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So, welcome back to this series of lectures on numerical optimization. So, in the last 

class, we were looking at unconstrained optimization problem. We saw that for solving 

any general constrained optimization problem, we need to solve unconstrained 

optimization problem. So, this one-dimensional unconstrained optimization problem 

plays a very important role in solving multi dimensional constant optimization problems. 

So, that is why, we have to spend some time studying about how to find the solution of a 

one dimensional constrained optimization problem. 

So, here is a problem that we are looking at where f is the function from R to R. We want 

to minimize f (x), x were reserve the entire set of real numbers. In the last class, we 

looked at the necessary and sufficient conditions for a local minimum. So, the necessary 

conditions are the conditions, which are satisfied by every local minimum. The sufficient 

conditions are the ones which guarantee a local minimum. Now, if the function f is 

sufficiently smooth, then we saw that it is easy to characterize a local minimum. 
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We also saw the definition of a stationary point in the last class, where we defined the 

stationary point for a continuously differentiable function f to be a point where the 

derivative of the function vanishes. So, it is this stationary point that will be interested in 

if a function is a differentiable. 
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So, if we want to find out the stationary point, we have to equate the derivative of a 

function to 0. So, this is the example that we saw last time that if we consider a function 

x minus 2 square and if you want to minimize this, so we first find out f dash x and 



equate it to 0. That gives us the minimum. Then we check the second derivative and if it 

is greater than 0, we can say that x star is a strict local minimum. 

Now, in general, for a any non-linear function, it may not be always easy to find out a 

stationary point like what we have got here. For example, if we consider a function f x is 

equals to x square plus e to the power x, which is shown here. Then the derivative is 2 x 

plus e to the power x. If we equate it to 0, we cannot get a closed form solution for x, so 

we need an algorithm to find out the x, which satisfies g x equal to 0. So, in today’s 

class, we are going to look at some of those algorithms. Now, remember that we are 

looking at 1 dimensional optimization problem. So, there are different methods which 

can be used to solve this 1 dimensional optimization problem. 
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So, they can be divided into different categories. So, 1 set of methods are called search 

free methods or search methods. So, these methods are derivative free methods. So, one 

looks at the function values at different places in the interval and then tries to find out, 

tries to reduce the interval of uncertainty and so on. The other set of methods are called 

approximation methods. They are based on derivative information. So, it could be either 

a first derivative or second derivative. Then another side of method exists, which are 

called inexact methods. So, in which case, we are not really worried about finding the 

exact solution of given 1 dimensional optimization problem?  



So, this will be important when we have to solve one dimensional optimization problem 

many times. So, every time going towards the exact solution does not makes sense. So, 

one has to resort to inexact methods. So, we will study in exact methods some time later 

in this course, but in this class, we will study the derivative free methods and derivative 

based methods. 
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So, to understand these methods, we need the notion of unimodal functions. So, let phi 

be function from R to R. Let us consider the problem to minimize phi x over R. Let us 

also assume that x star be the minimum point of phi x. It belongs to the closed interval a 

to b. Now, here is a definition of a unimodal function. The function phi is unimodal if if 

we have 2 points x 1 and x 2 in the close interval a to b, where x 1 is less than x 2. Then 

x 2 less than x star implies phi x 1 greater than phi x 2.  

So, what it means that x 1 and x 2 both lie on the left side of x star. In such a case, the 

function is strictly decreasing on the left side of x star. If x 1 is greater than x star, so that 

means that x 1 and x 2 both lie on the right side of x star. So, on the right side of x star, 

the function is strictly increasing. So, this is the definition of a unimodal function. So, let 

us now see how this unimodal functions look like. 
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So, here are some examples of unimodal functions. So, a, b is the interval in which the 

minimum of the function lie. So, here b is nothing but x star in the right panel. Now, if 

you look at the left panel, this is the minimum of the function in the interval a b. so you 

will see that on the left side, the function is strictly decreasing. Then on the right side of 

x star, the function is strictly increasing.  

Similar is the case in the figure on the right side. So, on the left side of x star, the 

function is strictly decreasing. Then star being a point of that interval, there is nothing on 

the right side of x star. So, this unimodal functions function assumption will be used in 

most of these lectures except the last method, which is Newton method. 
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So, with definition of unimodal functions, we will now start looking at the derivative free 

methods. So, as the name suggests, these methods do not use any derivative information 

of a function. It just tries to use the function value at different points in a given interval. 

So, we are again considering a unconstrained optimization problem, trying to minimize f 

of x, x belongs to r. Here are some methods that we are going to discuss. There exist 

many others methods as well, but we will restrict ourselves to these 3 methods, which are 

quite practical methods. 

So, one method is the dichotomous search method. The other one is Fibonacci search 

method. Then the limiting Fibonacci search method is called golden section search 

method. Now, all these methods require given interval of uncertainty a, b which contains 

the minimum of f. We also assume that f is unimodal in the closed interval a, b. So, the 

idea is that we start with some interval of uncertainty a, b and try to reduce the length of 

that interval has the iterations progress.  

Finally, we reach close to the solution. This interval of uncertainty is also called bracket. 

So, we have to ensure that the minimum of the function f always lies in the bracket and 

then keeps on reducing the bracket such that the minimum gets always gets trapped in 

the bracket. Finally, we reach the actual minimum of f. The important assumption that 

we are using here is that f is unimodal in the close interval a, b. 



(Refer Slide Time: 08:38) 

 

So, now, here are 2 functions. One is shown with the green line and the other one is 

shown with the red line. Now, a, b is the interval of uncertainty, which is given to us. So, 

that means that the interval a, b contains the minimum of each of this functions. Now, 

note also that each of these functions is unimodal functions. Now, suppose I know the 

function values are at a and b. So, I know f of a and f of b. Then I choose some point 

lambda somewhere in this interval and find out the function value f of lambda. 

Now, I have 3 pieces of information, f of a, f of lambda and f of b for the green line 

function and the red line function. Now, let us concentrate on the green line function. 

Now, you you can see that the the function has a minimum at this point and that lies in 

the interval a to lambda. If you look at the red line function, that has the minimum at this 

point. That lies in the interval lambda to b.  

So, if I evaluate a function at a particular point, I really cannot say anything about which 

part of the interval does a minimum lie. It could lie either in l lambda or it could lie in the 

lambda b also. So, function values at 3 points are not enough to reduce the interval of 

uncertainty. Remember that we always have to reduce the interval of uncertainty in every 

iteration. So, knowledge of function values at 3 points is not going to be enough. 
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So, we would require function value at one more point. So, again we consider the same 

set of functions. Now, suppose I have the knowledge of the function values at lambda 

and mu lambda and mu both lie in the closed interval a and b. Now, let us look at the 

green function. Now, f of lambda is less than f of mu. So, on the right, the function is 

strictly increasing on the right side of lambda. Now, because of the unimodularity, there 

may not exist any minimum on the right side of mu as far as this green function is 

concerned. So, what we can conclude is that the minimum of this function would be 

bracketed in the interval a to mu. 

On the other hand, if you look at the red function, red colored function, you will see that 

the minimum is bracketed in the interval lambda to b. So, for the green color function, 

the minimum would lie in the interval a to mu. So, that means that we have reduced the 

original interval a, b to the interval a mu, which is half size lesser than a, b. Similarly, for 

the red function, we have reduced the interval from a, b to lambda b. So, by having 

knowledge of function values at 4 points, we are able to reduce the interval of 

uncertainty. So, this is the very important fact that we will use for studying different 

derivative free methods. 
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So, one of the simplest methods that is based on the derivative free approach is called the 

dichotomous search method. So, the idea here is very simple that given a interval a, b 

plus lambda and mu symmetrically, each at a distance epsilon from the midpoint of a, b. 

So, we start with the interval a, b. This is the midpoint of that interval. Then lambda and 

mu are plus symmetrically are at a distance of epsilon around this midpoint. Then we 

evaluate the function values at lambda and mu. So, this functions value function values 

are given here. 

Now, you will see that f lambda is less than f mu. So, this means that the function is 

strictly increasing on the right side of lambda. So, that means that the root of this 

function, the minimum of this function should lie in the interval a to mu. So, the mu 

interval, which is shown here is the new interval of uncertainty or the new bracket. Now, 

you will see that this new bracket is about half the length of the original intervals length. 

So, that is we had this original interval a, b. We reduced it by almost a half quantity to 

form a new interval. 

Now, now if you restrict ourselves to the interval a to mu, then again we have to do the 

same procedure. We will find out a midpoint of this, which is shown by the middle line. 

Then lambda and mu are placed around it at the distance of epsilon. Then the functional 

values are evaluated. You will see that f lambda is less than f mu. So, again we conclude 



that the interval of uncertainty is on the left side of this midpoint. In fact, this f of mu and 

the new interval of uncertainty are shown here.  

So, you will see that every time we are trying to reduce the interval of uncertainty by 

half. Using this procedure, one can find the minimum to a reasonable accuracy. Now, 

one important point to note is that in every iteration, we do 2 function evaluations. So, 

one is f lambda and the other one is f mu. Similar thing is done here. It is a every 

iteration of dichotomous search requires 2 function evaluations and sometimes this 

number of function evaluations met are not to be expensive. So, one has to be careful 

about using the dichotomous search anyway. 
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It is a very simple method and very easy to implement. So, it is a simple algorithm, 

which implements dichotomous search method. So, we are given initial interval of 

uncertainty a, b and start with the initial iteration a is equal 0. The first point 0 is said to a 

and b 0 is said to b epsilon is some quantity, which is given, which is greater than 0. 

What is given to us is the final length of uncertainty interval. 

So, we have to iterate till the final interval as this length. So, as long as the the interval 

length is greater than all greater than l, we compute lambda k and mu k. They are 

computed using the midpoint of a k and b k minus epsilon and point of a k and b k plus 

epsilon. Now, if lambda k is greater than f of mu k, then what we have to do is that the 

function is strictly decreasing on the left side of lambda.  



So, lambda k becomes a k plus 1 and b k will remain as b k plus 1. Otherwise, b k plus 1 

will be mu k that means that function is the f lambda k is strictly less than f mu k. That 

means function is strictly increasing on the right side of lambda k. So, the right end of 

the bracket is mu k. Then the left end remains as a k. Then we increase the iteration 

counter and go to the next iteration. 

So, this procedure is repeated. Finally, what we get is the interval of uncertainty a k b , 

which of the until less than or equal to r less than or equal to l. Once we get that, the 

algorithm will come out. Finally, the x star, the minimum of the function will be that 

midpoint of the final interval of uncertainty. So, it is a very simple algorithm, but 

requires 2 function evaluations, the f lambda k and f mu k at every iteration. That may 

turn out to be expensive in some cases. 

So, if you look at this algorithm, every time the length of the interval is reduced by half, 

so after k iterations, the length will be 1 over 2 to the power k into b b 0 minus a 0 or b 

minus a, which is the original interval of uncertainty. So, by controlling k, one can reach 

any desired accuracy of the final length of uncertainty interval. 
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Now, here is a simple example. We have considered the function, to minimize the 

function, which is to be minimized is given here. Here are the iterations of dichotomous 

search. So, they start with the interval uncertainty to be minus 4 and 0. So, the difference 



between b k and a k is 4. As the iterations progress, this difference between b k and a k 

comes down as you see here. 

So, you will see that initially the difference was 4; and thereafter 10 iterations, it is about 

0.0043. If you go down further, this difference comes down further. Suppose, if you want 

the final interval of uncertainty to be less than 1 1 into 10 to the power minus 6, then we 

would end up in something in a solution like this. So, you will see that the a k and b k are 

almost close to each other with a very small value.  

So, it is a very small difference between them and x star. The minimum of the function 

turns out to be minus 2.5652 in this case. The corresponding value of f of x star is given 

here. So, you will see that there is a significant reduction in the interval of uncertainty at 

every time. So, 1 over 2 to the power k that is the reduction of the ratio of the final length 

of the k th interval divided by the length of the first interval that will be 1 over 2 to the 

power k. 
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Now, in the previous method that we studied, we saw that we always needed 2 function 

evaluations per iteration and that 2 turnout to be expensive. So, can we better look at 

another case? Let us first look at simple case. Now, a 1 b 1 is a interval of uncertainty, 

which is given. Suppose that we have placed lambda 1 and mu 1 at 2 different places in 

this interval. Now, we know that the function is unimodal.  



So, f of lambda 1 is less than f of mu 1. So, that means that the function is increasing on 

the right side of lambda 1. So, the the bracket has to be a 1 to mu 1. Similarly, if f of 

lambda 1 is greater than equal to f of mu 1, then the bracket has to be lambda 1 to b 1. 

So, this is what is indicated here. Now, you will see that this n point of this interval is 

same as mu 1. The n point of this interval in the other case is same has lambda 1. Now, 

we also have, if you consider this case, we also have knowledge of 1 point lambda 1 in 

this interval. Now, can we use that to some of its some method?  

Similarly, if you look at the other interval, so whose left and point is lambda 1. Now, we 

know the value of f of mu 1 here where mu 1 lies in this interval. Now, 1 function 

evaluation is already done. So, we just have to add 1 extra point, which could be on the 

left of this lambda 1 and could be on the right side of this mu 1. So, that would reduce 

the number of function evaluations. So, let us see how to do that. 
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So, see the same case. Now, let us assure 2 things; 1 is that mu 1 minus a 1 is same as b 1 

minus lambda 1. So, that means that lambda 1 and mu 1 are always symmetrically 

placed. So, when we go to k th iteration, we will have lambda k and mu k. They are 

symmetrically placed so that the assumption that we make, so whenever we get those 2 

points, they are always the symmetrically placed in the interval. Now, let us also assume 

that mu 2 is equal to lambda 1.  



So, if we look at this interval, this branch, we are concentrating on the interval a 1 to mu 

1. Now, this mu 1 becomes a new end point of the next iteration b 2 and a a 2 is the 

nothing but a 1, which is the left end point of the bracket of further k th iteration. Now, 

let us consider this branch. Let us assume that mu 2 is lambda 1. So, this lambda 1 is 

basically used here. That we will, we are going to call it as mu 2. Then what we have to 

do is we just have to find out lambda 2 here using some method. So, that means that 

from the first iteration to the second iteration, we will just need 1 function evaluation as 

compared to 2 function evaluations used by the dichotomous search.  

Similarly, it is the case if you look at the right branch where f lambda 1 is greater than or 

equal to f of mu 1. Now, the left bracket of this is obtained using lambda 1. So, a 2 is set 

to lambda 1. The right bracket remains as b 1. So, b 2 is b 1. Now, what we do is that this 

mu 1, which was earlier available, we will call it has lambda 2. Now, the function value 

at lambda 2 is known because the function value of mu 1 is known.  

Now, our aim is just to get mu 2. So, that means that it will require 1 function evaluation 

from the second iteration onwards. So, in the first iteration, we will need both lambda 1 

and mu 1; the 2 function evaluations, but from the second iteration onwards, we will 

need only 1 function evaluation. If we cleverly choose our lambda 2 or mu 2 depending 

upon the case, that is what we will see now how to do that. 
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Now, we started with lambda 1 mu 1. Let us assume that f of lambda 1 is less than f of 

mu 1. Now, f of lambda 1 less than f of mu 1 means that our new bracket will be a 1 to 

mu 1. So, b 2, which is the right end of the bracket, is mu 1 and a 2 is same as a 1. Then 

lambda 1 became mu 2. Suppose that we have a way to find out a lambda 2. So, then the 

function evaluation of f of lambda 2 is done. Now, suppose f of lambda 2 also is less 

than f of mu 2. So, in that case, this mu 2 will become the right bracket, which is nothing 

but b 3 a 2 remains as a 3. Then this lambda 2 becomes mu 3. Then we find lambda 3. 

So, this is how the iterations would progress. 

So, you will see that the difference between lambda k and mu k comes down as the 

iterations progress. Finally, there would be situation where lambda k and mu k would 

merge. So, our aim is to get this required lambdas and mus appropriately. So, we will see 

how to do that. Now, this is the little bit of abuse of notations here in the sense that 

sometimes we will call I 1 as the interval. In this case, I have used I 1 as a length of the 

interval. So, depending upon the context, we will know what I 1 or I 2 mean, either they 

could mean interval or a length of the interval. 

Now, if you look at the the interval length at the first iteration, so the interval length is b 

1 minus a 1. Now, b 1 minus a 1 is same as mu 1 minus a 1 plus b 1 minus mu 1. So, mu 

1 minus a 1 assume that f of lambda 1 is length than f of mu 1. So, that means that a 1 to 

mu 1 is the interval length at the second iteration. So, mu 1 minus a 1 is I 2 and that is 

added to b 1 minus mu 1.  

Now, remember that we have placed lambda 1 and mu 1 symmetrically. So, what it 

means is that b 1 minus mu 1 is same as mu 1 minus a 1. So, I can write b 1 minus a 1 as 

lambda 1 minus a 1. Now, now, let us go to second step. Suppose we find out lambda 2 

because we already have got mu 2 that is equal to lambda 1. Now, suppose that we have 

found mu 2 and f of lambda 2 is less than f of mu 2. Then we find out that we are 

interested in the interval a to 2 mu 2. Now, b 3 is nothing but mu 2 and mu 3 is nothing 

but lambda 2. We find lambda 3. So, you will see that the interval length I 2 is nothing 

but b 2 minus a 2. One 1 can calculate to be I 3 plus b 2 minus mu 2; so I 3 plus b 2 

minus mu 2. 

Now, if you look at I 3, how is I 3 derived? I 3 is derived from b 3 a 3 to b 3 interval. So, 

the length of interval I 3 is b 3 minus I 3 and b 3 minus I 3 a 3 is same as mu 2 minus a 2. 



So, b 3 minus a 3 is same as mu 2 minus a 2 because we have got this interval based on 

this condition and mu 2 minus a 2 because of the symmetry is same as lambda 1 minus a 

1. So, what we can see is that I 1 can be written as I 2 plus I 3.  

So, this is the very important observation that we have made here that the length of the 

interval, the first interval is the sum of the lengths of second interval and the interval 

obtained at the third iteration. So, you will see that this is I 1. Then I 2 is nothing but a 1 

2 mu 1. Since, lambda 1 and mu 1 are symmetrically placed, so a 1 to mu 1 is same 

lambda 1 to b 1. This a 1 to lambda 1 is same has a 3 2to b 3. So, you will see that I 3 is 

same as I 1 is same as I 3 plus I 2. So, this is the very important observation that we are 

going to use. 
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Now, we have this I 1 is equal to I 2 plus I 3. Now, if you generalize further, so what we 

get is I 2 is equal to I 3 plus I 4 and so on. Then we get I n is equal to I n plus 1 plus I n 

plus 2. So, now, we have n equations. Now, out of these n equations, I 1 is a given 

interval of uncertainty that before we started using our approach. So, I 1 is known. Now, 

there are n equations and n minus 1 variable. So, there exists infinite number of solutions 

assuming that they are consistent. Now, suppose we make 1 assumption that I n plus 2 is 

0. So, that means that after n plus 2 iterations, the length of the interval is going to 

vanish. 



So, let us make this assumption that after n n plus 2 iterations, I n plus 2 will be equal to 

0. So, that means that we are now left with n variables, which are I 2 to I n plus 1 and n 

unknowns. So, we can find out, we can generate a sequence of intervals I 2 to n plus 1 

with I 1 given and I n plus 2 0. So, let us see how to do that. 
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So, let us look I n plus 1. Now, if you look at I n plus 1, I n plus 1 is nothing but I n 

minus I n plus 2. So, I n minus I n plus 2 is nothing but I n plus 1. We know that I n plus 

2 is going to be 0. So, that is nothing but I n. So, I n plus 1 is equal to 1 into I n. Now, if 

we go further, let us write write down I n. So, I n is nothing but I n plus 1 plus I n plus 2. 

Now, I n plus 2 is 0 and I n plus 1 that we have already seen. That is I n. So, I n is 

nothing but I n plus 1 that is nothing but 1 I n. 

Now, we go 1 step further. So, let us look at I n minus 1. So, I n minus 1 is I n plus I n 

plus 1. Now, you will see that I n plus 1 is 1 into I n, I n is 1 into I n. so I n minus 1 will 

be 1 I n plus 1 I n that is nothing but 2 I n. So, what we have done is that we have started 

with I n plus 1 and I n. Then we can now find out I n minus 1. So, what it means is that at 

the n minus 1 th iteration, the interval is the interval length is 2 into I n, if you go further, 

so you will see that I n minus 2 is nothing but 3 into I n. So, the interval length at I n 

minus 2 is 3 into I n. How is this 3 derived? This 3 is derived from I n and I n minus 1. 

So, it means that we have derived it from this 2. 



So, we take a sum of the previous 2 entries. Then we get 3. So, if you proceed further, so 

you will see that the length of every interval is obtained using the previous 2. If you go 

from I n plus 1 down to I 1, so I 1 is nothing but I 2 plus I 3. Then what should be the 

length here? So, that is the question that we would like to ask. Now, if you look at this 

sequence 1, 1, 2, 3, so let us assume that this 2 are given to us 1 and 1. Then we sum the 

previous 2 to get this quantity. Then similarly, from the previous 2 to get this, then 5 plus 

3 will give us 8 and so on. So, that is how the the lengths are obtained. 

Now, this sequence that we have given here in the red color is called the Fibonacci 

sequence. The recursive relation for this Fibonacci sequence is F k is equal to F k minus 

1 plus F k minus 2. So, that means from k equal 2 onwards, you obtain this sequence by 

finding the sum of the previous 2 elements in the sequence. Then of course, we will 

assume that the first member of this sequence is 1 and the second member is 1. So, these 

2 are 1. So, once they are given, we can start calculating F 2 onwards. So, this is called 

the Fibonacci sequence. Then if we assume that I n plus 2 is 0, then we can get the 

lengths of all the intervals based on the element of which element of the sequence we are 

talking about. 

(Refer Slide Time: 35:11) 

 

So, we will see how to do that. So, I n we saw that I n plus 1 is nothing but 1 I n. That is 

the first element of the Fibonacci sequence. So, F 0 I n I n is also 1 I n that is nothing but 

F 1 I n and so on. So, we can based on the value of n, we can decide which sequence, 



which element of the sequence of Fibonacci sequence are talking about. So, if we go 

further at the at the k th iteration, we are talking about F n minus k plus 1.  

Therefore, at I 1, it will be F n I n. Now, this is the very important relation. I 1 is nothing 

but F n I n, which means that after any iterations, the length of the original interval I 1. 

So, the ratio of I n, the length of the interval after any iterations and the length of the 

interval at the original iteration is 1 over 5 n. In other words, I n is nothing but I 1 by F n. 

So, this is the important relation that we would like to use. So, if we generate the 

sequence like this, then how how is it going to be useful in generating our lambda and 

mu? That is what we will see now. 
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Now, a quick comment about the number of iterations needed by this Fibonacci search 

method is that after n iterations, the length of the interval comes to I 1 by F n. Now, F n 

if we consider 10 iterations, so F n is F 10. F 10 is 89. So, I n becomes I 1 by 89. Now, 

after 10 iterations, the number of function evaluations will be 2 for the first iteration. 

This is because initially, we do not have any idea. Suppose if you cleverly choose 

lambda and mu, then for the remaining 9 iterations, we will require 9 function 

evaluations. 

So, in all, we will require 2 plus 9 that is 11 function evaluations. In 11 function 

evaluations, we were able to reduce the length of the interval by about 1 percent. So, 1 

by 89 is almost close to 1 by 100. So, the length of the interval after n iterations is almost 



close to 1 percent of the original length of interval. Now, the only disadvantage here is 

that we should know n beforehand. Only then we can calculate what is what is going to 

be the final interval length. 
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Now, let us see how to get lambda k and mu k from the previous iterations. So, at the k 

th iteration, we have a k and b k. Then lambda k and mu k are given here which are 

known. Now, let us assume that in the next interval, in the next iteration we are talking 

about the interval lambda k to b k. So, that means b k plus 1 is b k a k plus 1 is lambda k. 

Then lambda k plus 1 is nothing but mu k as we saw earlier.  

Our aim is to get mu k plus 1. Now, we know that they are to be symmetrically placed 

right. Then suppose we know mu k plus 1 right and it turns out that the in the next 

iteration that k plus 2. The iteration we have to only worry about is the interval a k plus 1 

to mu k plus 1. So, by the things that we have studied so far, we know that this mu k plus 

1 will be the right end point of the bracket at I k plus 2. So, if I can get the interval length 

at the k plus 2 iteration, then I can, what I can do is that I can add that interval length to 

get mu k plus 1. Since, they are symmetrically placed; mu k plus 1 minus a k plus 1 will 

be same as b k plus 1 minus lambda k plus 1.  

So, if we know a k plus 1, if we know b k plus 1, if we know lambda k plus 1, I k plus 2 

and I k plus 1, I k plus 2, how do we get mu k plus 1? So, that is the question that we 

would like to answer. So, it turns out that if I know I k plus 2, mu k plus 1 is easily 



available. So, what I have to do is that I just have to add this interval length to a k plus 1 

to get mu k plus 1. 
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Now, here is a procedure to do that. So, let us recall that I k was found to be F n n minus 

k plus 1 into I n. Therefore, I k plus 2 also can be written as F n minus k minus 1 into I n. 

now, I k plus 1 also is written as F minus k into I n. Therefore, if you take using if you 

use these 2 equalities, then one can write I k plus 2 as the ratio of F n minus k minus 1 

and F n minus k into I k plus 1. 

So, if I know I k plus 1, if I know n and k, then I can derive I k plus 2. All this was 

possible because of this relation. This relation was possible because of the way we 

generated the sequence. So, we assume that given I n given I 1 and given that I n plus 2 

equal to 0. We were able to generate a Fibonacci sequence and from which we derived 

this expression for I k. This is because of which we are able to get I k plus 2 with the 

knowledge of the length of the interval at k plus 1 th iteration. This ratio is easy to find. 
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So, here is a procedure. So, we have the interval I k, which is a k to b k. Lambda k and 

mu k are given. The function values at these 2 lambda k and mu k are evaluated. f 

lambda k suppose is less than f of mu k, then we know that b k plus 1 is nothing but mu 

k. Mu k plus 1 nothing but lambda k a k plus 1 is nothing but a k. Lambda k plus 1 is 

evaluated using b k plus 1 minus I k 2. Similarly, in the other case, when f of lambda k is 

greater than or equal to f of mu k, so in this case, these quantities are known. Only this 

quantity which is shown in a red is unknown and that is evaluated by adding I k plus 2 to 

a k plus 1. So, that is what is shown here that mu k plus 1 is equal to a k plus 1 plus I k 

plus 2. 

So, that important point to note is that after the first iteration, what we need to evaluate is 

only either lambda k plus 1 or mu k plus 1, the function and then the function value at 

that. So, only 1 function evaluation per iteration is needed after the first iteration. Also, it 

is easy to calculate these values if we know I k plus 2. So, with that, the algorithm 

becomes very simple. So, the idea is that we start with some initial interval a a 1 b 1 and 

then keep on reducing the interval of uncertainty. Then at final point, if we look at the 

previous expressions, we see this. 
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So, you will see that I n minus 1 is nothing but 2 I n. Then after this interval of 

uncertainty becomes half of the previous interval of uncertainty, so at that point, the 

lambda and mu merge into each other. So, we after n minus 1 iterations, will have 

lambda n minus 1 is equal to mu n minus 1. Then one just has to look at either the left 

interval that is a a n minus 1 2 lambda n minus 1 or lambda n minus 1 to b n minus 1. 

Then do an iteration of dichotomous search to find out what is the minimum point. So, if 

use this algorithm, the algorithm is easy to write. So, let us consider the same example 

that we saw earlier. 
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We are trying to minimize this function. The interval of uncertainty is the close interval 

minus 4 to 0. Suppose that the required length of interval of uncertainty is 0.2, then if 

you set n to b say one that is based on F n, then this is the set of iterations, which are 

given here for Fibonacci search method. So, you will see that the length of the 

uncertainty interval, which was 4 initially after 7 iterations, it came to 0.14. Then one has 

to use the appropriate method, 1 iteration of dichotomous search after n minus 1 

iterations. That will give us the final minimum of the function at 2 certain accuracy. 
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Now, as I said earlier that Fibonacci search requires n as the input. We have to fix n 

beforehand. Only then we can use Fibonacci search. Now, there is another method, 

which is called golden section search method, which is a limiting case of a Fibonacci 

search. So, here we assume that the ratio of 2 adjacent intervals is constant. So, that is I k 

by I k plus 1 is same has I k plus 1 by I k plus 2 and I k plus 2 by I k plus 3 and so on. 

This should be I k plus 2. Therefore, if take I k by I k plus 2, so that will be r square. 

Then I k by I k plus 3 is equal to r to the power 3 and so on.  
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So, if we suppose continue to use the same relationship that we had for the Fibonacci 

search that is I k is equal to I k plus 1 plus I k plus 2 or in other words, I k by I k plus 2 is 

same as I k plus 1 by I k plus 2 plus 1. So, now, I k by I k plus 2 is r square. I k plus 1 by 

I k plus 2 is r. so we can write r square is equal to r plus 1. If we consider the positive 

root of this polynomial, then we get r equal to 1 plus root 5 by 2. This is nothing but 

1.618034. We are neglecting the negative root of r because we do not want the negative 

ratios. So, this ratio is called the golden ratio. Hence, the name of the method has the 

golden section search. 
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Now, one important point to note for golden section search is that every iteration is 

independent of n that we saw earlier. Again, this should be I k plus 2 by I k plus 3. Now, 

if you look at the lengths of the intervals, which are generated after every iteration, so we 

start with I 1. Then the length of the next interval is I 1 by r and then I 1 by r square and 

so on. So, after n function evaluations, assuming that we use the same technique as we 

used earlier, we will see that for the golden section search, the length of the interval after 

n iterations is I 1 by r to the power n minus 1. Now, how how does it compare with 

Fibonacci search? 
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Now, if you look at the Fibonacci search, the length of the interval after n iterations is I 1 

by F n and for the golden sections search, we saw that it is I1 by r to the power n minus 

1. So, how do they compare? Now, one uses a relationship, which holds when n is very 

large. So, the relationship is that F n is approximately equal to r to the power n plus 1 by 

root 5. Therefore, one can write I F n as this. 

Then, the ratio of this 2 turns out to be r square by root 5, which is 1.17. So, what it tells 

is that when n is large, when this relationship holds after n evaluations, the length of the 

interval given by the golden section search is about 17 percent higher than the length 

given by the Fibonacci search. But, one advantage of golden section search is that it does 

not require knowledge of n beforehand, while Fibonacci search needed the knowledge of 

n beforehand. So, golden section search is typically used in practice because one need 



not know the value of n. One can reach the desired interval, one can reach the desired 

length of the interval of uncertainty has the iterations progress. 
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Now, let us look at some derivative based methods. Remember that we are trying to 

solve this unconstraint optimization problem. We are going to see a couple of methods. 

One of them is bisection method. These methods are derivative based. We assume that f 

is continuously differentiable for this bisection method. We also assume that the function 

f is unimodal. There is another method called Newton method, for which the function is 

assumed to be continuously twice differentiable. Then this is based on the quadratic 

approximation of the function at every iteration. 
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Now, let us see how the bisection method works. So, this is basically a variant of the 

dichotomous search that we studied. So, if you can recall that in the dichotomous search, 

we find the midpoint of the interval and then look at the function values at those 2 points, 

which are at a distance of epsilon from the midpoint. Now, instead of doing that, we find 

the midpoint and at this midpoint, we find out how what is the sign of the derivative? 

Now, if the sign of the derivative is positive as in this case, so that means that the 

function is going to increase further. Remember that we are using the assumption that the 

function is unimodal. So, next time we have to worry only about the interval a, c. So, the 

length of the interval gets reduced by half every time. 

So, we compute f dash c where c is the midpoint of a, b. Then if dash c is 0, then we 

stop. If it is not 0, if it is greater than 0 that means we only concentrate on the left side 

interval a, c. f dash c less than 0 means we concentrate on the right side interval c, b. so 

every time the interval is reduced by half, so this is just a variant of the dichotomous 

search. So, instead of using 2 function evaluations around the midpoint, we use the 

derivative of the function at the midpoint. 
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So, the algorithm is a very simple. So, it is easy to understand this algorithm. So, I will 

not spend much time on this.  

(Refer Slide Time: 50:32) 

 

So, let us go to the some of the properties of the bisection method. So, it requires initial 

interval of uncertainty. It converges to a minimum point within any degree of desired 

accuracy. So, like the dichotomous search case, every time the interval length gets 

reduced by half in the dichotomous search case. It was almost close to half. Where? 



Here, it is every time; it is half of the previous length. So, based on the desired degree of 

accuracy, one can reach the minimum point. Now, let us look at Newton method. 
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This is the iterative technique to find a root of a function. You might have studied it in 

earlier classes. Let us look at some simple problem, where we want to find an 

approximate root of the function. So, root of a function is a point where the function 

crosses the x axis. Now, there could be multiple points or multiple roots or a function. 

But, suppose that we are interested in finding one particular root. So, you might have 

used this method earlier. So, suppose, we start with a point which is x k, at x k, we draw 

a tangent to the function and where this tangent hits the x axis, that point will be our new 

point x k plus 1. 

Now, at x k plus 1, we follow the same procedure that we draw a tangent to a function at 

x at this point and then again, do this. Finally, we will reach the point x star. Now, this 

function has another root, which is here. So, if we suppose start from a point here, we 

may end up in this root. So, depending upon the initial point, your root, your functions, 

the the root obtained using Newton’s method would change. 
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Now, how do we use this method to find the minimum of a function? So, let us assume 

that the function is twice continuously differentiable. Then the idea of the Newton 

method is very simple. So, at every iteration k, you approximate a function b by a 

quadratic function. So, q x is the quadratic approximation of f at x k. So, that is obtained 

using the approximate using the Taylor series. But, Taylor series is up to second order. 

Remember that this is not the truncate at Taylor series. We are using f 2 dash x k, so this 

is a quadratic approximation of the function.  

So, we estimate the new point of the iteration by minimum, finding the minimum of 

quadratic. Minimum of quadratic is easy to find. We just take the derivative and equate 

to 0. That will give us the minimum. So, here is a derivative q dash x k plus 1 is nothing 

but that is equated to 0. That gives us x k plus 1 is equal to x k minus f dash x k by f 2 

dash x k. Now, the same procedure is again repeated that you go to a new point, again 

find the quadratic approximation of the function and go to the minimum of that quadratic 

approximation and repeat. So, this is the Newton method for finding the minimum of a 

function. 
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So, it is very simple that we start with some initial point, as long as the gradient is within 

is greater than the desired epsilon value. So, we just iterate x k plus 1 is nothing but x k 

minus g of x k. So, remember that we are trying to find the stationary point. So, we have 

to look at the problem where we want to find the roots of the g x, the gradient of the 

function rather than the f x we are trying to minimize. So, to get a stationary point, we 

want to find the root of g x. This is an algorithm to find the root of g x.  

Finally, you will get x k, the n point. Now, this entire procedure works provided the 

second additive of the function f is the first derivative of function g is positive. Then as 

you will see now that Newton method depends on the initial point. So, we are 

sufficiently close to the solution. Then the Newton method will converge. Now, we will 

see some evaluation Newton method on different functions. 
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So, Newton method as all of you know, you must have used it to find the roots of a 

function. It is an iterative technique to find the root of a function. So, suppose if you 

consider a problem that we want to find an approximate root of the function f x equals to 

x square minus 2. Then what we do is that we use Newton method to solve this problem. 

So, we start with some point x k, which is shown here. At x k, you take a tangent to the 

curve at x k and where the point at which the tangent meets, that becomes your new 

point x k plus 1. At x k plus 1, again, you follow the same procedure. Again, draw a 

tangent to this curve. The point at which it intersects the x axis will be your x k plus 2 

and so on. 

So, finally, you will see that as the iterations progress, you will move to the point, which 

is x star. It is the one of the roots of this function. Now, if if we start from a point 

somewhere in this region, then we may end up in getting a root. It is this. So, remember 

that this function has 2 roots. One is located on the on the positive side. One is located on 

the negative side.  

Depending upon what our initial point is, we will end up going to the closest root. So, 

this is the Newton method and that can be used to minimize a function. So, when you 

want to minimize a function, we basically want to find out the stationary points. So, the 

points where f dash x or g x is 0, we are interested in finding the roots of g x when we 

want to minimize f of x. 
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So, let us see how to do that when we use Newton method. So, let us consider the 

problem to minimize f of x where x is value from the set of real numbers. Now, the 

important thing that we have to assume is that f belongs to C 2. So, the second 

derivatives of f are continuous or f is twice continuously differentiable. Now, given that 

the Newton method is just a simple idea that at every iteration, it tries to construct a 

quadratic model of a function, which based which agrees with the function at x k up to 

the second derivative.  

So, at x k, if we can find out f dash x k and f 2 dash x k, then we can construct a 

quadratic model of the given function at x k. Now, given this quadratic model, then the 

Newton method simply finds out the minimum of this quadratic function. So, to find 

minimum of this quadratic function, what we have to do is that we have to take the 

derivative of this with respect derivative of to x with respect to x equated to 0.  

We estimate the new point x k plus 1. So, 2 dash x k plus 1 if we calculate, you will see 

that q dash x k plus 1 is nothing but f dash x k plus f 2 dash x k into x minus x k. Now, at 

x k plus 1, this derivative of q should vanish. So, that means that f dash has k into f 2 

dash x k f dash x a plus f 2 dash x k into x k x k plus 1 minus x k is 0. So, from this, we 

can get a formula for x k plus 1. 

So, given x k, given the first derivative of the function, the second derivative of the 

function at x k, then x k plus 1 can be calculated as x k plus 1 nothing but x k minus f 



dash x k divided by f 2 dash x k. Of course, we have to assume that f 2 dash x k is non 0 

in this case so that this division makes sense. Now, this procedure is repeated at x k plus 

1. Again, we form a quadratic model at x k plus 1 and so on till some stopping criterion 

is reached. 

(Refer Slide Time: 1:00:33) 

 

So, here is the simple algorithm called Newton method. Remember that, we are trying to 

minimize f of x where f is f belongs to C 2.We are interested in finding the roots of g x 

and g x is nothing but f dash x. Now, the first step in the Newton method is to initialize 

the point x 0. So, one can randomly choose the initial point x 0. Then choose some 

epsilon, which is going to be used for deciding the stopping criteria and set the iteration 

number to 0.  

Now, while the gradient of the function at x k, the absolute value of the gradient is 

greater than epsilon. So, that is why, this epsilon is used. So, one does another iteration 

of Newton method, where one finds x k plus 1 based on x k and f dash x k. It is nothing 

but g of x k and f 2 dash x k. Then the iteration counter is increased and the whole 

process is repeated till the absolute value of the gradient at x k is less than or equal to 

epsilon and the output of this algorithm. When the algorithm terminates, what we get is x 

k and f of x k is the optimal of objective function value. 

Now, the algorithm looks very simple, but a lot depends on your initial point as we will 

see some examples now. If the initial points are far away, then this method will Newton 



method will not converge. The second point that is important is that the g dash x k 

should always be positive, only then the minimization will make sense. If g dash x k 

turns out to be 0, then this division is not possible and g dash x k turns out to be negative. 

Then we may not be able to solve this problem minimize f of x. 

So, one has to be careful about these 2 points. Some remarks that if we start with an 

arbitrary initial point, the Newton method does not converge to a stationary point. So, 

this is the important remark. If we start sufficiently close to a stationary point, then the 

Newton method converges. This method is useful only when g dash x k is greater than 0. 

That means that the the curve has a positive curvature at every point. Now, let us see 

how the Newton method works on different problems. 
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So, let us take the same problem that we considered earlier to minimize a function, which 

is shown here. Its derivative g x that is f dash x is also shown here. We are interested in 

finding the roots of this function g x. Now, here is the graph of that function g x. You 

will see that one of the roots is of that function is somewhere here. Now, if I if we choose 

x 1 somewhere in the vicinity of that route, you will see that from x 1 b star, we go to x 2 

which is very close to the root here and then so on. So, after a few iterations, the 

algorithm will converge to the actual x star. Now, for the same function, you start with a 

different initial point. 
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So, earlier we started with somewhat close to this root. Now, suppose if you start with 

close to this root. So, suppose our x 1 is here. One can check that from x 1. Then next 

point x 2 is somewhere here; then x 3, x 4 and so on. Then finally, 1 converges to the x 

star. So, the important point is that depending upon the initial point x naught, the solution 

that we would get would differ. 
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Now, suppose that we consider a function, which is to minimize log of e to the power x 

plus x to power minus x. If you write the derivative of that, it turns out to be e to the 



power x minus x to the power minus x divided by e to the power x plus e to the power 

minus x. So, remember that this function is twice continuously differentiable. So, we can 

use Newton method. Now, if we plot the graph of g x, so it would look something like 

this. Suppose, we start from a point x 1, then x 2 point is somewhere here.  

So, if you take a tangent to this curve at x 1, it is the x axis. At x 2, at x 2, we again take 

the tangent to this curve. It cuts the x axis at x 3 and so on. So, you will see that slowly 

this method will converge to the point x star where g of x becomes 0. Now, this is the 

only root of this function g x and a, because as x increases, it goes further up and as x 

decreases, it goes down. So, it never touches the x axis at any point of time. 
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Now, let us again consider the same function. But, start with a different initial point. So, 

our initial point is supposing somewhere here. We are talking about the same function f 

of x and then the same g x. Now, if our initial point x 1 is here, then take a tangent to the 

curve g x at x 1. So, it will meet the x axis at x 2 and we repeat the procedure. So, x 2 is 

here. Then x 3 comes on the right side of x 1. 
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 x 3 becomes on the right side of x 1. Then x 4 is again on the left side of x 2. Now, you 

will see that x 2, x 5 has gone beyond much beyond x 3. Now, the algorithm does not 

have any hope to converge to this point. So, you will see that at every iteration, because 

our initial point was such that it tended to move away from the stationary point. You will 

see that after x 5, it will be difficult to again come back to this. So, this algorithm will 

not converge if we start with this particular x 1. So, Newton method is very sensitive to 

the initial point. If we start sufficiently close to the solution only then there is a chance 

that it will converge.  

So, with this I will end up my discussion on 1 dimensional unconstrained optimization 

algorithms. Later on, we will come back to multi dimensional unconstrained 

optimization problems, where these 1 dimensional unconstrained optimization 

algorithms are useful. But, before we move on to that, let us start with a new topic, which 

are convex sets. 

 


