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Welcome to this 4th lecture, in this series of lectures on Numerical Optimization. So far, 

in the last two lectures, we saw some mathematical background needed for this course; 

and some of those concepts will be useful for understandings on the theory that we are 

going to see today especially, the concepts on differential calculus and some analysis. 

So, in today’s lecture, we will, we will look at unconstrained optimization problems, how 

to solve those problems, what are the necessary and sufficient conditions for the 

solutions of those problems. 
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So, to begin with, let us look at a constraint optimization problem, which is given here 

so, you have a function f from the domain X to R and X is a subset of R n. And our aim 

is to minimize the function f, where x belongs to the set X. So, this is the constraint 

optimization problem but, any unconstrainted optimization problem is a special case of 

this constrainted optimization problem; in the sense that, if I replace this X by R n then, 

it becomes a unconstrainted optimization problem. So, our aim is to solve this problem 

and for that, we need the definition of minimum. So, x star belonging to the set X is said 



to be a global minimum of f over X, if the value of x star, the value of the function at x 

star is less than or equal to the value of the function at any other point in the set X. So, 

such a point x star is said to be a global minimum. 
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For example, let us consider a problem, where you have a function on the left panel, 

which is shown in the black line and let us assume that the constrainted set is a only this 

interval. Then, you will see that the global minimum of this problem is, it occurs at this x 

and the corresponding minimum value of the objective function is shown here. Now, on 

the right panel, you will see another function, which is not as nice as the function on the 

left panel so, you will see that there are lots of peaks and lots of valleys. And suppose, 

we restrict ourselves to this interval and assuming that the function goes to plus infinity 

beyond these points although, it is not of interest to us, we have only interested in this 

small interval. And you will see that in this interval, this is the point where the function 

achieves the least value and the corresponding x star turns out to be this. So, among all 

possible points in the domain of that function, on which we want to minimize the 

function, this is the point where the function achieves this the least value so, this is called 

a global minimum. 
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Similarly, one can define what is called a global maximum so, in the definition of global 

maximum, this inequality will be reversal, f of x star greater than or equal to f of x, for 

all x belongs to X, for x star to be your global maximum. Now, in this course many times 

I will be talking about minimization problems of this type but, the ideas that we 

discussed here can be easily extended by writing to the maximization problem by writing 

a maximization problem as a minimization problem, which we saw how to do, that was 

seen in the first lecture. Now, the question is that, are there any conditions on f or on x or 

both so that, the function f does attain its maximum or minimum in the set X. So, can we 

have some conditions on this f as well as on x so that, the the minimum or maximum is 

guaranteed in the set X. 
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Now, for that let us look at some examples so, let us take a function f x equal to x cube 

where, the domain of the function is a set of real numbers and the function is defined 

from R to R. Now, the function is shown here in this plot so, on the right side the 

function goes to plus infinity, as x goes to plus infinity. And on the left side the function 

goes to, when x goes to minus infinity the function goes to minus infinity. Now, you will 

see that, over the domain X equal to R, this function has neither a minimum nor a 

maximum. 

Because, the function extents to plus infinity and minus infinity so, it has no minimum or 

no maximum. Now, in this case, if you look at the domain set, which is X that is a close 

set, the set of real numbers R, that is a close set. But, it is not a bounded set. So, that 

means, naturally x is not a compact set now, do we want X to be bounded and not 

necessarily closed, we do not know as of now, let us see another example. 
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Now, here is an example where, the domain X is a open interval from a to b and the 

function f is from X to R, and defined as f of x equal to x. So, the function is shown in 

this figure and so, you will see that, these end points are not included in the domain. So, 

that is why, they are shown using some special symbols now, if you look at this domain, 

this domain is now bounded. So, unlike the previous case where, the domain was not 

bounded here, the domain is bounded but, it is not closed so, again x is not a compact set. 

Now, you will see that, f attains neither a minimum nor a maximum on X because, f of a 

and f of b are not defined so, we cannot have a minimum value of the function in this 

open interval a to b. But, in this case, you can get a bound on this minimum and 

maximum value, and those are called infimum and supremum. So, the infimum of this 

function is f of a, which is attained at x is equal to a and the supremum of this function is 

f of b, which is attained at b. 

But remember that a and b do not belong to the domain so, we cannot say that, minimum 

or maximum is attained but, in this case, the infimum and supremum are possible. So so 

far, we have considered two examples where, the domain X in one case was not bounded 

but, closed in the other case, it was bounded but, not closed, so that that essentially 

means that the domain was not a compact set. 
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Now, so, does the, does that mean that, do we need X to be compact to attain a minimum 

so, let us look atone example. So, let us consider a domain X to be the closed interval 

minus 1 to 1 now, it is a close set as well as a bounded set so, hence it is a compact set. 

And let us define a function f from X to R, as f of x equal to x, if x is in the open interval 

minus 1 to 1 and 0 otherwise. So, in the open interval minus 1 to 1, the function is a 

straight line and at the end points, the function has value 0. 

So, clearly you will see that, the function is a discontinuous function on the set X now, 

again we can say that, f does not attain a minimum or a maximum in this set X. So, 

remember that, here X is a compact set and f is not continuous. So, compactness of X 

alone was not enough probably, we need something some more conditions on f, and that 

condition is the continuity of function f on x. So, suppose, if we have X to be a compact 

set and f to be a continuous function on the set X, then can we say something. 
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So, this leads us to the Weierstrass, the Weierstrass theorem, which states that, if X 

which is a subset of R n is a nonempty compact set and f is from X to R is a continuous 

function on X. Then, f does attain a maximum and a minimum on X that is, there exist 

some x 1 and some x 2 belonging to X. So, as that f of x is less than or equal to f of x 1, 

for all x belongs to X and f of x greater than or equal to f of x 2, for all x belongs to X. 

So, So this theorem was proposed by Weierstrass, we will not go into the proof of this 

theorem but, it gives us sufficient conditions for the existence of optima. That is, the if f 

is a function different from X to R then we need X to be compact and f to be continuous 

function on x. Then, it is guaranteed that the, there exist two points x 1 and x 2 such that 

f of x 1 greater than or equal to f of x, greater than or equal to f of x 2, for all x belongs 

to X. So, as I said that, this Weierstrass theorem just provides us sufficient conditions for 

existence of optima but does not give you the necessary conditions for the existence of 

optima. 
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For example, suppose we take a function f, which is a, I have not written the explicit 

form of this function here but, assume that the function has a form like this. Now, the 

function is defined on a closed interval a to b, the closed interval a to b is a close and 

bounded set and hence, it is compact. But the function f is not continuous here; you will 

see that, there is a break in the function at this, at this point. 

Now, although f is not continuous, you will see that, the function does attain a minimum 

at this point and the minimum value of this function is somewhere here. So, although f x 

is not continuous, f does attain a minimum in the closed interval a b, for this case. So, 

this example illustrates that, the conditions of a Weierstrass theorem are not made but the 

function does have a minimum. So, Weierstrass theorem does not talk about necessary 

conditions or existence of optima, it only talks about the sufficient conditions for optima. 
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Now, here is another example, let us define a function f x as x minus 2 square and it is 

defined from R to R, the function is shown here. Now, you will see that the function is 

continuous, but X is not compact, the set R of real numbers is not a compact set. So, 

again the conditions required by Weierstrass theorem are not met because, x is not 

compact. But despite this fact, the function does attain a minimum at this point and the 

corresponding x star is somewhere here. 

So, we will so, you will see that Weierstrass theorem just gives sufficient conditions for 

existences of optima or many optimum points but, does not give necessary conditions for 

the existences of optima. But any way it is a useful theorem in the sense that, under if 

those conditions are made like, if f is a function from X to R and X is compact and f is 

continuous on X then, the minimum and the maximum R of the function f are guaranteed 

in the set X. 
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So now, let us look at general problem so, you will see that the left panel u will see that 

figure, which we saw earlier in this lecture. That, the function is very nice and attains 

minimum at a single point and on the right panel you will see a function where, there are 

lots of peaks and valleys. And if you look at this point for example so, in the 

neighborhood, you will see that the function in increasing and the function has a least 

value in this, if you consider on neighborhood around this point. But this value is still 

higher than the value, which is called a global minimum now, it turns out that finding 

this global minima is difficult. 
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For example, it is very difficult to characterize or find the global minimum for a general 

non-linear function. 
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So, if you have a function, which is nice as on the left panel, it is easy to find a global 

minimum. While on the, on the right panel, you will see a function, whose global 

minimum is very difficult to find. And suppose, we find this point, which is a global 

minimum then, can we say that, it is a global minimum. So, for that purpose, we need to 

look at the value of the function at all the points and to ascertain that, f of x star is less 

than or equal to f of x, for all x belong to X and that is going to be a very difficult task. 
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So, identifying a global minimum or characterizing it, is very difficult for a general non 

liner function, only in some special cases, one can characterize them very easily. We will 

see those cases some time later in this course but as of now, we know that, it is difficult 

to characterize this, this global minima. 
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So, it resulted in a concept of local minimum so, again let us consider x to be a subset of 

R n and f to be a function from X to R. And let us consider constraint optimization 

problem and we are trying to minimize f of x subject to x belongs to X. Now, x star 



belongs to X is said to be a local minimum of f, if there is a delta greater than 0 such that, 

in the delta neighborhood of x star, the value of the function is less than R equal to the 

value of the function, at a all points in the neighborhood. 
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So, if you look at this, this point in the neighborhood, you will see that the value of the 

function is less than or equal to all the points so, if you take a small neighborhood 

remember, the delta in the definition of local minimum can be very small. So, if we take 

a small neighborhood around this point and find out the function values at all the points, 

you will see that, the value of the function is at least the value of all, the value of the 

function at all the points in the neighborhood. 

So, similar similarly, in this case it is true that, the value of the function is at least the 

value of the function, that neighborhood however, small neighborhood that you take and 

same is true in this case also. But here interestingly the function is almost flat in some 

range and then, in one direction it starts increasing and other direction it starts 

decreasing. So, such points in which, the function increases in one direction and 

decreases in the other direction, they are, they are called saddle points. So and similarly, 

in this case of course, this is a global minimum so it also is a local minimum because in 

the neighborhood the, the function value increases. 



(Refer Slide Time: 18:43) 

 

So, from this definition, one can extend this definition to the definition of local 

maximum so again as I said earlier that, the inequality reverses in this definition. So, 

again one has to take a local neighborhood, can be sufficiently small and find out the 

value of the function in the local neighborhood and you will see that, these points are 

local maximum. So the definitions of local minimum and local maximum, they are center 

around the neighborhood of a given point. 
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Now, let us consider one example so, here the function is shown here now, let us take a 

point x star now, x star by the definition of local minimum that, their exist neighborhood 

around x star. So that, the value of the function is f of x, is greater than equal to f of x 

star so, because of that definition, there is a problem in this case. Mainly that, since we 

are allowing f of x star greater than equal to f of x, for all x in the neighborhood of x star 

so, you will see that, x star terms of to be local minimum, because of that definition. 

But, by looking at the function assuming that, the function goes to minus infinity in both 

the directions, when x goes to plus infinity and minus infinity. So, you will see that, x 

star indeed is a global maximum so, you have x star to be a local min and as well as a 

global maximum. Now, to avoid such cases, one can think of definition of a strict local 

minimum now, x star belong to X is said to be a strict local minimum of f, if f of x star is 

less than, strictly less than f of x, for all x in the neighborhood of x, delta neighborhood 

of x star and x naught equal to x star. 

So, you will see that then, if you use this definition then, x star is a, is a local min but, 

not a strict local min. And also, it is a global max because, the function value is highest 

at x star of course, at the other points in the, at the other neighboring points also, the 

function values highest. So, remember that the global minimum or global maximum, 

they did not be unique. So, this is one example, where you have multiple global maxima 

and x star is not a strict local minimum. So, all these points, which are in the 

neighborhood, they are not strict local minima. 
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Now, let us look the function again, the function we saw earlier so, these are the points, 

which are local minima and not only local minima, they are strict local minima. Now, 

this is a point, which is a weak local minima so, you will see that, f of x star is less than 

or equal to f of x in the neighborhood of x star. So, such points are weak local minimum 

and this point is a global minima. 

Now, earlier I said that, this global minima are difficult to characterize so, one way 

wonder that, how about that finding different local minima, strict local minima or weak 

local minima, collecting them together. And then, trying to find out the least among 

those among those so, this idea may work in some cases but may not work always. 



(Refer Slide Time: 22:59) 

 

For example, suppose I have function, which is shown here and it goes to minus infinity 

so, the domain of the function is the set of real numbers and you will see that, this x star 

is the local minimum. In fact, it is a strict local minimum because the value of the 

function in the neighborhood of x star does not reached f of x star at any point, other than 

x star so, it always it always exceeds f of x star. 

So now, if you look at this function and if you collect all the local minima, which is one 

in this case, that will not give you the global minimum, because a function does not have 

a global minimum, the function goes to minus infinity in a both positive x as well as 

negative x direction. So, by collecting all local minima, it is not always granted that, we 

can find a global minimum of a function. So, one has to check, whether the function has 

a proper form so that, collecting all local minima can give us global minima. 
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Now, let us look at unconstrained optimization problems, as I said earlier that, we are 

trying to solve a problem from, to minimize a function f from where, x belongs to capital 

X and f is a function from X to R and x is a subside of R n. So, this is a general 

concerned optimization problem and unconstrained optimization problem is a special 

case of this. Now, to solve a concerned optimization problem, many times we need to 

solve an unconstrained optimization problems, first we will show see those techniques 

later but, solving an unconstrained optimization problem is important to solve a 

concerned optimization problem. 

Now, to solve a unconstrained optimization problem, one has to solve any one 

dimensional unconstrained optimization problem, which are of this type. So, in today’s 

talk will focus on solving one dimensional unconstrained of optimization problems, they 

are very important to solve a unconstrained multidimensional optimization problem. And 

this unconstrained multidimensional optimization problems are important to solve 

general concerned optimization problem. So, this important problem will spend time 

studding about the solutions of these types of problems. 
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So, here is a unconstrained one dimensional optimization problems where, f is the 

function from R to R. So, remember that now, we are not worried about the set X in this 

case, the domain of the function is the entire set of real numbers, the ranges is also the 

entire set of real numbers. Now, we want to solve this problem and we saw earlier that, it 

is very difficult to identify the global minima of function. So, we will restrict ourselves 

to local minimum now, the ideas that we see here can be easily extended to finding local 

maxima also. 

So, the natural question that one would like to ask still that, what are the necessary and 

sufficient conditions for a local minimum? Now what, what do you mean by the 

necessary and sufficient conditions so, necessary conditions are the conditions, which are 

satisfy by every local minimum. For example, if suppose x star is a local minimum of 

this problem then, we can say that, if x star is a local min then, certain conditions are 

satisfied and those conditions are called necessary conditions. 

And by sufficient conditions, we mean those conditions, which guarantee a local 

minimum for example, if add x star belong to R certain conditions are satisfied then, we 

can say with grantee that, x star is a local minimum. Now, as we saw earlier that, there 

exist lots of their might exists lot of local minima or a general non linear functions then, 

how do we characterize such local minima, that is a next question that, we would like to 

answer. 



Because again we do not want to a find the local neighborhood along around x star and 

check whether the value of the function exceeds the value of the function at x star. 

Because, there could be infinitely many points again in the neighborhood and we do not 

want to ensure we do not want to have any conditions, which will require finding 

different points in the neighborhood and taken the function values. 

So, instead, is there any algebraic approach, to check whether a particular point x star is a 

local minimum now, that ideas of differential calculates become very useful in this case. 

So, if the function is sufficiently smooth that means, is first order derivative second order 

derivative and so on. They exist and they are continuous then, one can arrive at different 

conditions for characterization of local minima so, we are going to see those conditions. 
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Now, now let us consider a function from R to R and f belongs to C 1 so, this C 1 

denotes the class of function, whose first derivatives are continuous. So, now we are 

restricting ourselves to functions, whose first derivatives are continuous and let us 

consider the problem to minimize f of x where, f belongs to R. Now, here is a first set of 

conditions called first order necessary conditions, the result is very simple, if it says that 

if x star is a local minimum then, f dash x star is equal to 0. 

So, which means that, the derivative of the function vanishes so, if x star is a local 

minimum, the derivative of the function at x star vanishes. So, these conditions are called 

the first order necessary conditions, they are necessary conditions because, it extends a 



local minimum of f then, this conditions are satisfied. So, that is why they are necessary 

conditions and they use the first order derivative information so, that is why, we call 

them as first order necessary conditions. 

Now, let us look at the proof of this result, the proof is best on the fact that, let us so, we 

have statement, which is of the type a implies b. So, what we do is that, we assume that b 

is not true and then, say that a is not true so we saw this method of proof in one of our 

earlier lectures. So, let us assume that f dash x star is greater than 0 so, the result says 

that, if x star is a local minimum then, f dash x star is equal to 0. So, on the contrary let 

us assume that f dash x star is greater than 0 and then, we will prove that, in such a case x 

star cannot be a local minimum. 

Now, since f belongs to C 1 so, it is derivate, it is a continuous functions so that means, f 

dash belongs to C naught. So, let us take a interval D, which is of size 2 delta around x 

star so, x star minus delta to x star, x star delta is open interval. So, let this interval be 

chosen so that, derivative of the function at any point in this interval, that derivative of 

the function at any point in this interval is greater than 0. Now, that is possible it is 

possible to get such a interval because, we are assuming that, f belongs to C 1. 

So, atleast in the neighborhood, f dash is continuous and we are assuming that, f dash x 

dash greater than 0 so, at least in the neighborhood f dash x is greater than 0. Now, if you 

write the truncated Taylor series expansion of f of x around x star and truncated to the 

first order. So, what we get is, f of x is nothing but f of x star plus f dash x bar into x 

minus x star where, x bar is a point on the line segment joining x star and x. Now, 

remember that, f dash x bar is greater than 0, because x bar is a point in the interval D. 

So, f dash x bar is greater than 0 now, we are free to choose any x in the interval b so, 

suppose, we choose x to be in the open interval x star minus delta to x star. So, x minus x 

bar x minus x star will become negative because, x lies in this interval so, x minus x star 

becomes negative. So, x minus x star becomes negative, f dash x bar is greater than 0 so, 

therefore, f of x will become less than f of x star and that contradicts the fact that, x star 

is a local minimum. 

Now, when can use similar ideas by assuming that, f dash x star less than 0 and then the 

rest of the things follow, as they are except that, you can choose point in the open 

interval x star to x star minus x star plus delta. So, in that case, f dash x bar will be less 



than 0 and this quantity is greater than 0 so, that product will be less than 0 and therefore, 

f of x should be less than f of x star. So, in either case, we come off with the 

contradiction that, x star is not a local minimum so, if x star is local minimum then the 

first derivate of the function should vanish. 
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Now, here are some examples so, on the left panel, you will see a function f of x, which 

is x minus 2 square and the derivate of the function at two vanishes. So, you will see that 

the function has a zero slope at x is equal to 0 and then, on either side the function is 

increasing. Now, on the right panel, you will see one function, which is f of x equal to a 

minus x square and at x equal to 0, you will see that slope of the function is 0. 

But in this case, x is equal to 0 turns out to be a global maximum and in this case, it turns 

out to be a global minimum assuming that, the function x tends to plus infinity here and 

function goes to minus infinity in this case. So, the slope of the function is 0 at a local 

minimum as well as at the local maximum so, looking at the slope really does not tell us 

much about the minimum or maximum of a function at that point. 

Now, let us consider one more case so, on the right panel, you will see a function f of x is 

equal to x cube so, f dash x at x equal to 0, if 0. But you will see that, the function 

increases in one direction and decreasing in the other direction. So, if you move x to 

minus infinity, the function goes to minus infinity so, slope of the function really does 

not tell us anything about the existences of local minimum or local maximum at that 



point. So, the points at which, the slope of the function is 0 such points are called saddle 

points sometimes people also call it stationary points. So, this saddle points really do not 

give us any idea about the local minima or maxima so, we need some extra information. 
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And as I said that f dash x is equal to 0, is just a necessary condition for a local minimum 

but, not a sufficient condition. So, if you collect all points for which, f dash star equal to 

0, such points are called stationary points. Now, since we are interested in solving a 

problem of the type minimize f of x where, x belongs to R. The natural question that you 

would like to ask is that, how do we ensure that stationary point is indeed local 

minimum. And we have seen in the case that, checking the gradient of the function or 

checking the derivate of the function in one dimensional case does not really guarantee a 

local minimum. 
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So, let us look at those second order information now, on the left panel you will see the 

same function f of x equal to x minus 2 square. Now, the derivative of the function 

vanishes at this point, the second derivate of this function at x equal to 2 is 4 and that is 

greater than 0. Now, on the right panel, you will see the function f of x equal to minus x 

square, the first derivative of the function at x equal to 0 is 0, and the second derivate of 

the function at x is equal to 0 is minus 2. 

So, you will see that, for this function the second derivative of the function at this point 

is positive and for this function this second derivate of the function at this point is 

negative. So, the second derivate in some sense, talks about the curvature of the function 

at that point so, this function has a positive curvature at this point and this function has a 

negative curvature at this point. So, you will see that, although the first derivatives of 

these two functions at these points are 0, it is a second derivative which tells us about the 

curvature and that tells that this point indeed is a local minimum and this point indeed is 

a local maximum. 



(Refer Slide Time: 38:37) 

 

So, let us look at the second order necessary conditions now, for the second order 

necessary conditions, we need the second derivate of the function. So, let us assume that 

f belongs to C 2; that is a second derivative of the function is continuous and the function 

is from R to R and we are interested in solving in one dimensional unconstraint 

optimization problems. Now, here is a result about the second order necessary conditions 

now, if x star is a local minimum of f then, the first derivative at x star vanishes and 

second derivative is non-negative. 

So, this result gives us so, the necessary conditions, which use the second order 

information of the function. Now, how do you prove this So, the proof is very easy now, 

the by the first order necessary conditions we know that, if x star is a local minimum 

then f dash x star equal to 0, we already proved that result. Now, let us assume that, the 

second derivative is less than 0 at x star and then, will come up with the contradiction. 

Now, since f belongs to C 2, the second derivative of the function is a continuous 

function so, again as in the previous case let us choose an interval around x star of size 2 

delta. So, this a interval D, x star minus delta to x star plus delta now, since f 2 dash is 

continuous, we can always choose this interval such that, for any point in this interval D, 

the second derivative is less than 0. Because, we assume that, f 2 dash x star is less than 

0 so, now, let us write down the second order truncated Taylor series. 



So, f of x is nothing but, f of x star, plus f dash x into x minus x star plus half f 2 x bar, 

into x minus x star square where, x bar is a point on the line segment joining x star and x. 

Now, we know that, from the first around the necessary conditions that f dash x star 

equal to 0 now, we are so far chosen this interval so that, f 2 dash x is less than 0, for all 

x belongs to D. 

And x bar belongs to this interval so, f 2 dash x bar is also less then 0 now, for this 

quantity this should be x star. So, this quantity is 0 and f 2 dash x bar is less than 0, x 

minus x star square is greater than 0, x minus x star square is 0. So, you will see that this 

quantity vanishes and this quantity is less than 0. So, which means that, f of x is less then 

f of x star and which is a contradiction. So, we will see the we see that, if x star is a local 

minimum then, f dash x star equal to 0 and f 2 dash x star greater than equal to 0. So, 

remember that, this is f dash x star and by first order necessary conditions, f dash x star 

equal to 0. 
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Now, the question is, are this second order sufficient conditions, are the second order 

necessary conditions also sufficient, and the answer is no. 
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Because, if we consider problem, which is to minimize x cube subject to x belongs to R, 

the function is drawn here. Now, at this point, the first derivative and the second 

derivative both are 0 but then, x R turn out to be saddle point. So, these conditions are 

necessary for existence of a local minimum, but not sufficient. So, what are the sufficient 

conditions for the existence of the local minimum so, let f be a function from R to R, f 

belongs to C 2. 

The second order sufficient conditions results states that, if f star is (( )) from the set R 

says that, the first derivative of the function vanishes at that x star and the second 

derivative is greater then 0 then, x star is a strict local minimum of f over R. So, 

remember that, this is result, which guarantee strict local minimum of f over r now, the 

proof of this is again very easy that, since f belongs to C 2, f 2 dash is continuous. So, 

will choose the interval D so that, in the, in that interval for any x, in that interval f 2 

dash x is greater then 0. 

And that is possible because f 2 dash x star is greater than 0 so, let us write down the 

truncated Taylor series expansion of f around x star. So, f of x is nothing but, f of star 

plus f dash x star into x minus x star plus half, f two dash x bar in to x minus f dash 

square where, x bar is a point on the line segment x star to x. Now, if f dash x star is 

equal to 0 then, f x minus f of x star is nothing but half f 2 dash x bar in to x minus x star 

square. 



Now, x bar is in the point interval D so, f 2 dash x bar is greater than 0, this quantity is 

also greater than 0 because, it is a square. So, the whole quantity is greater than 0 so, 

which means that, f of x is greater than f of x star, for all x belongs to D. So, at least in 

the, the existing delta greater than 0 such that, in the neighborhood delta, delta 

neighborhood of x star, the value of the function does not attain f of x star in fact, it is, it 

exist f of x star. So, which implies that x star is a strict local minimum so, remember that, 

so, this sufficient conditions guarantee a strict local minimum of f over R. 
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Now, are these conditions necessary, though they guarantee that the local minimum is 

strict, they turn out to be not necessary conditions, because if we consider case where, f 

of x is equal to x to the power 4 then, x star is equal to 0, is strict local minimum. But 

then, f dash x star and f 2 dash x star or both 0 so, this second order sufficient conditions, 

they are not necessary in this case. 
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So, now, we have important result, which will state without the proof so, let us assume 

that f is a function from R to r and f belongs to C infinity that is, all the derivatives of the 

function exists and they are continuous. Let us also assume that, f is not a constant 

function so, let us rule out that possibility also and let us denote the k eth derivative of f 

at x, f k x. And consider, the problem to minimize f of x, x belongs to R. Now, here is the 

result, which says that, x star is a local minimum of f, if and only if, the first non-zero 

element of the sequence f k x is positive and occurs at even positive k. 

So, this is the very important result we say that, if you start to take a derivative of the 

function from the first derivative second derivative and so on. Now, if you consider that 

sequences of derivatives of function f at x so, the first non-zero element of the sequence f 

k x star is positive and occurs at positive even and positive so, that is very important. So, 

if you consider the example of f of x equal to x to the power 4 so, you will see that, x star 

equal to 0 is a local minimum of that function and the first three derivatives at x star are 

0 and the fourth derivative is positive. 

So, the fourth derivative that means, the k is equal to 4, which is even and positive 

number and fourth derivative of the function x, x to the power 4 is positive. So, that is 

why, x star equal to 0 is a local minimum of f x equal to x to the power 4. Now, one can 

have a similar result for the local maximum so, the only change that one has to make is 



that, the sequence of k x star is negative. The first element of the first non-zero element 

of the sequence f k x star is negative and it occurs at even positive. 
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Now, let us see some examples, to find out the minima or maxima, minima of a problem 

now, let us consider the problem minima is x square minus 1 square. Now, the first step 

to solve such problems is always to indentify the stationary points and the stationary 

points are found by equating the derivative to 0. So, if you take the first derivative of this 

function and that transfer to be 4 x n to x square minus 1 and that, equal to 0 implies that, 

either x is equal to 0 or x equal to plus 1 or x equal to minus 1 so, it has three stationary 

points. 

Now, we need to check, which of these stationary points are local minima or local 

maxima so, then, we need to go for the second derivative information. Now, f 2 dash 1, 

in this case transfer to be yet and f 2 dash minus 1 also transfer to be yet and that is also 

greater then 0. So, you see that the first derivative is 0 at 1 and minus 1 and the second 

derivative is positive. So, the first non-zero element of the sequence f 2 dash k, of the 

sequence f k x star is positive and occurs at u and k, which is 2 in this case. 

So, 1 and minus 1 are strict local minima and along similar line one can say that, f 2 dash 

zero, which is minus 4 and less then 0 implies that 0 is a strict local maximum, because 

this the second derivatives negative, the first derivatives is 0 and 2 is a even positive 

integer so, 0 is a strict local maximum. 
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Now, let us consider another case where minimize f of x where, f of x equal x square 

minus 1 cube. Now, if look at the stationary points, again we need three stationary points 

0, 1 and minus 1, at which points the derivative of the function vanishes. So, we look at 

the second derivative now, second derivative information tells us that, the second 

derivative of the function at 0 is 6, which is positive which means that, 0 is a strict local 

minimum. 

But, at the stationary points 1 and minus 1, the second derivative also vanishes, so we 

have to look for the higher order derivatives. So, let us look at the third derivative now, f 

3 dash x is a function like this and you will see that, f 3 dash x f 3 dash 1 is positive, f 3 

dash minus 1 is negative. So, we really cannot conclude any thing from our result about 

sufficient optimality conditions because, that this derivatives are non-zero at k, which is 

R. So, we can just conclude that, 1 and minus 1 are saddle points of this problem and 0 is 

a strict local minimum. 



(Refer Slide Time: 51:35) 

 

Now, if you look at example x to the power 4 so, you will see that f 3, f 4 dash x is 24, 

which is positive and all the earlier derivatives, right from the first, second and third, all 

these derivatives are 0. So, the first non-zero element of the sequence f k x star occurs at 

k, which is even and positive and the element is positive so, which means that, 0 is a 

strict local minimum. 

So, so you will see that, to solve such problems, we need to find the derivative of the 

function and identify the stationary points by equating the derivative to 0 and then go to 

the higher other derivatives from the second order derivative onwards, to see whether we 

can conclude anything about the stationary points, whether they are local minima or local 

maxima. 
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Now, if the problem is such a simple problem then, why do we need any algorithm to 

solve the problem. So, here is the simple example, minimize x minus 2 square and f dash 

x equal to 0 implies, x star equal to 2. So, 2 is a stationary point and at that stationary 

point, you will see that the f two dash 2 is greater than 0, which implies that, x star is the 

strict local minimum. 

So, as I said that, if it is such a easy thing to solve, to, to solve f dash x equal to 0 and 

identify stationary points then, where is the need of an algorithm. So, here is an example 

so, let us consider the example to minimize f of x equal to x square plus e to the power x 

where, f is the function from R to R. Now, the derivative of the function, which will 

denote in this course mainly using the function g of x, that turns out to be 2 x plus e to 

the power x. 

And if we equate it to 0, we really cannot find a solution of this problem in the straight 

forward way like what we did here. So, we need some algorithm to find out x, which 

satisfies 2 x plus e to the power x equal to 0 and that is where we will need a numerical 

procedure or algorithm to solve to find a stationary points of these kinds of functions. So, 

in general, it is difficult to find the stationary points using a simple way like this and one 

has to go for some algorithm to solve this. 

Now, there exist different kinds of algorithms to solve this problem so, some algorithms 

they do use the derivative information, some algorithms do not use the derivative 



information. So but assume certain form of the function called unimodal function so we 

will see those things in the next class. So, in the next class, we will look at some 

algorithms to solve the problem of the type f dash x is equal to 0 or finding the minimum 

of the function f of x without resorting to any derivative information. 

So, those are called the derivative free methods and the methods, which we use 

derivatives they are derivative based methods. So, we will see some of them, to solve the 

problems of the type g of x equal to 0 or the, or the problems where the, the derivative of 

the function vanishes or the function has the minimum. So, we will stop here and 

continue in the next class. 

Thank you. 


