is that it has what is called

close to upon consistency. That means, if you have a delegation and only when you close

it the other people see the modificates you are made. This similar to what is there in

windows world this is what is called close to open constituency and this is what is

provided in NFSv4.

So, this is the only thing that you can assume. So, the model of consistency in NFSv4 is

slightly complex this is got too many let us say ways of handling it and therefore, you

had in very careful when you start the using NFSv4. It is better mostly, but you have to

know the details.

(Refer Slide Time: 50:32)

Again with respect to security they have thing made it much tighter than better. So, one

is Kerberos you just also there in I think in NFSv3, but they provided another model

which is called LIPKEY and this similar to your SSL model. I think SSL I think all of

most of us are familiar with basically sure you have the server has the certificate, but the

client does not have certificates and the clients authenticate themselves through

username and password.

Because usually clients going to have certificates. So, NFSv4 also has provided

something similar. So, it is based on a modern like SSL. So, that you can you won’t

access it you can give name and password and that allows you access into the system.

There is also some other types of models by which you can negotiate authentication

integrity and privacy parameters there is some particular aspects to the protocol. The

access control is closer to the Windows NT model this is access controls model what is

this somewhat different from UNIX. UNIX has this RWX model basically you have only

categorizes that three parts user, group and others. This one is slightly more elaborate

and so, this is model that has been evaporate.

Again there is some minor additional things like string UIDs and GIDs.

(Refer Slide Time: 52:03)

I will briefly mention this is protocol, I just highlight some of the important aspects is

that asynchronous operations just similar to what is there in what we discussed now

NFSv4. It has got command batching is just like the compound operations and it has got

let us say some of the similar service that the NFSv4 and so, provides things like file

access, locking and cashing. Aspects, they are similar to what is now there in NFSv4 and

I am not going to go in too much about these things.

(Refer Slide Time: 52:45)

And they also has similar ideas about performs enhancements read ahead and the write

behind and when it comes to sharing files also. There are the locks are multiple it has are

locks are there.

And similar to what is there NFSv4 also you have you can handle file system replication

load balancing.

(Refer Slide Time: 53:10)

The security model is based something very what is there windows NT something called

domains and it also has some authentication schemes like for example, change the

sponsor models and again I am not going to go too much into it here.

(Refer Slide Time: 53:33)

So, when you integrate windows and UNIX there are a lot of issues there are lot of issues

with respect to access control mechanisms and consistency management, file locking

semantics etcetera. But if you look at NFSv4 most of the things have been harmonized to

quite a bit extend. So, now the integration between UNIX and windows is much better,

then it was with NFSv3 and CIFs it was very difficult. Before has actually done quite a

bit of managing this discrepancy between the 2 systems.

And so, now it is easy now if you support NFSv4 essentially support both CIFs clients as

well as UNIX client is the too much difficult.

(Refer Slide Time: 54:16)

So, I think I would like to conclude today by saying that NFS is a much simpler model

then if you want to if you were to go for a cluster file system which is basically saying

you mean Posix semantics across all the moves. This comes out to a very hard problem

and NFS started as the; a good approximation to this Posix model and it has becomes

like a moreover better and better. But there is an inherent complexity and difficulty of

providing a cluster file system model over unreliable systems either networks or

machines.

These are things which is a big issue that we want to study later. We would from next

class onwards. We will start looking at why this issue of giving a let us say a proper

semantics and distribution system is. So, difficult we will look at that part and. So, again

the many point is I want to discuss again is that if you are using NFS be clear about the

consistency model, that you are using. This can be a surprise and oftentimes many people

are surprised by getting what is called a stale file handle because they don’t know exactly

how systems are behaving with respect to deletions or modifications by other parties

other than the user. So, again we will in the next class; we will start looking at issues

relating to distributed systems and constituency in models.

Thank you.

