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Hello. So, welcome back to this series of lectures on numerical optimization. In the last 

class, we looked at convex sets and properties. How do we characterize a convex set? In 

this class, we will discuss about convex functions and in general convex programming 

problems. So, we will first study about the convex functions and their properties, and 

what are the nice properties of convex programming problems, and what are the 

usefulness of convex functions. So, let us look at these two functions which are shown 

here. So, on the left side, you will see a function which is nice quadratic function and the 

function increases when x increases or x decreases. 

Now, on the right side you will see a function with lots of peaks and lots of valleys. On 

the left side, if you see the function, if you take this point which happens to be local 

minimum of the function because in the neighborhood, the function is increasing. Now, 

you will see that if x increases, the function value also increases or x decreases, the 

function value also increases, so this also turns out to be a global minimum. Now, that is 

not the case, in the case of this function. For example, these points as we saw earlier, 



these are all local minima. Now, among all this local minima, this is the point at which 

the function attends the least value. Assuming that the function increases as x increases, 

in this way or x decreases in the other way. So, you will see that this function is very nice 

function. It has a local minimum which is also a global minimum.  
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Now, what are the properties of such functions? So, let us quickly look at this function. 

So, the function which we are considering, they are of this type. Now, so what are some 

important properties of such functions? Now, if I take any two points on this graph of the 

function and draw a line segment joining that graph. Now, you will see that the value of 

the function always is less than the point on this chord. So, the function always lies 

below on or below this chord. So, suppose, if we take a function like this and then 

suppose we take a chord joining any two points. You will see that the function always 

lies below this chord. Now, it may so happen that if you take these two points and then 

take a chord joining them, then you will see that the value of the function is equal to the 

same value as obtained using the chord. 
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So, you will see that, in this case, the function always lies. So, if you take any point on 

the line segment joining these two, the value of the function will always be less than the 

value obtained here. Here also, it is similar and here, if you take any point, the value of 

the function will always be on the cord. Such functions are called the convex functions 

and good thing about such functions is that they have a local minimum, which is also a 

global minimum.  

So, we will now formally see the definition of a convex function. So, let us consider a 

convex set c and a function f from c to r, a real valued function defined on the set c 

which is convex. The function is said to be convex if you take any two points x1 and x2 

belonging to the set c and any lambda, which is a scalar in the closed interval 0 to 1. 

Then, the value of the function at any point on the line segment joining x1 and x2 in the 

set c will always be less than or equal to the value of the function interpolated between 

the two cords. 
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So, let us look at the example again. If we define this function to be on the close interval, 

a to b. Now, at this point, this is our function f of x. So, at this point, we have the 

coordinates a, f of a, and the coordinates are b, f of b. Now, if you take any point on this 

line segment joining a and b, so suppose let us take a point c. Now, if you take the value 

of the function at c, this is c, f c. So, you will see that if you now take a line segment 

joining a f a and b f b and interpolate the inter mediate points, then you will see that f c, 

the value of the function will always be less than or equal to the value represented by the 

corresponding point on the cord. We just have to interpolate the function values using 

this line segment.  

Now, similar is the case here, and you will see that if we take these two points, let us call 

them as e and h. Now, if we take a point here, you will see that the value of the function 

is equal to the value obtained by using the interpolation of the points e f e and h f h. So, 

either the function value is less than the value attained by a point on the cord or it is in 

this case equal the value attained by a point on the cord. So, this is a convex function. 
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So, what does this definition says that, if you take any two points x1 and x2 in the set c 

and take a lambda in the close interval 0 to 1 and you will get point on the line segment 

joining x1 and x2, so lambda x1 plus 1 minus lambda x2. As we have seen earlier, if 

lambda is in the close interval 0 to 1, it represents a point on the line segment joining x1 

and x2 and the convexity says is that the function is convex if f of lambda x 1 plus 1 

minus lambda x 2 is less than or equal to lambda x lambda f of x1 plus 1 minus lambda f 

of x2. 

So, here is the example of a convex function. So, we take two points, x1 and x2. Take a 

cord joining the two points. At any intermediate point on the line segment joining x1 and 

x2, the value of the function is less than the value obtained by interpolating the end 

points of the cord and finding the appropriate value on this cord of the function. Now, a 

function is strictly convex if this inequality is strict for any two distinct x1 and x2 in the 

set c and lambda is in the open interval 0 to 1. So, if this inequality is strict, then the 

function is said to be strictly convex. 
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So, now if you look at our four figures, you will see that this function is strictly convex, 

while the other function is not strictly convex because there do exist some points, where 

the inequality does not hold strictly. So, the equality holds in that definition. Hence, that 

is why this function is not strictly convex, while this function is strictly convex. Now, if 

we consider a function which is of this type, so such functions are called concave 

functions or in other words, if we take the negative of this function, so if suppose this is f 

and if you take minus f, so this is our function f of x, and if you take a negative of the 

function which is minus f. Now, minus f is a convex function. So, if f is said to be 

concave, so minus f is convex, and so there would exist some functions which are neither 

convex nor concave.  

For example, if we draw a function which is like this. Now, you will see that this is not a 

convex function because if you take any two points on the graph of the function and then 

take a cord joining them, you will see that in some regions, the function lies above this 

cord and in some regions, the function lies below this cord. So, even if you take a minus 

of this function that also will have the similar property. So, such functions are neither 

convex nor concave. 
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So, now let us look at some examples. So, this is the function in two variables. So, you 

will see that it has a nice surface, the cup shaped surface and such a function is a convex 

function because if you take any two points on the graph of this function and take a 

chord joining those two points, that chord always lies either on or above the function. In 

fact, in this case the function is strictly convex. Now, as I mentioned earlier that if we 

take a function f on a convex set c and that function is said to be concave if and only if 

the minus f is convex and is said to be strictly concave if and only if minus f is strictly 

convex. So, here is an example of a concave function and here is an example of a 



function which is neither convex nor concave. Now, you will see one more example 

shown which is neither convex nor concave. 
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So, you will see that if the variable x 1 is greater than 0, then the function is concave. If 

the variable x 1 is less than 0, then the function is convex, but if we retain x 1 to be 

belonging to the set of real numbers, then this function is neither convex nor concave. 

Now, let us look at some example of functions and try to identify whether they are 

convex or not by drawing their graphs. So, here we have function f x equal to a to the 



power x a transpose x plus a b. Now, if we draw the plot of this function, so we have 

already seen that f x equal to a transpose x plus b will be a function like this, where a is 

normal to the hyperplane, so it is a hyperplane. 
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Now, if you take any two points on this hyperplane and take a line segment joining them, 

we will see that it always lies on the function. So, f x equal to a transpose x plus b is a 

affine function which is convex. Now, you will see that this also satisfies the definition 

of a concave function because minus f, if we take minus f, then that also is a convex 

function. So, in fact this is the only function, the affine function is the only function 

which is both convex and concave. Now, let us look at. So, this function is both convex 

and concave r n. 



(Refer Slide Time: 14:30) 

 

(Refer Slide Time: 14:58) 

 

Now, let us look at another function x to the power a, where a is a real number. Now, if 

we look at the graph of the function, so we have x and f of x and we want to draw the 

graph of the function. So, e to the power x. So, this graph would look something like 

this. Now, if we take any two points on the chord of the function and joint them, you will 

see that the function is always below the chord. So, in fact this function is strictly 

convex. 
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Now, if we take a e to the power minus x, so suppose if we take a function f x to f of x 

equal to e to the power minus x, so this function would look like this, and if we take any 

two points on the function on the plot of the function, you will see that the lines segment 

joining those two always lies above the function. So, this is a strictly convex function. 

Now, let us look at some more examples. So, e to the power x is convex on r for any a in 

from the set of real numbers. Now, the f x is equal to log x. So, this function now if you 

try to draw the graph of this function, so you have f of x. So, the function that we are 

going to plot f of x is equal to log x. 
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Now, this will look something like this. Now, if you take any two points on this graph of 

the function and draw a line segment joining those two, then you will say that the 

function always in between these two lines segments, in between these two points, the 

function always lies above this chord joining the two points. So, in this case, the function 

is concave. In fact, it is strictly concave function. So, let us look at some other examples. 

So, f x is equal to log x is a guess of a concave function on the set of positive real 

numbers. 
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Now, if you take the function x equal to x q and if we try to draw the graph of the 

function, so you will see that the function is somewhat like this and you will see that now 

if you take any two points on the graph of the function and take a line segment joining 

those two, you will see that this function is neither convex nor concave, but suppose if 

you restrict ourselves only to the set of non-negative real numbers, so the domain of the 

function if you restrict to the set of non-negative real numbers, then you will see that the 

function is convex. So, these function f of x equal to x q is neither convex nor concave 

on the set of real numbers, now f x equal to mode x. 
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So, let us look at how this function looks like. So, this is f x equal to mode x. So, you 

will see that if we take any two points on the graph of this function, the line segment 

joining them always lies on or above the function. So, this function is a convex function. 

So, this shows that convex functions need not be differentiable. This is the continuous 

function. Now, one can also have some examples, where the convex functions need not 

be continuous, but remember that convex functions have to be continuous in the interior 

of the domain. There could be discontinuities at the (()). 
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So, these are some examples of convex functions. You can generate more examples of 

convex functions from the known convex functions. So, obviously the next question that 

would arise is that how we characterize a convex function, given a function how do we 

find out whether the function is convex. So, instead of trying to find out whether if you 

take any two points in the domain of the function and take a chord on the graph of the 

function joining two points, x f x 1 and x 1 f x 1 and x 2 f x 2, I am trying to find out 

whether the chord lies below the function or above the function. Instead of that, can we 

have a better way of characterizing a convex function? 
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Now, before we go into those details, let us try to see why we worry so much about 

convex functions. Now, the convex functions play a very important role in optimization 

literature and has I mentioned that they have some nice properties, and we will try to see 

some of those properties of a convex functions. Let us consider a constrained 

optimization problem, where x is any subset of r n and f is a function from x to r and 

consider this problem where we want to minimize f of x subject to the constraint that x 

belongs to the set x. So, this is the general unconstraint constraint optimization problem. 

Now, we know that there exist two types of minima. One is called a global minimum and 

one is called a local minimum. Now, a global minimum is a point x star belonging to x, 

such that the value of the function at x star is at least the value of the function at every 

other point in the domain. So, for any x belonging to the set x f of x star has to be less 



than or equal to f of x and then we said that x star is the global minimum of f over x. 

Now, as we saw earlier that it is very difficult to characterize a global minimum because 

to check whether a point is a global minimum, we need the knowledge of all the points in 

the set and then we need the knowledge of f of x for every point in the set x only. Then, 

we can characterize whether a point is a point, x star is a global minimum or not. 

So, we also use the definition of a local minimum. So, a point x star is said to be a local 

minimum of f over x. So, if there exist a delta neighborhood of x x bar, such that in the 

delta neighborhood, this b x bar, delta is a delta neighborhood of x bar and that we take a 

intersection with respect to the set x because we are always worried about the feasible 

points. So, if we collect all that feasible points in the delta neighborhood of x bar, then if 

the value of the function at x bar is at least the value of the function at all the other points 

in the feasible neighborhood, delta neighborhood of x bar, then we say that x bar is a 

local minimum. 
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Now, the good thing about the convex function is that if f is a convex function and x is a 

convex set, then every local minimum of this problem is a global minimum. So, in other 

words, we do not have to worry about finding out different local minima for a convex 

programming problem, where the function is a convex. The objective function is to 

minimize this convex and the constraint set is of convex set. Now, such problems are 

called convex programming problems. So, let us formally define convex programming 



problems. So, let c be a non-empty convex set in r n and f be a function from c to r and 

let f also be a convex function. Now, what we are interested in solving a problem where 

we want to minimize f of x subject to the constraint that x belong to c. 

So, when f is a convex function which we want to minimize and the constraint set is also 

a convex, then it is called a convex programming problem. Now, suppose f is a concave 

function and we want to maximize the concave function over a convex set, then that also 

is a convex programming problem because maximization of a convex function can also 

be written as a minimization of, a maximization of a concave function can be written as 

minimization of a convex function. 

So, if a problem is of this type where we want to minimize a convex function over a 

convex set, this is called a convex programming problem and the important property of 

this convex programming problem is that every local minimum of a convex 

programming problem is a global minimum. So, we really do not have to worry about the 

problem of local minima as far as convex programming problems is concerned. So, this 

convex programming problem has lots of interesting applications in different areas of 

mathematics, engineering, science and so on. 
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So, these problems are very important and we should know some of the important 

properties of convex programming problems. One of the properties is that every local 

minimum is of a convex programming problem is a global minimum. So, let us now try 



to prove this property of convex programming problem. Now, if the constraint set is the 

singleton set, then the theorem is obviously true because there is only one point in the 

constraint set and that point will always be a global minimum. So, the theorem is trivially 

true in such a case. 

Now, so let us assume that there exist some x star belonging to c which is the local 

minimum of f over c. So, by the definition of a local minimum, what we have is that 

there exist a delta neighborhood of x star, such that f of x star is less than or equal to f of 

x for all x in the region of c intersection, the delta neighborhood of x star. So, the delta 

neighborhood of x star is shown here. Now, let us call this as a set s. Now, what we want 

to do is that by the definition of a local minimum, it is true that x star is a local mean in 

the delta neighborhood, where the rate of feasible neighborhood around x star. 

Now, what we want to show is that f of x star is also a minimum function value that can 

be attained over all x belong to c. Now, we have shown that by the definition local 

minimum, it is the minimum in this region, but what about the remaining region, that is 

the region which is shown by the green colour here. So, if can show that f of x star is less 

than or equal to f of x for any x in this region, the remaining region, then we can 

conclude that x star is indeed a global minimum and let us see now how to do that. 
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So, let us call this region the feasible delta neighborhood around x star. Let us denote it 

by the set s. So, s is basically the intersection of c and the delta neighborhood of x star. 



Now, what we need to show is that f of x star is less than or equal to f of x for all x in the 

set c, which are not in the set s. So, the green colour region is what we are interested in. 

So, if you take any x, we want to show that f of x star is less than or equal to f of x, but 

we already know that f of x star is less than or equal to f of x for all x belongs to s. So, let 

us consider a point in the delta neighborhood of x star and let us call that point as the 

point y and y is not equal to x star. Now, what we do is that we take a line segment 

joining x star and y and extend it to some point x in the region c minus s. 

So, consider a point x on the line segment joining x star and y, and x belongs to the set s 

c minus s. Now, we want to see what can we say above f of x star and f of x and our aim 

is to show that f of x star has to be less than or equal to f of x. So, let us see how to do 

that. Now, note the set c is convex. So, x star is in the set c, x is in the set c. So, any line 

segment joining x star and x always lies in the set c. So, let us take any point y on the 

line segment joining x star and x. Let us exclude the points x star and x and take any 

point on that, open line segment joining x star and x. 

Now, we know that f of x star is less than or equal to f of y. This is because y is chosen 

to be in the set s and by 1 f of x star is less than or equal to f of x for all x belongs to s. 

So, clearly f of x star is less than or equal to f of y. Now, this y we can write it as lambda 

x star plus 1 minus lambda x. So far, we have used the convexity of the set c. Now, we 

can use the convexity of the function f. Now, since f is convex, we take any x star and x 

in the domain take a line segment joining those two. So, by the definition of convexity f 

of lambda x star plus 1 minus lambda x is less than or equal to lambda f f x star plus 1 

minus lambda f x because f is convex. 

Now, remember that lambda is in the close interval 0 to 1. So, if you rearrange this, what 

we get is that on the left side, 1 minus lambda f x star is less than or equal to 1 minus 

lambda f x for all lambda in the open interval 0 to 1. Now, if you divide throughout by 1 

minus lambda, what we get is f of x star less than or equal to f x for all x in the set c 

minus s. So, for all the points on the set c which are not in the set s, that is the points 

which are shown in the figure by green colour, we have shown that f of x star is less than 

or equal to f of x for all those points in the set c minus s, and by the definition of local 

minimum f of x star was always less than or equal to f of x for x belongs to x. So, if you 

combine 1 and 2, we will see that f of x star is less than or equal to f of x for all x 

belongs to c and which means that x star is indeed a global minimum of f over c, ok. 



So, this is an important theorem which says that for every (()) programming problem, a 

local minimum is a global minimum. So, the next question that we would like to ask is 

that suppose convex programming problem has multiple local minima which also are 

now global minima. Because of this theorem, how are they positioned in the set in the 

convex set c? In other words, in a common terminology, we ask the following question 

are those global minima of a convex function scattered at different places in the set c or 

they always are combined together. So, we will try to answer this question. 
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So, this another important theorem in the theory of ha convex programming and the 

theorem says that if you collect a set of all optimal solutions to the convex programming 

problem, then the set of all those optimal solutions is a convex set. So, that theorem 

essentially tells us that the global minima of a convex programming problem, they are 

not scattered everywhere, but they always try to form a convex set. So, we will see how 

to prove this. Now, if the set c is a convex set and if we get unique optimal solution, then 

that set is always convex because we know that any singleton set is a convex set. 

So, if we have only a unique solution, then the theorem is trivially true. So, there is 

nothing to prove there. So, let us try to prove in the case where we have multiple global 

minima. So, let us take all those global minima and put them in the set s. So, s is the set 

of all the points in the set c, such that f z is less than or equal to f x for all x belongs to c. 

So, this s is the set of all global minima of a convex programming problem. Remember 



that the function f is convex and the set c is also convex and we are trying to minimize 

objective function f of x which is a convex. Hence, the problem is a convex 

programming problem. 

Now, what we have to do is that we have to show that the set s is a convex set. Now, to 

show that any set is a convex set, what we have to do is that we have to take two points, 

any two points in the set s and show that the line segment joining those two points 

entirely lies within the sets. So, if you can show that, then the set s becomes a convex set. 

So, for that purpose, what we do is that let us take two points, x 1 and x 2 in the set s and 

obviously, we take the points which are distinct and then take a line segment joining 

these two points. 

Now, since x 1 and x 2 belong to set s and they are we know that every local minimum 

of convex programming problem is of a global minimum, so we have f of x 1 and f of x 2 

to be equal. So, since they belong to the set s, we can also say that f of x 1 is less than or 

equal to f of x and f of x 2 less than or equal to f of x for all x belong to c because both x 

1 and x 2 belong to the set s. Now, since c is a convex set and x 1 and x 2 are any two 

points in the convex set, we can say that by the definition of convexity of a set, we can 

say that lambda x 1 plus 1 minus lambda x 2 that always belongs to the set s, set c for all 

lambda in the closed interval 0 to 1. 

Now, we can use the convexity of the function. So, how do we use the convexity of the 

function? So, since f is convex, we can write f of lambda x 1 plus 1 minus lambda x 2 to 

be less than or equal to lambda f x 1 plus 1 minus lambda f x 2. This is by the definition 

of convexity of a function. Now, you will see that f of x 1 is less than or equal to f of x 

and f of x 2 is also less than or equal to f of x. So, the quantity on the left side is less than 

or equal to f of x 2 which is shown here. So, what does this mean? So, this means that f 

of lambda x 1 plus 1 minus lambda x 2 is less than or equal to f of x 2.  

Now, this inequality cannot hold because in that case, what will happen is that will 

contradict the fact that f of x 2 is less than or equal to f of x for all x belong to c. So, it 

will contradict that this has to hold with equality. Now, what does that mean. That means 

that lambda x 1 plus 1 minus lambda x 2 also belongs to the set s for all lambda in the 

range 0 to 1 and therefore, this implies that that the set s is a convex set, ok 



So, we have studied two important properties of a convex programming problem. The 

first property is that every local minimum of a convex programming problem is a global 

minimum and not only that, but the set of all global minima of a convex programming 

problem is a convex set. Now, given this two important results, now we will start 

studying more about convex functions. Now, one of the things that we would like to 

study is that how do we characterize a convex function. Now, to characterize a convex 

function, there is a nice way. 
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So, let us define a function f from x to r and describe the function by its graph. So, this 

graph is a subset in, then plus one dimensional space and it consists of the points x and x, 

f x, where x belongs to the domain of the function. Now, suppose if you describe the 

function by its graph like this, then the epigraph of a function is a subset of r n plus 1 and 

is defined as the set of all points x, y in n plus 1 dimensional space, so that x belongs to x 

and y is a real number and y is greater than or equal to f of x. 
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So, if you take a function s, this is the function, this is the graph of the function. So, I 

said the graph is a set of all points x, f x. So, this is the graph and the epigraph of the 

function is a set of points which are on or above the function. So, you will see that this is 

our unbounded set all the points for which y is greater than or equal to f of x, all the x, y 

where y is greater than or equal to f of x, the points on the curve as well as the points 

above the curve. So, this is called the epigraph of the function f. So, if we take a function 

which is like this, then if we consider all the points which are on or above the function, 

so this turns out to be epigraph of this function f. So, these are some examples of the 

epigraph of a function. 

Now, along similar lines, one can also define. So, if we take the points which are below 

the function, then that is called the hypo graph of the function. Similarly, here we can 

draw the hypo graph to be like this. So, this is a hypo graph of the function. So, the 

points which are on or above the function, they constitute the epigraph of the function 

and the points which are on or below the function, they constitute the hypo graph of a 

function. 
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So, we can see some examples here. So, here I have drawn a subset of the epigraph 

because the epigraph is typically not bounded. So, I have just drawn a subset of the 

epigraph. Actually, you will see that all the points y, such that y greater than or equal all 

the points x y, such that y greater than or equal to f of x. So, you will get all the points 

even above this, but for continuance, I have just drawn the subset of the epigraph in this 

figure. Now, there are three different functions shown here and if you look at the 

epigraph of these three different functions, and especially if you look at the epigraph of 

this function, you will see that this function is convex and the epigraph of the function is 

a convex set. Now, that is not true in these two cases. 
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So, if you take a line segment joining two points in the epigraph of the set, you will see 

that the entire line segment does not belong to the epigraph of the set, while if we take a 

line segment joining any two points in the epigraph of this function, then you will see 

that the line segment entirely lies within the set. So, that means that if we have a convex 

function, then the epigraph of the function is a convex set and if you do not have a 

convex function, the epigraph of a function is not a convex set. 
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Now, let us try to give a formal theorem. So, suppose we have a set c which is a convex 

set and ha function defined on the set c are real valued function defined on the set c, then 

f is convex if and only if the epigraph of f is a convex set. We will try to prove this. So, 

let us assume that the function is convex. Remember that we have to give the proof in 

two parts. The first part is that we assume that f is convex and show that epigraph of f is 

a convex set, and the other part is that assume that epigraph of f is a convex set and show 

that the function is convex. So, let us first prove the part where we assume that the f is 

function of convex and prove that epigraph of that function is a convex set. 

Now, to prove that epigraph of a function is a convex set, what we need to do is that we 

take two points in the epigraph of the function and then show that the line segment 

joining those two points belongs to the epigraph of the set. So, let us see how to do that. 

So, let us take two points, x 1 y 1 and x 2 y 2 in the epigraph. Now, since these two 

points belong to the epigraph of the function, we know that by definition of the epigraph 

of a function y 1 is greater than or equal to f of x 1 and y 2 greater than or equal to f of x 

2. Now, we will use the convexity of the function. So, if you take any lambda in the 

close interval 0 to 1 because f is convex, that is what we have assumed f of lambda x 1 

plus 1 minus lambda x 2 is less than or equal to lambda f x 1 plus 1 minus lambda f x 2. 

Now, we know that f of x 1 is less than or equal to y 1, f of x 2 less than or equal to y 2. 

So, the right side is less than or equal to lambda y 1 plus 1 minus lambda y. Now, what 

does this mean? So, we have a point lambda x 1 plus 1 minus lambda x 2 which belongs 

to the set c, such that f of the function value at that point is less than or equal to some 

real number which means that the point lambda x 1 plus 1 minus lambda x 2, lambda y 1 

plus 1 minus lambda y 2 does belong to the epigraph of the function by the definition of 

epigraph. 

So, what we have therefore is that the point lambda x 1 plus 1 minus lambda x 2 lambda 

y 1 plus 1 minus lambda y 2 belongs to the epigraph of f, which means that the epigraph 

of f is a convex set because this holds for all lambda in the range in the close interval 0 to 

1 and for any x 1 y 1 and x 2 y 2, belong to the epigraph of s. So, we have taken two 

points in the epigraph and shown that for any two points in the epigraph, the line 

segment joining the two points always lies in the epigraph of the set which means that 

the epigraph of f is a convex set. 
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Now, we will prove the other part. So, let us assume that epigraph of f is a convex set 

and then we have to show that f is a convex function. Now, to show that f is a convex 

function, we have to show that it satisfies the definition of convexity of a function. Now, 

since epigraph is a convex set, let us take two points in the set c and let us consider the 

two points on the epigraph. So, these are two points actually on the graph of the function 

and the points on the graph also happen to be the points in the epigraph as well as the 

hypo graph. So, x 1 f x 1 and x 2 f x 2 always belong to epigraph of f. 

Now, we have assumed that epigraph of f is a convex set. So, the line segment joining 

any two points in the epigraph always belongs to the set. So, by this we can say that 

lambda x 1 plus 1 minus lambda x 2 and lambda f x 1 plus 1 minus lambda f x 2 always 

belongs to the epigraph of f for any lambda in the close interval 0 to 1. Now, by the 

definition of epigraph, what we have is that since this point belongs to the epigraph, what 

we have is lambda f x 1 plus 1 minus lambda f x 2 greater than or equal to f of lambda x 

1 plus 1 minus lambda f x 2. So, this value which is a real number is greater than or 

equal to the value of the function at the point lambda x 1 plus 1 minus lambda x 2 for 

any lambda in the close interval 0 to 1 and therefore, this function is convex. 
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So, what we have shown is that the function f defined on a convex set is real valued 

function. We find on the convex set c is convex if and only if the epigraph of the 

function is convex. Now, if we look at some other function, so let us consider the 

function which is mode x and then let us try to draw the epigraph of this function. So, 

you will see that epigraph of this function is a convex. Now, one good thing about this 

characterization of epigraph, this characterization of convex function is that the function 

need not be different shape. So, even if the function is not differentiable, we can always 

find out its epigraph and check whether it is a convex set and find out whether the 

function is convex or not, but if the function is differentiable, it is analytically easy to 

characterize a convex function. 
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Now, before we look in to the differentiable look at the differentiable convex functions, 

let us look at what are called the level sets. So, let us consider a convex subset of r n and 

a real valued function defined on the convex set c. Now, the level set of f for a given 

alpha is determined as the set of all points in the set c, such that f of x is less than or 

equal to alpha, where alpha is a real number. So, since this set depends on alpha, we 

show the dependence of that set in the (( )). So, when we say c alpha, what we are 

interested in the set of all x in the set c, such that f of x less than or equal to alpha. 

Now, we have theorem which says that if a is convex function, then the level set c alpha 

is a convex set for every alpha belonging to r. Now, it is easy to prove this theorem. So, 

suppose that we take any two points in the c alpha set and what we have to show is that if 

f is a convex function, then c alpha is a convex set. So, we assumed that f is a convex 

function and we have defined c alpha to be this way. Remember that while defining the 

level set, we do not need f to be a convex function. Now, x y belong to c and f x less than 

or equal to alpha and f y less than or equal to alpha, that is by the definition of c alpha 

because since x y belongs to c alpha, they clearly belong to c and f of x and f of y. Both 

are less than or equal to f of alpha. 

Now, let us assume that f is a convex function. So, we take a point this side which is on 

the line segment joining x and y. So, x and y belong to c as well has c alpha. So, this line 

segment also belongs to both. So, clearly z belongs to a. So, any point on that line 



segment joining x and y belongs to the set c. Now, we assume that f is convex and by the 

definition of convexity of a function f z is less than or equal to lambda f x plus 1 minus 

lambda f y and since, f of x is less than or equal to alpha f of y less than or equal to 

alpha, what we have is f z less than or equal to alpha. So, for any line segment joining x 

y in c alpha, we get any point z on that line segment also lies in the set c alpha, which 

means that c alpha is a convex set. 

So, if a convex function f, then the level set c alpha is a convex set. So, this is an 

important property which will be used to generate more convex sets from a convex set 

from convex functions, and we will see that sometime later, but remember that the 

converse of this theorem is not raw. So, if every level set c alpha of a function is a 

convex set that does not mean that the function is a convex function. So, I will leave it as 

an exercise to you to find out the functions for which the level sets are convex, but the 

function is not convex. 

So far, we have talked about the convex functions and used epigraph character as a 

convex function. Now, suppose the function convex, the functions are also differentiable, 

then how do we characterize them to be convex functions, and if they are twice 

differentiable, then how do we characterize them to be convex functions. So, we will 

study those things in the next class. 

Thank you. 


