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Welcome back. In the last lecture, we started discussing about penalty function methods, 

and the idea was the following that, if you want to minimize the function f x. 
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Subject to the concern that x belongs to the set x. The idea of penalty function is to 

define a function psi x, which takes the value 0 when x belongs to x and, which takes the 

value plus infinity, when x does not belongs to x. And this next step is to solve, an 

unconstrained, which is to minimize f x plus psi x. So, you will see that this problem is 

equivalent to this problem and other solution. If x star is solution to this problem, then 

psi x star will be 0, because x star belongs to x, and we will get f of x star as the optimal 

objective to functional value. 
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So, the idea was the following that if you want to minimize some function subject to 

some interval, closed interval a b. So, up function psi would however the following from 

where it takes the value 0 in this interval and infinity elsewhere. So, the moment we go 

move away from this interval the function was 2 plus infinity. Now, this is this function 

is not continuous, so it cannot be used directly to solve an unconstrained optimization 

problem, because most of our techniques that we studied were based on derivatives of 

the function. 
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So, so it may be a good idea to approximate the function by function like this, and then 

make use of a series of functions. So, for example, we could have another function which 

is like this and then another function this is like this. So, as the parameter value changes 

the function slowly moves towards the desired function, one can also have a function like 

this. So, in this case one could change the parameter value to get a function like this or 

change the parameter value, to get a function which is like this. 

So, if you use this set of functions they, they are called the penalty function methods, and 

if you use these set of functions the methods derived using them are called barrier 

function methods. So, this method is also similar to interior point method that we saw 

earlier, that a point which is feasible at the beginning. The next iteration that point will 

not, be allowed to go outside the feasible region, because of this barrier so they are also 

similar to the interior point methods. So, instead of using psi x, we defined a sequence of 

continuous non negative functions that approach psi only at the limit. 
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So, let us look at the penalty function methods so let us consider the problem to 

minimize f x subject to the constraint that x belongs to x. And let x star be a local 

minimum let us denote the constraint set x, which is formed using the inequality 

constraint x j is less than or equal to 0. So, all let us assume that all the constraints are of 

the h j x less than or equal to 0 later on we will see the extension of this to a general non-

linear program. 

Now, the way, we have defined the penalty function here, we will see that the function is 

continuous but, it is not differentiable at the boundary points. So, it may be a good idea 

to have a function, which is continuously differentiable, so that we can use our derivative 

based methods, to solve those, problem. So, one possibility is to have a function so 

suppose this is the interval a b so one possibility is to have a penalty function, which is 

sufficiently smooth. 

So, instead of having only the continuous function we can have sufficiently smooth 

function, so that we can use the derivative based approaches to solve this problem. So, 

one such function is a function, where which takes the value 0 if h j x is less than 0 and if 

h j x is greater than 0 then it will take the value h j x. So, the idea is to penalize, 

whenever x crosses the feasible region, and the penalization is can be obtain using this 

penalty function. 



Note that this is not only the penalty function one can have different penalty functions, 

but, suppose if we choose this function. Then let us define function q of x and c to be the 

function f x plus seen to P x, where c is a positive constant and P x is the function that 

we have defined here. Now, have a sequence c k such that every c k is non negative and 

c k plus 1 is greater than c k for all k. 

Then suppose for a given value of c k, let x k be the minimum value or optimal value of 

x, which minimizes q x and given c k. So, if we have a sequence as c k, then q x c k or s 

k is will give a such sequence of optimal values for different values of c k. Remember 

that c k plus 1 is greater than, c k so it is monotonically increasing sequence. So, c would 

go to infinity as k increases and, we have a sequence of s k for every value of c k. Now 

ideally what should happen is that the s k tends to infinity as a c k tense to infinity. 
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Now, for a general nonlinear program, we have minimize f x subject to h j x less than or 

equal to 0 and e x equal to 0. I going from 1 to m and j going from 1 to l, we can define 

the penalty function in a similar way. So, for inequality constraints we have max of 0 h j 

x square for equality constraints, we have e i x square. Now, let us assume that, this f h 

and e are sufficiently smooth, and let us define the q of x c to be f x plus c P x where c is 

again a objective constant. Now, when we have a sequence c k does the sequence s k 

generated by minimizing q x c k converges to x star, so we would like to answer this 

question. 
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Now, here in an important lemma, which says that if k is the optimal value of 2 x c k and 

c k plus 1 is greater than c k then the following 3 conditions hold, so that is q x k c k is 

less than or equal to u x k plus 1 c k plus 1. Then P x k is greater than or equal to P x k 

plus 1 and f s k less than or equal to f x k plus 1.So, you will see that the value of f does 

increase, at every iteration, now we will show that this value will converge to f of x star 

as c tends to infinity. So, let us first prove this now by definition q x k plus 1 c k plus 1 is 

nothing but, f x k plus 1 plus c k plus 1 P k P x k plus 1. Now c k plus 1 is greater than c 

k, so we can write this as this quantity, get equal to this quantity, because c k plus 1 is 

greater than c k. Now, at c k x k is the optimal value, so this quantity will be greater than 

or equal to f s k plus c k P s k and that is nothing but, q x k c k. 

So, the auxiliary function q increases after every iteration that is the first result. Now, the 

second result says that the penalty function value at x k is at least the penalty function 

value at x k plus 1. So that means that as k increases, the penalty function value 

decreases. Now, let us see how to prove this, now if we fix c k f k is the optimal value, so 

f of x k plus c k into P p of x k will be less than or equal to this quantity. On the other 

hand if you fix c k plus 1 then f x k x k plus 1 is the optimal value for any feasible x. So, 

this second inequality holds, now if you add this 2 inequalities than the quantities 

involving f get canceled. And we use the fact that c k plus 1 is greater than c k to show 

that P x k is greater or equal to P s k plus 1. So that proves the second part that the 

penalty function value decreases. 



Now, what happens to the objective function f, so we know that for a fixed c k s k is the 

minimum value. So, f of x k plus c k P of x k s k will be less than or equal to this 

quantity. And this quantity is nothing but, it implies that f of x k plus 1 is greater or equal 

to f of x k. So, that means the objective function value increases after the every iteration 

of optimization of the auxiliary functions. 
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Now, if x star is a solution to this problem, then f of x k is less than or equal to f of x star 

for every k. So, let us prove this which is very easy to show, now c k is a positive 

quantity P of x k is also a positive quantity, so for the f of x k is less than or equal to f x k 

plus c k into P of x k. And this is nothing but since s k is optimal for every feasible x, so 

this quantity is less than or equal f x star plus c k P of x star and by definition of penalty 

function P of star in 0. And therefore, this quantity is nothing f x star, so f of x k becomes 

less than or equal to f of x star and now using the 2 lemmas. We can prove the theorem 

that any limit point of the sequence x k generated by the penalty method is a solution to 

the problem P 1. 
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Now, let us see the penalty function method to solve general none linear program, now 

the input to this penalty function method is the sequence c k, where k goes from 0 to 

infinity and a positive epsilon value which is used for stopping the program. So, the 

iteration counter is set to 0, and the initial value x k is obtained. Now, how do we get this 

x k, it may be a good idea to get this x 0 or the initial point by solving an unconstrained 

minimization problem to minimize f x. 

Because in this case we are not ensuring that every feasible point has to be in the interior 

of the feasible set. But, as the iterations progress, it will move towards the interior of the 

feasible set. So, we initialize the x k and while the difference between the auxiliary 

function and the actual objective function is greater than epsilon. We solve an 

unconstrained minimization problem to minimize u of x given c k. The interaction 

counter is increased by 1 and this procedure is repeated. 

So, you will see that, what we need is just a sequence c k, which is a monotonically 

increasing sequence and which tends to infinity as a, tends to infinity. And every time, 

we need to solve only a constraint optimization. Unconstrained optimization problem, 

and finally, at the end we will get x star which is equal to x k. So, very easy way of 

solving, general non-linear program but, the only thing is that we need to define the 

auxiliary function appropriately. 
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So, let us see an example, we have seen this example earlier to minimize x 1 minus 3 

square plus 2 minus 2 square subject to this constraints. And we have already seen that 

the minimum of this problem occurs at 1 0 or in other words you will see that if we had 

use the active set method and started with this point. We would followed this path to 

reach the solution whose x 1 co-ordinate is 1 and the x 2 co-ordinate is 0. So, it is the 

circle of minimum radius centered at 3 2 which touches this feasible region and the 

optimal point is this point. 
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Now, let us see how to solve it using penalty function method, so we define the auxiliary 

function to be the objective function plus max of 0 coma h j x square. So, we have 3 

constraints, so there will be 3 terms corresponding to the 3 inequality constraints, now 

we have to start with some point. So, we take the unconstraint minimization of this 

objective function, and that minimum occurs at point whose x 1 co ordinate is 3 and x 2 

co-ordinate is 2. So, let us take us, take that as our initial point, now this initial point you 

can check that it violates the second constraint x 1 plus x 2 is less than or equal to 1. So, 

the other constraints are satisfied, so if we consider max of 0 minus x 1 plus x 2 that will 

be 0 and similarly, for the third constraint. So, only this constant will be active so let us 

rewrite our auxiliary function with respect 2 only the violating constraint. 

So, at x 0 the auxiliary function will have a form like this, now for a fixed c this is the 

convex function. And if we equate the gradient of this function to 0 so we get x 1 c to be 

2 c plus 3 by 2 c plus 1 and 2 by 2 c plus 1. So, since this is a convex function this is also 

x star c. And therefore, if we take the limit as c tends to infinity, because in the penalty 

function method we have to take c to infinity. So, if we take the limit of this as c tends to 

infinity what we get is start to be 1 0 as desired. So, you will see that penalty function 

method generates sequence of x k c, where the c also varies for every iteration and 

finally, in the limit we will approach x star. So, a lot depend on, the lot depends on 

taking the limit of this x k c as c tend to to infinity. Now, the problem is that as c 



approaches towards infinity, the optimization of this function will cause some numerical 

difficulties, as c approaches infinity, so is there a way out. 
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So, so let us consider a simple problem to minimize the f x subject to the equality 

constraint e x equal to 0. And we have seen that the first order necessary conditions in 

that there exist x star and mu star, which is the KKT point that is the gradient of f x star 

plus mu star into 2 gradient e x star equal to 0. Now, penalty function, in the penalty 

function method, the auxiliary function is defined as the some of f x and c into P x. And 

it depends on the optimal value depends on, c being taken to infinity. And as I said that 

at the c equal to infinity or and c moves towards infinity, there can be some numerical 

difficulties associated with, this optimization problem. Although at c tends to infinity q x 

c will be equal to f x, but optimization of q x c will become difficult. 

Now, let us consider the per term problem, where instead of 0, let us take some constant 

theta, and minimize f x subject to constraint that e x equal to theta. Now, will this part of 

problem, help us in getting rid off our dependence on c, especially as c approaches 

infinity. So, let us consider the penalty function let us call it has q hat x c and that is 

nothing but, f x plus c into e x minus theta square. So, instead of f x plus c into x square 

we have a new penalty function, c into e x theta minus square. Now, if we expand this 

and ignore the constant term, what we get is f x minus 2 c theta into e x plus c into 2 e x 

square. 



Now, if you consider minus 2 c into theta to be mu, then this can be written as f x plus 

mu into e x plus c into e x square. And f x plus mu into e x is nothing but the Lagrangian 

function using x and mu as the variables. And to that Lagrangian function there is a extra 

quantity, which is added and therefore, it is called the augmented Lagrangian function. 

And let us denote this augmented Lagrangian function by L hat now, this function L hat 

is a function of x mu and c. 
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Now, we know that the, if x star is a local minimum, then there exists mu star, such that 

the gradient of l with respect to x evaluated at x star mu star is 0. And that is gradient f x 

star plus mu star into gradient e x star is 0. Now, if we take the gradient of the augmented 

lagraingian with respect to x. And evaluate it at x star mu star and c, so what we get is 

the gradient of the original Lagrangian with respect to x evaluated at x star mu star plus 2 

c into e x star into gradient of e x star. 

And quantity is 0, because x star mu star is a KKT point, and this quantity is 0, because x 

star is a feasible point. So, the important thing to note here, is that the gradient of the 

Lagrangian, the augmented lagarangian with respect to x evaluated at x star mu star at a 

given point of at the given value of c is 0 for every value of c. So, this is the important 

observation that this gradient vanishes irrespective of the value of c. So, the, we really do 

not have to worry about getting a sequence c and ensuring that c turns to infinity, which 



might cause numerical difficulties. Now, the question is that how do, we get this estimate 

mu star, now if x star let us denote by x star c, the minimizer of the Lagrangian.  

So, the gradient of the Lagrangian vanishes so that is expanded here, and these gives us 

gradient of f x star to be minus of mu plus c e x star c into 2 gradient d x star c. Now 

compare this with this equation, so we will see that the, this quantity which is in the 

parenthesis it is a good estimate of mu star. So, the idea is that every iteration we get an 

estimate of mu star and repeat the procedure. 
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So, let us see the algorithm which is called the augmented Lagrangian method, so the 

problem is to minimize f x subject to x equal to 0. And you will see that the, at every 

iteration we solve unconstrained optimization problem to minimize L hat and then 

update mu update mu k plus 1 using mu k and e of x k. So, what you need is only some 

input number some, some number c which is positive number and epsilon which is the 

tolerance parameter for stopping. So, this algorithm becomes very simple, and that can 

be used to solve. 
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General non-linear program also, if we have multiple equality constraints, so there will 

be a mu’s associated mu star associated with each of the constraint. So, those can be 

estimated easily and an inequality constraint can be written as h x plus y square is equal 

to 0 by introducing new variable y. So, once we have equality constraint problem again 

the augmented Lagrangian method can be used. 
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Now, similar to penalty methods there exists barrier methods, so which are typically 

applicable to inequality constraint problem. Now, consider this inequality constraint 



problem and let us denote the set constraint, set by the set x. Now, different bearer 

functions are used, so for example, one can use barrier functions of the type minus 1 over 

h j x or minus log of minus h j x. Now, the idea is that approximate the given problem 

using the barer function. So, if we choose the constant c which is greater than 0 and write 

the barrier function, write the auxiliary function as f x plus 1 over c b x. 

Remember that c is greater than 0 and if we have a sequence c which tends to infinity, 

and then solve this auxiliary problem to minimize f x plus 1 over c b x subject to x 

belongs 2 by integral of x. Now, on the face it you may find that, this is the constraint 

problem and which is difficult to solve, but if you really take the gradient of the objective 

function. You will see that this constraint is typically not necessary, because this gradient 

of the objective function. Especially the barrier function will make sure that the point 

does not cross the feasible region. So, the new point will always been the integer of the 

feasible region and the, if carefully implemented this function, this method also works 

very well. The analysis of this method is similar to the penalty function method, so we 

will not repeat it here 
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Now there exists a, another class of methods, which also depend on the Lagrangian dual 

these are called the cutting plane methods. So, let us see the general non-linear program 

to minimize the f x subject to the inequality and equality constraints and x belongs to the 

set x where x is a compact set. And the dual problem of this problem is maximize theta 



lambda mu where lambda is nonnegative, so lambda are the Lagrangian multipliers 

corresponding to the inequality constraints. Now, the dual function theta lambda mu is 

nothing but, minimum in fact it should be infimum, but since x is a compact set. We are 

assuming that, there exists a minimum, so minimize f x plus lambda transpose h x plus 

mu transpose a x and let us denote this as z. 

So, the equivalent dual problem can be written as maximize z subject to z less than or 

equal to this quantity and x belongs to z x. Now, you will see that this problem is a linear 

programming problem, so maximize the linear function subject to this, constraints and 

the variables are z mu and lambda. Now, the only problem, with this linear program, that 

the number of constraints is infinite. Because we have to make sure that x belongs to the 

set z x so such problem is difficult to solve. 
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So, instead may be a good idea to solve an approximate dual problem, now suppose we 

know that there is the sequence of x j is going from 0 to k minus 1. Such that z satisfies 

the inequality of all x in this sequence, then we can write an approximate dual program 

as to maximize j x subject to this constraint. But x belongs only to x 0 to 0 x k minus 1, 

so let us assume that z k lambda k mu k is an optimal solution to this problem. Now, we 

have to check whether this is an optimal solution to the original problem or not. 
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And one way to check this, is to consider the problem to minimize so fix lambda k and 

mu x and minimize f x plus lambda k transpose h x plus mu k transpose e x subject to x 

belongs to x. And get an solution x k and at x k you find out this objective function this 

value and, then see whether z k is less than or equal to that. 
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So, if z k is less than or equal to that quantity then lambda k mu k is an optimal solution 

to the Lagrangian dual problem. And if z k is greater than that f of x k plus lambda k 

transpose h x k plus mu k transpose a x k. Then this constraint is added to the 



approximate dual problem, so for the next iteration, there will be a extra x k which would 

appear in the approximate dual problem. 
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So, for a general non-linear program the cutting plane method works like this that we 

initialize with a feasible point x 0. Remember that all the cutting plane methods start 

with the initial feasible point x 0, and then solve a linear program to get z k lambda k mu 

k. But this linear program solves the approximate dual problem were the x is take the 

value form the set x 0 x 1 to x k minus 1. Now, after having obtain the, this solution we 

fix lambda k mu k, and find out x which minimizes f x plus lambda k transpose h x plus 

mu k transpose e x, subject to the constraint at x belongs to x. And then check whether 

this, the z k that we have got satisfies this, so if z k is less than or equal to f x k plus 

lambda k transpose h x k plus mu k transpose a x k. 

Then we stop, otherwise go to the next iteration. So this cutting plane method tries to add 

extra constraints, extra affined constraints as and when needed to improve the objective 

function; and it is very popularly used in many applications. Now this completes our 

discussion on some of the constraint optimization algorithms. As I mentioned earlier it 

may be difficult to cover each and every method in this course. So, we have tried here to 

select some of the commonly used methods, and solve and use them to solve constraint 

optimization problems. 


