
Storage Systems
Dr. K. Gopinath

Department of Computer Science and Engineering
Indian Institute of Science, Bangalore

Introduction to Storage Systems
Lecture – 01

Overview of Storage Systems, Introduction, How Storage is different from
Processing & Networking, Why study Storage systems as a separate discipline,
Basic functions of Storage System (Naming and Storing), Large Persistent Data

Structures, Introduction to Storage File Systems, Storage Characteristics, Storage
Performance, Storage Protocols, Storage Systems Design, Summary

Welcome to this course on storage systems. This is a course being offered through

NPTL. My name is Gopinath, I am from Indian Institute of Science. In this course we

will study storage systems, why they are important? Why they are needed in the first

place? And essentially motivate the study of storage systems. And try to point out some

differences between, but you might have studied for example, a network systems or

computer systems.

There is some lightly difference things in storage systems, we would like to reconsider

that part. Let us get started, for first let us think about why storage systems are become

important in the recent past.

(Refer Slide Time: 01:15)

For example, if you look at 1980's you find that processing and storage were together

and somewhere about 1980's, networking started in a big way. For example, the 3

megabit per second ethernet started an about 1980 and after that networking has become

more and more capable and therefore, it is not possible to separate out processing

storage. In the past it was the case that a storage device is always connected to the

processing device through a electrical bus. Now with networking it is possible to replace

the electrical bus with a genuine networking layer. That they can actually be separated

out and not be constrained by electrical conditions. For example, the fact that you cannot

keep the bus. Let us say away from the CPU by more than certain number of meters.

Because, of this you now find that processing storage and networking are now 3 distinct

branches of computer systems with her own styles of design and modeling and

performance etcetera.

Essentially, I just want to summarize like that fast networks enables separation from

processing. And so, storage systems have essentially become decouple from processing.

They have the role let us say logic of development. Now, should you know what storage

systems you find that you have devices second protocols and certain ways of layering the

systems. To give an example if we look at devices right you might heard of tapes, later

you might heard of drums, which are no longer used nowadays, disks and now you have

solid state devices like flash and in the future, what are called solid state memories.

There also certain protocols I will going to summarize in details later. For example, you

can have a this call a network or system storage or you can nowadays with web scale

computer systems, you also have what is called cloud storage; that means, that your

storage is not locally present, it is available on the web on the on the internet and there is

a way to access this storage also and there is a what is called an API that is often

published by which you can access this storage. In addition, you can have complete

systems large scale systems.

 for examples you can have the google file system, which actually is geared for search

purposes or you can have storage for email. If you go to any large scale let us say email

provider they will have storages very geared for storing large amounts of mail and this

things can be quite reasonably complicated. There is a special aspects in the design of

these kinds of storage.

If you think about it, there has been varieties of issues that are involved in designing of

storage systems. In the past one of the major issues was concurrency with CPU basically

because storage devices are slow. Because they are slow we do not want to make the fast

guy the CPU keep waiting for the slow guy and therefore, you have to sound make them

go together and so, by definition once you introduce a slow and fast device there has to

be some element or concurrency and this managing management of the concurrency with

CPU has been a important issue it is still an important issue. But, it was it has been a

very potential in a past other aspect is handling device diversity you notice that input,

output devices pitch in all the time and they come in all kinds of shape and sizes and

capabilities. And so, if a panic devices storage device storage system, it turns out that

you have to deal with lots of types of devices. As I mentioned already you can have tapes

you can have drums which are no longer available disks and etcetera.

Now, if you think about the newer systems you find that the kinds of things that people

worry about is scale. What you mean by scale is? Can I make sure that my system can

grow from small size system to very large-scale systems? Like for example, let us say

Facebook require some storage system can it scale to that kind of a requirement? That is

our distribution where should my storage be for example, if it might be that I am

interested in ensuring that some parts of it residing, some places and some other parts

ready some other places for ease of access, for performance etcetera and again once you

start developing storage systems and very large scale, it turns out you end up getting lot

of errors in that devices. There could be errors in the devices, there could be errors in the

possibly sometimes in the protocols themselves or in the systems themselves how do you

manage these errors?

Again, once you have separated out processing from storage from networking, then there

is an issue that there are multiple entities in the system. On a security reconsider

important issue. Again, once you have separated out processing through storage through

networking there are aspects of real time issues also cropping. Basically, because now

you separated things out now if certain things have to be done in in some motion of real

time it could be soft real time or hard real time. You know I have to think about all the

networking and the storage together provide that capability.

Similarly, quality of service also is important issue and since these storage systems have

become fairly complex, the manageability has become also were important issue, of I

will tell you that if you buy 1 gigabyte of storage, the raw price might be let us say 1

dollar, but actual final cost that people pays closer to 7 to 10 dollars; that means, that the

cost can be about 7 times as much as a raw cost itself. Because, of the manageability

casket.

(Refer Slide Time: 07:54)

Let us also look at why storage is somewhat different from other systems you might

come across I will mainly contrast with networks. Suppose, you consider long term

storage basically I want to keep some data available or multiple decades. Basically, I can

access something much, much later than when I created it. Now, what is the issue

because of this? My formats and devices can change as I mentioned drums are no longer

available.

Suppose I had stored something on a drum I cannot access it now. Other issue is the data

may not be interpretable unless auxiliary information also stored. What do you mean by

this? If I look at a file system it has certain notions of how to store various parts of a file

or the metadata that is the information about the file itself; that means, that I need to

know where things are; that means, that I someway I have also incorporate some

understanding about the structure of the data that I am storing.

In the sense that information also has to be somehow stored along with the data itself.

You can sense certain recursion problem here. This something also you have to worry

about similarly, let us take a look at security you might heard about network security.

 let us just briefly look at why network security is somewhat different from storage

security?

Now, I will contain that network security is across space. What I mean by that is? When

there is some information that is being transmitted from one area to another area

typically it turns out. It is a separated in space, not in typical in time. Of course, it can be

in also with respect to time, but usually this very short durations of time. Unless of

course, you were thinking about somebody sending a network packet to some very far of

place like Pluto or some such place. It may take years, since we are not talking about

those kind of systems typically network transfers happen within few maximum seconds

typically.

The kind of security that is you have to think about is turns out be somewhat simpler.

Because, example the keys that you have to example used to encrypt things have to

survive only few seconds. Whereas, suppose I think about storage security where I

mentioned that you might have to keep data available for decades; that means, that this

storage security is not only across space for example, I want to create a document here I

want to ride some place 100 kilometer from here that is across space. Falls across time I

create some document I went to see it about let us say 10 years from now. Now I from

trying to encrypt things it turns out am I treat required things called keys and these keys

may also have to survive years and I mentioned that there is a problem here already of

long term storage. This you also have to solve unless giving you some 2 or 3 important

issues. Which unfortunately I not yet been solved properly, but it gives an idea of storage

is somewhat different.

Again, if you talked cryptographers, they tell you storage security is somewhat different

from network security. Why is that? Because, in storage security what happens in often

times you aggregate lot of information on single place; that means, you have lot of cipher

text in one single place. Whereas, in the case of networks, it is not going to be that dense

information on single place. Again, there are lot of different differences you can see with

the networks, you can also see differences between other aspects of computer systems

you think it about it.

(Refer Slide Time: 11:34)

Again, let us I am going to introduce some aspects of a storage and I try to give some

high-level ideas in this particular class and then we will look at most of these things in

some detail later on.

Let us just look at what is the issue with storage? There are 2 major functions that you

have to do in storage one is naming, one is storing. That is first you have to give a name

to an object. Now, what interesting about this? Is that giving a name to an object itself

can involve processing for example, you might keeps an index. Can I access things faster

than next member that one possibility? Other possibility is that the name itself maybe

computed based on contents sometimes what is called content-based storage by which

that contents are basically used as a way to locate the information we are looking for.

Now, it looks a bit strange, but basically what I can say is that you can store some file by

looking at it is contents and actually computing some kind of a hash on it and use that as

a name and later on that name is used to access it, because, the storage system can be

asked to retrieve that information based on that hash. This also responsible

Now, this is one part of the thing this is naming an object. This as I mentioned earlier can

involve quite a bit of processing. Second thing is storing an object. Now, it turns out this

itself can involve other reads and store systems. This is some interesting aspect relating

to this I come to that later. Storing also can also involve significant computation for

example, I can compress things for a store I can encrypt it, I can do coding, for some

time nowadays, because of the large scale large amount of storage that is being generated

and stored. You often time do something called de duplication. That is, you want to

remove a redundancy that is you have some information you want to store it.

What I would like to ideally do is, see if some part of the information I am trying to store

actually already exist in a storage system. I can eliminate having to store that part that

also is there. These also becomes quite a big thing; that means, I need to actually check

whether I already stored part of it is on somewhere. This also big issue. Basically, storing

an object, itself can be substantial amount of time it can be substantial amount of time.

Other aspect is that I need to keep auxiliary information about an object for example, we

need a create an object. When did I let us say add something to it? What is the size of

that object? That I have kept and nowadays this is become a more important. What is

called it is often called provenance? That is how did this object come about. I need to

keeps information because often times this is a critical of information for example, in

legal areas it is important when something is created when something was sent etcetera

all these are important.

In the sense I need to keep some auxiliary information about object and there is an issue

about metadata and data. Again, the metadata also has to be stored, again we can see

some elements or recursion out here. You can even go further how do you where do you

store the on metadata itself where do you store there are other issues for example, if I

lose metadata am I lost? Is that an issue? Or if I lose a data am I lost? Which is a more

critical thing do I need to have different ways of protecting metadata versus data? These

are also issues might have to think about.

Again, I mention naming and storing are important, but if you do not access the

information then you are not doing anything useful finally, you have do some access.

Again, here is where the device specific aspects determine the speed at you are accessing

it. For example, your accesses could be sequential, non-sequential or random and

depending on whether sequential, non-sequential or random. Your performance may also

change your writes can be in place or out of place again there are different devices which

are different aspects relating to this things and there is your storage system has to make

sure that you are doing as well as you can given the devices you have.

(Refer Slide Time: 15:58)

Now as I mentioned lot of people are generating lot of storage lot of information they

storing it. Basically, it has to be persistent so that I can access it to later. Once you have

large persistent data structures, if you do wanted to do some processing, I can not do it

directly on the storage devices I need to bring it to memory. Usually because of this you

have often called in memory copies and on disk copies. Once you have in memory

copies and on disk copies, you might have issues relating to what is called atomicity and

consistency. We will discuss this in some detail later.

Again, once you have large persistent data structures, you need to take into account

organic aspects carefully. Especially, about how to access them how to storage etcetera

because the number of objects can be in billions, size of objects can be in multiple

gigabytes and as time progresses as a scale keep changings you have to keep developing

your algorithms. For example, when I first started using computer systems I think my

maximum number of size of things which I used to play along with kilobytes, but

nowadays playing along with megabytes is quite common right or you can take a simple

example.

If you look at any email system, you will find that the mail directories can have

thousands of messages and typically if you some certain types of formats and mail dif

format for example, each message is a file so; that means, at a single directory you can

have thousands of messages. Now, if I create a file to ensure certain consistency

requirements, I need to lock the directory. Now, if I 2 or 3 parties wants to concurrently

create an email message then the same directory can become lock bound. There are

issues with respect to locking can come in again this happen because of the scale. Once

you were working with a small scale is not a problem, but once you start going to larger

and larger scale systems thins thing becomes extremely difficult. Again, with web level

storage system this is absolutely critical part you have to take it in account as part of the

as the starting part of design itself and for that reason we will see many newer models.

For example, key value storage become popular since 2000. We will discuss this key

stores in some detail later. Again, I am just giving you high level ideas about why this is

a slightly different kind of systems that what you have seen before? And some just trying

to motivate study of storage system independent of other sub systems.

(Refer Slide Time: 18:58)

You have just to give a quick idea about some of the structure that you often deal with

storage system I will give a 2 examples. One is the ext 2 file system I have taken this

figure from the wikipedia article on ext 2 FS. This is what is called the data actually

resides you in this this blocks? What I called the direct blocks? Or the indirect blocks?

Or the double indirect blocks?

And this is the these are all basically index in structures, what you see these are all the

index in structures and this particular design is from a file system a is to the file system

that has been used in Linux since 1992 or 1993 and this is itself comes from a file system

called the BSD file system. That was designed from 1982 or and the basic idea in this

particular design is to ensure that, if you have a small files, you can store them directly in

direct blocks. Each direct block is about let us say 4 kilobytes. Example you have a file

of only 8 kilobytes you just need 2 direct blocks and rest of it is not used none of it is

used needed, whereas, if you want to go for bigger and bigger files you first finish off

using all the direct blocks.

Once you done with the direct blocks, then still in more space then you use one level of

indirection. One additional level of indirection this is called indirect block. Indirect I

should call it I think there should be a small differentiation because direct data blocks.

Indirect data blocks double indirect data blocks and this should be called indirect block

and double indirect blocks.

This is an indirect block and this will actually have point us to the indirect data blocks

and if you run out of this then, you go for one more level of indirection and you will see

that typically about 8 of these direct blocks that is about 8 into 432 kilobytes. Go beyond

it then it turns out that each 4-kilobyte indirect block can store about, let us say if you are

saying about 4 bytes per each indirect data block about 512. You see you can see about 5

12 indirect data blocks 512 into 4 indirect data blocks 512 into 4 kilobyte that will be

about 2 megabytes. This will be 2 megabytes.

After 2 megabytes you can use this once you go beyond 2 megabytes again this can go

into ability to store about gigabytes and this is a design which is trying to solve many

problems. Because, I often has small files and big files, I want to see if I can have some

structure which can save all this things can be used to store small files and a large files,

but you can see there are some difficulties with this.

 A good example is, suppose I have a multimedia file the multimedia files are generally

time sensitive; that means, that if the time taken to access these double indirect data

blocks is different from time to access to this also this. Then, the design of my real

system for showing this or looking at this data and showing it for some multimedia

purpose right now, it is going to be motor key why is that, because to access this I need

to go through one level indirection followed by another level indirection.

This are latency to my access here and therefore, it can create several complications. This

is an example of a file system that was designed before large multimedia file systems

large multimedia files became very common. Nowadays, people would like to design

something more some other structures by which all the data blocks, whether all the data

blocks are about the same place it depends same amount of going through indexing

structures. They do not require different types of different units of different amounts of

indexes to be traversed before we take to the double blocks.

(Refer Slide Time: 23:24)

Let us take another example, to just see what kind of a file systems can be existing.

Storage systems can exist, there is an example of a google file system again I have taken

this picture from wikipedia and now this particular file system is geared for doing search.

I think all are familiar to google search and the issue is that there are very large amounts

of storage that has to be searched fast. In addition, the amount of stop the that is very

huge. It is important that you optimize the system for this particular purpose. Basically,

google file system is geared for doing one thing.

Mostly read only data I want to search it fast and how is that what you is you crawl the

web try call the data you crawled and put them in to different files and then each file is

split into large chunks that is a 64 mega byte chunks and the master keeps track off the

metadata that basically it is the keeps track of where the chunks are. The chunks servers

are machines which are able to access those chunks and in application for example,

search application Google’s search application it will talk to the master and say I want to

know some information about a particular file which has the information which I am

looking for with respect to some search quicker as coming.

The master gives you some metadata about where it can access, where it can find it and

this application directly access the chunk servers. That is once you get the information

about the master it can directly go to the chunk server. Does not have to go to the master

again and because the operating at a very large scale, it turns out that there are problems

of liability that is there are disk which are storing these things. Let us say, these disks can

fail. For that reason, they need to have redundancy in the system; that means, for

example, chunk1 is there is one copy here and there is another copy is here. Similarly,

chunk 2 will be having another copy. In case one of the copy fails that disk fails then you

can actually a master can redirect to some other chunk.

You will find that the google file system has a different notions a what to a from design

point of you then what file system has got. Again, in this particular course we will try to

explore some of these aspects in some detail.

(Refer Slide Time: 25:59)

Another aspect that we have to think about in a storage systems is that, the storage stack

is fairly deep, basically because there are various types of abstractions, you have can

have what is called device abstractions, block abstractions, file abstractions and even

application abstractions.

I think this may not be that well not that clear. So, just want to mention that if you write a

program in c language in libc for example, there are specific functions which actually

buffer what you take from the storage system. So, so even application can also can be

depict.

Now, there are each of these abstractions that are given more sub layers for example, if

you take a disk let a device for example, there is a protocol called SCSI, SCSI small

computer system interface and this device if you look at it carefully, the software stack

that is used to access this device, has multiple sub layers for example, it can have

something called a upper layer mid layer and the lower layer.

The upper layer essentially takes care of highly device specific aspects for example, tape

has to be accessed differently from disk, tape has some notion of a rewind where a disk

does not have it, those kind of aspects like rewind etcetera device specific they handle

here, mid-level basically protocol specific this actually SCSI protocol itself.

The lower layers basically are the physical communication layer, example your SCSI

device can be on a physical electrical connection or it can be through network. So, this

part of it is basically that communication part, again continuing on the same

communication part of it turns out, if you want to really have your storage system

scalable, you need to have essentially the network stack part of the storage stack, because

my storage is across multiple devices which could be on in different data centers, or

geographical separated by thousands of kilometers; that means, the network is a part of

the storage stack.

So, you might have heard about the 7-layer storage stack the internal ISO standard; that

means, that almost all of these has to be part of a storage stack, somewhere in the lecture.

So, so quite a long time most of the stack was in the kernel, but again given that the

networking has become sufficiently pass through separate processing from the storage, a

good part of the stack is now migrating out of the kernel a good example is google file

system, you see that most of the thing that they do is further out of the kernel, it is not it

is not really everything not everything is done by kernel.

Let just briefly look at some aspects of storage.

(Refer Slide Time: 29:07)

First thing I have to mention is, that concurrency arises naturally, why is that, because

this is a wide disparity in speeds of memory and storage. So, if you do not want one that

keep waiting for the slow guy you, should let everybody keep going at their own place,

what you have to do you have to mask slowness of storage somehow very critical. So,

you want to make processing and storage go at their own rates and therefore, you need to

come up with some new mechanisms like interrupts, or sometimes polling to signal

completion of slow storage operations.

And this is the historic reason, why operating systems actually developed? Because you

used to deal with devices with highly different let us say speeds, and to manage those

things, how a different operating systems started? With this and other aspect of storage is

that you are storing something because you want it to be persist over time; that means,

that typically it increases the time, but at the same time, not all the stuff you stored is

important, somehow there has to be some notion that some parts are important some

parts are not that important; that means, that you need to find the way of categorizing

storage as something has to be in fast storage and slow storage therefore, caching and

tiering arise naturally.

These are the important aspects that have to there because we dealing with slow devices.

Now if you think about it, it turns out that there are some serious constraints, either a

speed capacity or cost as I mentioned storage keeps increasing over time; that means,

that you can not keep on investing too much money in it, because it just keep on

increasing; that means, that you preferably like to have low cost storage.

That it turns out that low cost storage is in conflict with speed. And so, you can not have

both high speed and low cost, similarly you can not have high capacity and let us say

high speed and low cost it is not possible. So, you have to choose 2 out of the 3 typically,

and in storage typical, what you do is? We decide to concentrate on cost a bit more, and

capacity bit more, and leaves caching and other methods to take (Refer Time 31:43).

So, this is what we typically try to concentrate on make sure it is as capacity as possible,

and as slow cost as possible because the storage amount keeps on increasing with time

there is no way to, let us say make it keep decreasing with time is not possible. So, that is

why I somehow have to make sure there is low cost.

(Refer Slide Time: 32:06)

Again, to retreat storage is often slowest component therefore, you need to use caching

as an important principle, and in addition to this, you might want to do some other

interesting things, for example, if you have single device you may want to merge request.

So, that it is possible to deliver the each request more efficiently combine together than

(Refer Time 32:31) other thing you can do is schedule request in an order that is best

with respect to device, what I am try to say is that right in computer architecture you

might heard about out of order execution, that it turns out that that came out much later,

but in storage it turns out that this is very, very important and common place thing.

You need to do out of order execution, because you want to make sure that the device is

able to respond to request in the way, it finds it best other than the way the application or

multiple applications are asking for it. So, the higher-level software has to work around

this aspect, if you need a particular order to be honored, it has to be left to high level

software, again we will come to this later this is concerning when we talk about

atomicity or transaction etcetera, we will find that this is an important issue that we have

to re model.

Usually what I am trying to say is that the semantics of storage it is as weak as possible.

So, that the system is as high for high performance as possible. So, this introduces lot of

complexity into storage, lots of complexity, and for the same reason you often to, what is

called asynchronous processing that is you initiate an access and do not wait for it, and

you hope that somehow you will figure out when it is finished, and later do something

with it for example, you might have some libraries called aio libraries which helps you to

do this asynchronous processing.

Again because of the slowness you would like to expert parallelism across multiple

devices or threads, and which are multiple disks is possible at, multiple chips nowadays

with solid state devices you can do it in the future we will have something called storage

cast memories, and this will also become extreme important. Again, the weight of

manage so many disks. And so, much iOS happening at same time is through some

models of threading in your operating system, or in a application as the application can

be multithreaded or the kernel can be multithreaded. So, it also introduces additional

levels of complexity, because you need to actually manage the parallelism across these

devices.

So, again all of these coming because storage is often the slowest component and

therefore, you needed lot of things. So, work around this particular problem. And so,

your software tends to be slightly more complex, again there are issues with respect to

the cancel devices for example, some of the software or much of the software there has

been return so far, and seen that disks are being used, therefore, there are something

some notion or circular tracks are there.

So, that we will access something, you will find that something near it is track example

is preferable to access something close by track than something else. So, that is

essentially assumption about the disk itself whereas, this particular assumption may not

be true, when you go to thing say solid state disk or storage cast memories. So, some of

the assumptions you are making, sometime unfortunately or let us say deep down in the

software’s model of how to access this storage devices and the feature that have to be

decoupled. So, that these kind of things done do not create complications.

(Refer Slide Time: 36:20)

Again, for the same reason because of the slowness of devices, optimization of accesses

are important for example, what to cache? What to prefetch? However, usage patterns

typically are not known, a priori and it is very clear there are big differences in

performance whether sequential access or random. So, a system actually can be proceed

to be very slow, if too many on demand like migrations from slow to fast tier of storage

there are lot of latency delays, again just as I mentioned earlier optimizations critical and

there sometimes override semantics out of order processing is typical, and therefore, this

complex higher-level software, again I am this is what I already discussed before.

So, because of this reasons it quite important that you can learn on the job, that is you see

certain accesses can you make sense of it, and typically most storage systems has simple

and robust methods. So, that you can suppose work around this slowness of devices for

example, if you take any file system, if you access any part of a file there is always

something called read ahead that happens, and these are some a very simple and method

to make sure that if your accesses are sequential, if you do read ahead then you will not

suffer latency for the thing that you already read ahead. So, simple robust methods are

widely used in storage system.

But I think as time progresses probably even more complicated, or complex models of

learning the kind of application accesses are taking places have to be investigated, and

incorporated into storage systems, I think this work is begin just begin about to be just

about to be cooperated to the storage systems design.

(Refer Slide Time: 38:25)

Now, let us look at what are aspect, this is concerning storage protocols. Now if you

think of network protocol, usually each party send something and wait for the other, here

it turns out that instead you have a interrupt driven, model basically driven that storage

devices are slow.

 you do not want to keep waiting for them or keep polling them, because it is too

expensive again to appreciate the difference in the speeds, memory can be let us say

about few nano seconds whereas, access to a disk can be in the region of milliseconds, it

is about the differences about 10 to the power 6 or 10 to the power 5. And so, you cannot

really afford to wait or poll.

You need to actually tell the storage system when you are done, tell me that you finished.

So, this is a typical model, and therefore, what happens is that once the access is

completed, you interrupt the cpu, but the CPU if it is get interrupted too often it creates

some complications therefore, you often create what about call as an agent, agents which

take care of interrupt processing and agent typical that is used what is called a host bus

adapter, this is a name which is a sort of historical basically because this system that

electrical bus directing, that is why it is called host bus adapter these are agents which

insulate the processing unit from the interrupts that are happening because of storage

access completions.

So now because of this host bus adapters, it turns out that you can do some other

additional useful things, just like networking has segmentation and reassembly right,

because networks have to traverse different types of network different characteristics of

different useful sizes of network packets. So, they also do segmentation reassembly, here

also we do the same thing. So, that HBA is actually does some type of segmentation of

reassembly which helps in efficient ways of translate information from storage device to

the CPU through the HBA, other thing that is very common storage protocols is that is

called split phase transactions, typically you have a master and slave and usually the idea

is the master regulates, how the bus is used.

But in storage system, is slightly different thing that happens, because the master cannot

again as I mentioned cannot be keeping on waiting and polling so; that means, that if for

example, our disk it takes a let us say few milliseconds to seek to the right spot, then it

itself it try to grab the bus it does not have to go through the master to get the bus, in the

sense there is a the protocol has been designed in such a way, that the master initiates it,

but the slave becomes the in the sense owner of the bus based on when it completes. So,

so if we see some certain differences between the protocol actually designed in the

storage systems.

Another aspect that is critical about storage, is that the protocol endpoints should be

preferably be virtualizable, what does that mean? Notice that SCSI devices preferably

should be placed an electrical bus, that is you are trying keep it very close to the SCSI

unit because you can not handle too much latency, you’re for actually want to physically

keep on as close as possible (Refer Time 42:45), device this happens in large scale

servers, or you might want to keep SCSI device network or internet itself, if somehow, I

can handle physical layer properly.

Now, this is possible if it turns out the protocol endpoints or virtualizer, what is it means?

Is that the speaker set on protocol and all that matters is what happens in on the protocol

data units?

If those things are handled, then these SCSI devices can be essentially used in various

different places in various different formats. So, again we will look at this a bit later in

some detail. So, one thing I would like to mention is that, devices can have arbitrary

structure as long as they speak the storage protocol, here I am using the SCSI for (Refer

Time 43:51) city they can have arbitrary structure, what I mean that is if I have for

example, a very large scale storage system, I can have a big server and these big server

can manage huge numbers of disks, and it can make it can pretend as if the big server

plus all those closed devices, all of them constitute, one big massive disk you want to say

the massive disk can be for example, now a days we have one tera byte disks 2 tera byte

disks, for suppose I want create a 100 tera byte disks, then I can have then we say 100

and 1 tera byte disks and these big server.

Using some electrical bus or whatever can pool all those devices, and it can pretend as if

it is a exporting a 100 tera byte disk, and these big server together the disks can be

thought of as a single disk, single device sorry and users using this particular much

virtual disk, they would not have to know the structure of it has actually a server with

multiple disk somewhere etcetera, all they know is that it is a SCSI device and it uses

SCSI protocol and therefore, it can let us say both host, we just assume that this is a

SCSI devices, they do not have to know anything about how it is actually constructed.

So, this virtualization is a very important aspect of storage systems, and it very

extensively used and if you look at SCSI protocol the reason why it has survived. So,

long it has for example, SCSI devices started coming out in 80's the first question came

in I think 1990 about 1990th in SCSI 2 came about, and SCSI 3 has been resistance same

about 2 thousand, and one can see that these kind of devices are let us say widely used

(Refer Time 46:16) because the can be virtualized and therefore, you do not lose your

investment with respect to your host devices, how they actually talk to these devices.

For example, HBA for example, you do not have to change because as I mentioned to

you earlier CPUs have agents, which actually talk to the storage device this HBA for

example, they actually do not have to change at all, because the devices if they are

virtualizable and they export is SCSI interface HBA is does not have to change. So, I

wanted to point out in this particular slide was that the protocols that you see in slow

systems, are often of a different nature than from what you see in other areas like

networks for example, and I have not mention it some other aspects here for example,

security if you look at storage protocols there are aspects related in security, there also

have to be taken into account and typically they will be running on top of the network

protocols, and there are some specific protocols for storage security.

Again, we will briefly look into it at some at sort of (Refer Time 47:43).

(Refer Slide Time: 47:44)

So, I think I would like to summarize, what we have looked at, first of all the storage

system design has many ramifications for the rest of the system, why is this? Because if

you look at storage systems, they are often used to store some critical information like

for example, in the (Refer Time 48:16) system if you talk about virtual memory systems,

the storage system actually stores those pages that are has been swapped out. So, if that

swap device is not fast enough, then your performance of your programs or applications

can be slow.

So, that is the reason why you have to make sure that, your system design is properly

well thought out. And so, basically you need to provide abstractions, based on

application needs and the type of devices we have, this design has to be sensitive to cost

and the capture devices that you have under how to manage them, you need to introduce

newer abstractions with time, a good example is key value stores that have become

popular with web scale systems, you will notice that key value stores were not used

seriously before 2 thousand, but once search become very important key value stores

became quite critical, and this storage systems also have to, scale to support large scale

computing systems, and because without the scalability then the current which scales

kind of systems cannot really be used at all. And so, they become extremely critical to

the whole design of these systems.

And. So, I think I will conclude that this point I think the next class what we will do is

we will look at each issue we will take each issue at in sequence and study it in some

detail. And so, that you get a complete prospective about this storage systems.

Thank you.

