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Lecture - 37 

Karmarkar’s Method 

Hello welcome back. In the last class we saw that simplex algorithm is not a polynomial 

time algorithm. In particular we saw an example given by Klee and Minty, we showed 

that if we start from a particular point, then we may end up in visiting all the vertices of 

the feasible region before reaching the solution and the number of vertices could be 

exponential in number, and therefore simplex algorithm is not a polynomial time 

algorithm. So therefore, there was a need to devise algorithms which are polynomial time 

algorithms for linear programs, and which could work well for large dimensional 

problems. 

So, in 70’s Kutchian developed and ellipsoid method which was the first polynomial 

time algorithm for linear programming, and in 1984 Karmarkar developed a polynomial 

time algorithm which has complexity better than that of Kutchian and which was 

performing as well as the simplex algorithm. So the ideas Karmarkar used where based 

on the interior point methods.  

So, in as I mentioned in the last class the interior point methods generate a sequence of 

points in the interior of the feasible region, and these sequence of points is generated till 

the final solution is reached. Of course, for a linear program as we know the solution 

optimal solution exists at an extreme point, so this interior point methods generate a 

sequence of points which are in the interior of the feasible region, but they converge to a 

point which would be very close to the optimal solution which is a vertex, which is a 

boundary point. 
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So, as we discussed in the last class, so the idea of the interior point method is that 

suppose the feasible region is as shown here, and suppose that the extreme point the 

solution is at this point. So this is x star, so a typical interior point method would start 

from an interior point and would follow a path which is in the interior and finally, it will 

reach a point which is very close to the solution and the Karmarkar’s method was based 

on some of the novel ideas.  

(Refer Slide Time: 03:36) 

 



So, one of the ideas was that if we have a point so, if this is the direction along which we 

want to make a movement or we want to move, so, that the there is improvement in the 

objective function. Now if we have a point which is here then if we make a movement 

along this direction we would reach a point which is somewhere close to the boundary on 

the other hand we are close to the center of this feasible region. So; that means, if we are 

at point which is somewhere here and if we make a movement then you will see that 

starting from a point which is close to the center we can make a considerable 

improvement in the objective function compared to any point which is not close to the 

center of the feasible region. So, it is better to have a point which is close to the center of 

the feasible region so, that we can make a reasonable improvement in the objective 

function. 
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So Karmarkar suggested the following idea that let us take a simple feasible region and 

let us take any point and let us call it x k. So Karmarkar suggested to use a 

transformation to transform this feasible region into some other feasible region in 

different space. So let us call this as the x space and this as y space. Now this 

transformation should be done such that the point x k that we have here get transformed 

to a point which is y k in the y space such that this point y k is close to the center of the 

feasible region and this is done to make sure that the improvement in the objective 

function is considerable. 



Now in the y space will need a direction to move because in the original space the 

problem was to minimize c transpose x subject to A x equal to b, x greater or equal to 0. 

Now when we use the transformation T to project this points in the y space the variables 

x get changed to y and this will become a problem in the y space and in the y space we 

need to find out what is the direction d k along which we need to move. Now if we look 

at the x space as I mentioned in the last class that the idea is to use non-linear 

programming algorithms to solve this problem and therefore, since the objective function 

is continuously differentiable steepest descent direction is the best choice or the preferred 

choice. So if we move along the steepest descent direction then we may leave the 

feasible region. 

So what we need to do is that we need to project the steepest descent direction on to this 

set. Now when we transform the original problem into a new problem which need not be 

a linear program, how do we find the direction or the steepest descent direction in the 

new space which is projected on to the constraint set? So that is the first question that we 

would like to answer. Now having found the direction to move then the next step is to 

find alpha k. So that we would have y k plus 1 is equal to y k plus alpha k d k like what 

we had in our discussion on the unconstraint optimization problem, that the new point is 

formed using the current point by moving by moving along the direction d k with a step 

length of alpha k remember that, this quantity alpha k is greater than 0. So from y k so 

suppose we get a direction d k to be this, so we make a movement of so we make a 

movement of alpha k along the direction d k. 

So remember that, this is the direction d k and we need to move along this direction. So 

that we do not cross the boundary, so we would reach a point which is going to be y k 

plus 1. So this point y k plus 1 is obtained based on the current value of alpha k and the 

direction d k. Now having the reached the point which is close to the boundary we would 

need to see what is the corresponding point in the x space. So, the corresponding point to 

find the corresponding point we need a map which is from the y space to the x space let 

us call that map as T inverse. So the map T that we get should be invertible so; that 

means, that from x k we go to point y k from y k we make a movement along the 

direction d k with a step length of alpha k and from y k plus 1 we come back to a point 

which could be x k plus 1. So we have made a movement in this direction now, suppose 



that this point was optimal. So; that means, you will see that we have made a movement 

towards the direction of the optimal point. 
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So note that this movement need not be in the straight line, as I showed earlier one could 

have a movement which could be represented by an arbitrary curve towards the final 

point. 

Once we find x k plus 1 then again we use the transformation T. Now this time a new 

feasible region would be formed in the y space and from that feasible region we find out 

that point y k plus 1. So that point will be different from this because now we have used 

a different T based on the current value of x k plus 1 and this procedure is repeated so 

finally, we may get the path in the input space which could be something like this and 

finally, we will go close to the solution. 

So this was the idea proposed by Karmarkar in his projective scaling algorithm. Now his 

algorithm was modified to devise and affine scaling algorithm which is a which uses a 

very simple transformation T. So in today’s lecture we will first see the affine scaling 

algorithm which was an extension of Karmarkar’s algorithm, note that kutchian’s 

algorithm was a polynomial time algorithm, Karmarkar’s algorithm was also polynomial 

time algorithm but, the affine scaling algorithm is not a polynomial time algorithm for 

solving linear programs but, nevertheless it is useful to understand some of the concepts 

that were used in Karmarkar’s algorithm. 
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So let us look at the affine scaling algorithm to solve linear programs. So as I mentioned 

that in the interior point methods, the points are generated in the interior of the feasible 

region and they are based on non-linear programming techniques like steepest descent 

method and chronologically Karmarkar’s method was developed first and then the affine 

scaling algorithm but, we will study affine scaling method first before moving on to 

Karmarkar’s method. So we will continue to consider the standard linear program, 

minimize c transpose x subject A x equal to b and x non-negative with the assumption 

that A is full row rank matrix A is a matrix of size m by n. 
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So affine scaling method uses the idea of projected the steepest descent direction at every 

iteration. So suppose we are given a feasible point which is in the interior of the feasible 

region and the current iteration k, since the point is feasible it satisfies the constraints A x 

equal to b and x k greater than or equal to 0. 
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So we have A x k equal to b and x k greater than or equal to 0. Now suppose we want to 

move along the direction d, so x k plus 1 let us assume that x k plus 1 is x k plus d, now 

the ideas which I am going to talk about they also hold in the y space, although I am 

discussing everything related to the x space these ideas also work for the y space. 

So lets us assume that the step length is of size 1 so the alpha is 1. So x k is so x k plus 1 

is equal to x k plus d. So if we have a point x k and we have direction d we take a 

suppose a unit step along this direction to move to this point x k plus 1. Now the new 

point also should satisfy this constraints, so we also need to have x k plus 1 is equal to b 

and x k plus 1 greater than or equal to 0. So therefore, A x k plus d should be equal to b 

and x k plus d should be greater than or equal to 0. So since we already have z x k equal 

to b so what we get a d is equal to 0 and x k is already greater than or equal to 0. So we 

get d greater than or equal to zero. 

So the direction that we are going to choose should be such that should be in the null 

space of the matrix A and moreover all its components have to be non-negative. Now 

this requirement can be typically handled using the algorithm, so let us not worry about 



this at this movement. Let us mainly concentrate on the fact that the direction d along 

which we should move should be in the null space of the matrix A. 
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So suppose we have some direction along which we need to move, for example, it could 

be a steepest descent direction. Now the steepest descent direction may not ensure the 

feasibility, so what we need to do is that we need to find the null space of the matrix A 

and project this steepest descent direction on to. So this space is the null space of the 

matrix A. 
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So null space of the matrix is the set of all directions d such that A d is equal to 0. So if 

we have any direction along which we need to make a movement, first we need to 

project that on to the null space of the matrix A. So how to do that that we will see now. 

So if we choose a step length alpha k where alpha k is positive then x k plus 1 will be 

denoted by x k plus alpha k d. And therefore, A x plus 1 equal to b that is x k plus 1 is a 

feasible point implies that A d equal to 0. So in the affine scaling method it is suppose to 

use the projected steepest descent direction, so which is the projection of steepest descent 

direction on the null space of the matrix A. So let us see how to do that. 
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So let us call this as c hat and c hat is nothing but, suppose minus c. So this is the 

steepest descent direction, because the objective function is c transpose x so the gradient 

of the objective function is c and the negative of the gradient is minus c. So this is the 

steepest descent minus c and which we want to project it to the null space. So lets us 

denote this component by p c projection of the steepest descent direction.  

Now we know that there is a space which is orthogonal component of null space of A 

and that is this space is called the row space of A. So any vector c, c hat which is in the n 

dimensional space can be split into 2 parts, 1 is the projection so this is the orthogonal 

projection of c hat onto the null space of A and then the other component will be the 

projection in the projection on the row space of A. So let us call this as q. 



So c hat can be written as pc plus q. Note that the 2 space s which are not mentioned here 

row space of A and null space of A they are orthogonal components of A. So c hat can 

be uniquely represented as pc plus q where p c denotes the component of c hat on the 

null space of A and q denotes the row space of A. Now since p c belongs to the null 

space of A what we have is A p c equal to 0 because it satisfies this property and q 

belongs to the row space of A, so q can be written as A transpose lambda. Now given c 

hat we want to find out what is p c? Now for that purpose we first need to find out what 

is q, and q is nothing but, A transpose lambda but, for finding q we need what is the 

value of lambda. 

So let us use this fact to find out the value of lambda. So if you multiply throughout by a 

so what we get A c hat is equal to A p c plus A q is nothing but, A transpose lambda. 

Now this quantity is 0. So therefore, since A is a full row rank matrix we can write 

lambda to be A A transpose inverse A c hat. So this is the value of lambda we get. Now 

we can c as therefore, c hat can be written as p c plus q, q is A transpose lambda, so A 

transpose a AA transpose inverse A c hat. So this is the vector c hat obtained as 

combination of p c plus q. So we know A the matrix A, we know c hat, so it is easy to 

calculate this quantity and therefore. 
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And therefore p c which is the projection of the vector c hat on the null space of A is 

nothing but, c hat minus A transpose A A transpose inverse A c hat and this is nothing 

but, identity matrix minus A transpose A A transpose inverse A into c hat. 

Now c hat is nothing but, negative of c. So this can be written as minus identity minus A 

transpose A A transpose inverse A c. So this matrix what we get here this is called the 

projection matrix. So this matrix projects c on to the null space. So with the projection of 

minus c will be as shown here. So we can write this is as minus p c now this capital p 

this is a projection matrix and c is a vector. Remember that this small p lower case p is a 

component of c hat on the null space of matrix A. So given a direction d, which could be 

a steepest descent direction, we can use projection matrix to project it on to the null 

space of any matrix using this formula. 
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So as I mentioned that if we denote c hat to be minus c, minus c is the negative descent 

direction and it has 2 components p c and q where p c belongs to the null space of A and 

q belong to row space A. And therefore, A p c is equal to 0 and A transpose lambda q 

and the using the fact that A c hat is equal to A p c plus a q is 0 so A q is nothing but, a 

transpose lambda and since A is full row rank matrix A A transpose is invertible and 

therefore, we get a value of lambda which can be used to find out q and therefore, using 

p c equal to c hat minus q what we can do is that we can write it as c hat minus A 

transpose A A transpose inverse A c hat. And this is nothing but, minus p c where the 



matrix p denotes the projection matrix. So any direction can be projected on to the 

constraint using the projection matrix. 
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Now the second idea that is used in affine scaling method is the positioning of the 

current point to the center of the feasible region. So if the current escapes S in the x 

space can be projected using some transformation p to the point or to a point which is 

close to the center of the feasible region. 

So in affine scaling of preferred choice for this point which is close to the center of 

feasible point is the point where all the coordinated are 1. So all the coordinated have 

equal values and that is a preferred choice in affine scaling to be point close to the center 

of the feasible region. So if you are given a point x k in the interior of the feasible region 

in the x space, so lets us define the matrix x k to be having a diagonal structure, where 

each entry in diagonal represents one of the components of vector x k. Now having 

defined the matrix, let us define the transformation y transformation t as y equal to t x 

where t x is nothing but, x k inverse x. 

So you will see that since x k was obtained by placing the diagonal entries of the vector x 

by placing the entries of x along the diagonal of matrix x k inverse x will be a unit vector 

or the vector of all one’s. And therefore, y k will be x k inverse x k will be a vector of all 

one’s. So by defining this transformation we were able to get for any x k by defining a 

the matrix x k to be diagonal of x k, the point in the y space for the feasible region will 



have all the entries equal to 1. And note that x k’s are all greater than 0, because the 

given point x k is in the interior of the feasible region so x k’s are all greater than 0 so 

this inversion is also possible. 

And because of which we can write x y k as x k x k y k as x k. So given x we can use this 

transformation t to convert it to the y space. So y is nothing but, x k inverse x and given 

y it is easy to transform it back to the original space using x k y equal to x 

transformation. 
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So now lets us look at a general idea of affine scaling algorithm. So start with any 

interior point x naught. Now while some stopping condition is not satisfied at the current 

point, the algorithm first transforms the current problem into an equivalent problem in y 

space. So note that this is very important that we should have an equivalent problem in 

the y space. We may not always have a linear program in the y space but, we should 

have a program in the y space or the problem in the y space which is in equivalent to the 

original problem. And this transformation should be such that the current point is close to 

the center of the feasible region. 

We then use projected steepest descent direction in the y space to take a step in the y 

space, so that we do not cross the feasible set boundary. So this is very important that the 

y k that we get, y k plus 1 that we get from the current y k should be feasible, so 

therefore, the step should be taken such that they do not cross the feasible set boundary. 



Now once we find y k plus 1, we need to find out what is x k plus 1, so we need to map 

that point y k plus 1 back to that original space. So map the third step is to map the new 

point back to the corresponding point in the x space. Now this procedure is repeated till 

stopping condition is satisfied. 

So there are few important points that needs to be discussed. The first 1 is that what is 

the stopping condition for a for the program? Now in the simplex algorithm we saw that 

since the solution always lies at the extreme point, for a linear program we saw that if at 

a point all the neighboring vertices have an objective function value, which is not less 

than the current point then we stop. So that stopping criterion was easy to check. Now 

here since we are not talking about the vertices in the algorithm we need to find out some 

condition which could be satisfied at optimality. So that is the first point so we have 

already seen what is what could be a possible transformation to move the current point to 

a point in the y space which is close to the center of the feasible region. 
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We also saw how to project steepest descent direction in the given space. So let us first 

see what is the good stopping condition for this algorithm. Now the duality ideas for the 

linear programming that we discussed earlier, they become very useful while designing 

many of the algorithms. So we will see 1 such condition which could be used as a 

stopping condition for an affine scaling algorithm.  



So let us consider a linear standard programming form and the corresponding dual. Now 

we have seen that because of the weak duality, if x is primal feasible and mu is dual 

feasible c transpose x is greater than or equal to b transpose mu. So given x and mu 

which are primal and dual feasible we know that the optimal objective function value is 

at least the dual objective function value. 

And moreover at optimality, the there exists x and mu such that c transpose x is equal to 

b transpose mu at optimality. As I mentioned earlier that this is also called gap the 

difference between the primal objective function value and dual objective function value 

where the primal is of the form minimize the objective function and dual is the form 

maximize corresponding objective function. That duality gap represents the difference 

between the primal and dual objective function value at feasible x and mu. So at 

optimality the dual gap is 0 and that could be used as a stopping criteria for our 

algorithm. 

Now, that means that we need to find the value of mu and as we will see that the k k t 

conditions can be used to find the value of mu corresponding to the value of x. So let us 

see how to do that. So the weak duality ensures that the primal objective function value 

at any feasible primal point is at least the dual objective function value at corresponding 

dual point mu. And at optimality the 2 are equal and that is called strong duality. So the 

question so the idea is to the duality gap c transpose x minus b transpose mu, to check 

optimality and the question is how do we get mu. And for that purpose let us make use of 

the k k t conditions. 
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So let us consider this standard linear program and define the Lagrangian to be c 

transpose x plus mu transpose b minus A x minus lambda transpose A x. Now let us 

assume that x is primal feasible and lambda is non-negative. Now if we write down the k 

k t conditions at optimality 1 of the conditions is the gradient of the Lagrangian with 

respect to the primal variables is 0. So gradient of the Lagrangian with respect to x is 0.  

So if you take the gradient of this Lagrangian function it will be c minus A transpose mu 

minus lambda. So that will be equal to 0, so therefore, A transpose mu plus lambda equal 

to c. So this condition needs to be satisfied at optimality. Now we have 2 variables mu 

and lambda which need to be determined. But, the complimentary slackness conditions 

becomes very useful at this moment. So the complimentary slackness conditions say that 

lambda i xi should be equal to 0 for all i equal one to n. So which means that if a 

particular xi is greater than 0 then the corresponding lambda has to be equal to 0. And 

therefore, we can combine this 2 conditions together to write that by defining a matrix x 

which is a diagonal of x. 

So we take a vector x and put its components along the diagonal matrix x and form a 

matrix x then the k k t conditions can be written as x into c minus A transpose mu should 

b e equal to 0. So if x is greater than 0 then the corresponding lambda has to be 0 because 

of the complimentary slackness condition and that lambda is nothing but, the component 

of c minus A transpose mu. And if x equal to 0 we have xi lambda i to be 0 so x into xi 



into the corresponding component of lambda is 0. So this condition needs to be satisfied 

at optimality. Now that condition can be used to determine the value of mu. So what we 

need to do is that we need to minimize remember that the minimum quantity of this 

expression is on the left side is 0. So we need to minimize x c minus x A transpose mu 

subject to mu so as to get the current value of mu. 
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So we minimize the norm of norm square of x c minus x A transpose mu. Now if we 

differentiate so before differentiating let us note that mu is unrestricted in sign. So this 

becomes an unconstraint optimization problem. So we have a convex function which is 

differentiable and differentiating with respect to mu what we get is A x transpose inverse 

A x square equal to x square c. So this is the value of mu, note that the current point x is 

part of matrix because the matrix x was found using the current variable x. So given x we 

first form a matrix x and then use this formula to find out mu. And therefore, the duality 

gap at x square will be c transpose x k minus b transpose mu k where mu k is obtained 

using x k and x k is obtained using the current iteration vector x k. 

So the matrix x k is obtained using the current iteration vector x k. So mu k is nothing 

but, A x k square inverse A x square c where x square is the diagonal of the matrix x k. 

So x k can be used to find out mu k and then c transpose x k minus b transpose mu k 

gives us the duality gap. And therefore, the stopping condition for an algorithm could be 

that c transpose x k minus b transpose mu k is greater than 0. Because duality gap is 



always greater than or equal to 0 and the algorithm would terminate when the duality gap 

is equal to 0. 
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Now the next step is after studying the stopping condition the first step that we saw in the 

algorithm was to get an equivalent problem formulation to consider to get considerable 

improvement in the objective function. So given x k we define the matrix x k to be the 

diagonal matrix having elements x k on its diagonal and we define the transformation y 

equal to x as x k inverse x. And therefore, if we use this transformation then what 

happens to the linear program that we get. Or that we wanted to solve. 

So in the y space this program becomes minimize c transpose x k y because x is nothing 

but, x k y. So minimize c transpose x k y subject to A x k y equal to b and y greater than 

or equal to 0. So this is out new linear program. Remember this is a linear program 

because the objective function the constraints are all linear in terms of the variable y. So 

the variable is now y and this is still in the standard from because we can combine c 

transpose x k to c bar transpose and A x k to be A bar. And therefore, it still remains a 

program in the standard form where c bar is x k c and A bar is equal to x k. 
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So by using this transformation we still retain the program as a linear program. But, now 

the descent direction will be negative x k c bar, which is nothing but, minus x k c. So that 

will be the descent direction that will be used and the matrix which was in the original 

space will now correspond to a matrix A x k in the y space. So what we would be 

interested in finding out the negative of x k c direction on the null space of matrix A bar 

where A bar is nothing but, A x k. So the projected steepest descent direction and the 

determination of step length is the next step of the algorithm. And let us recall that in the 

y space we work with variables we work with the variable y with the constant vector c 

bar and A bar and b which are given to us. 

So we have this transformation given x k y k is nothing but, x k inverse x k and that is 

nothing but, the unit vector in the y space. And the projected direction of the negative of 

the c bar on the null space of A bar, by using the same ideas that we discussed earlier. 

We can write it as A d k to be the negative of the projection matrix into x k c. So this will 

be the direction along which one can make a movement by retaining feasibility. But, then 

how much progress can be made or how much movement can be made along the 

direction d k so that we do not cross the feasible set boundary. So that is the next 

question that we would like to answer. Now if alpha k which is the positive quantity 

denotes the step length then y k plus 1 should be equal to y k plus alpha k d k. 



Now this note that we want y k plus 1 to be in the interior of the feasible region. So that 

means that y k plus 1 should be strictly greater than 0. Now y k which is the current point 

is greater than 0, so what we want is that y k plus alpha k d k should be greater than 0 or 

1 plus alpha k d k should be greater than 0.  
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Now we have y k plus is equal to 1 plus alpha k d k. So on the horizontal axis we have 

alpha and on the vertical axis we have y k plus 1. Now y k plus 1 is of the same 

dimension x which is m. Now y k plus 1 will have different n components and the 

different components vary in a different way based on d k. Now some components could 

vary like this some components could vary like this and some component could vary like 

this. 

So we will see that at this point a particular component of y will becomes 0. And then it 

will go to a negative quantity as alpha is increased further. So we check the different 

values of alpha’s at which different components of y k plus 1 go to 0. And among them 

we choose the least 1 and this we will call it as alpha max. So the maximum step length 

could be alpha max and that will correspond to taking 1 of the components to 0. And we 

do not want to take a point which is on the boundary so alpha k will be chosen as some 

multiple of alpha max. So that all the components of y will remain positive at that value 

of alpha. So typically 0.9 is a good choice for that. 
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So 0.9 into alpha max could be a value of alpha k. So we want this to be greater than or 

equal to 0. And therefore, alpha max is chosen as minimum of minus over d k, d k j 

where d k j is less than 0. And this alpha k is set to 0.9 into alpha max. And the step 3 of 

the algorithm is to transform y k plus 1 which is obtained here back to the x space that is 

x k plus 1 is nothing but, x k y k plus 1.  
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So now we have an affine scaling algorithm to solve an l p in standard form. I reiterate 

here this is not a polynomial time algorithm, but, it gives us an easy way of 



implementing some of the ideas that Karmarkar proposed in his projective scaling 

algorithm. Of course, the transformation that Karmarkar’s algorithm uses is different and 

we will see that some time later but, right now we have used the simple transformation 

and that resulted in simple linear programming space. 

And therefore, we studied the affine scaling algorithm first. So we are given linear 

program in standard form so the values of a b c are known, x 0 is initial point which is 

arbitrary in the interior of the feasible region, epsilon will be used for finding out the 

stopping condition. So the iteration counter is set to 0 the matrix x k is set using the 

diagonal the diagonal matrix x k is set based on the values of the corresponding 

components in the vector x k. The dual variable mu k is found using the formula that we 

saw earlier now the first step is that while stopping condition is not satisfied, so which 

means that while duality gap is greater than some epsilon where epsilon is a given 

parameter to project the negative steepest descent direction. 

So project minus c bar on the null space of A bar and this is the expression that one gets 

and we saw this earlier. Now having done this projection we need to find out the step 

length that could be used. So the step length which one can use is 0.9 times the minimum 

at which one of the components becomes 0 or 0.9 into alpha max. So this is the alpha 

max that we have. And then transform back to the original space, so this space this step 

first does y k plus 1 is equal to y k plus alpha k d k and then x k y k or x k plus 1 is equal 

to the matrix x k into y k. So this is nothing but, y k 1 here indicates that it is y k is equal 

to 1 in the y space and that is added to alpha k d k,, d k is the negative of the steepest 

descent direction projected on the A bar matrix the null space of the A bar matrix.  

And then we get ready for the next iteration, so the matrix x k plus 1 is a set to this 

quantity and mu k plus 1 found because that will be used to check the stopping condition 

the iteration counter is set to 1 and then we go back and check whether the stopping 

condition is satisfied. Finally, when the algorithm terminates we get a x star which is 

equal to the current value of x k and this point will be typically close to the vertex which 

is a solution point of the linear program. Because every at time we are ensuring that we 

do not cross the boundary, so we may not the algorithm path may not a generate a point 

which is vertex. But, we will get a point which is close to the vertex. 
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So if we apply this affine scaling algorithm to this problem, we have already seen this 

problem when we discuss simplex method and we know the solution is 1 comma 1. So if 

we start with a 6.6, then here are the iterates generated using the affine scaling algorithm 

that we saw. And the last column denotes the distance between the current point and x 

star. 

The utility and distance and you will see that the distance and current point from x star 

keeps coming down as the algorithm next progress. So after four iteration you will see 

that the distance between the 2 is only 0.10 or 0.10. So this gives us some idea about how 

the affine scaling algorithm works. 
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Now here is the plot, so this quadrilateral denotes the feasible region and we start from a 

point which is x 1 and x 2 to be 0.6 and this is the solution point, which is 1 comma 1. 

And this is how the algorithm makes a progress after four iterations. So this gives us 

some idea about how an affine scaling algorithm works. 
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Now we will see the different transformation we used by Karmarkar in his algorithm to 

solve linear program. And also the form of the linear program which is needed for 

Karmarkar’s method. In the last class we discussed about affine scaling algorithm. So the 



idea was that in the x space we had this constraint set and the idea is to use some 

transformation t to transform this constraint set into y space.  

So that the point gets mapped to a point y k which is y k which is close to the center of 

the feasible set. So the reason for this is that if a current point is close to the center of the 

feasible set then a considerable improvement in the objective function is possible. So that 

is the idea behind this transformation. So when moves along the steepest direction so this 

is along the projected steepest direction, so 1 moves till 1 hits the boundary of the 

feasible region. 

Now once this point so this is the direction d k and the step length is chosen such that 

one does not cross the boundary, so before hitting the boundary of the feasible set 1 finds 

out an appropriate step length so that a new point y k plus 1 is found. And then that point 

is mapped back to using the transformation t inverse. So we need a invertible 

transformation and that new point could be a corresponding point x k plus 1 in the input 

space. And again once x k plus defines a new transformation t so this transformation t 

does depend upon the current point. So it is not a constant transformation it is not a 

transformation which is independent of x. So this was the main idea of affine scaling 

algorithm and the reason why we studied this algorithm first was that it is simple and 

easy to understand. 
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So the main idea was that while the duality gap is not small to find the direction d k 

which is the projected steepest descent direction projection of steepest descent direction 

of null space of the matrix A. So since the problem is transformed to y space 1 has to 

project the x k c on the nu space of the appropriate matrix. Find the step length so that 1 

does not cross the boundary then get x k plus 1 using the value of alpha k d k and current 

value of x k.  

And find x k plus 1 the matrix x k plus 1 using the value x k plus 1 by putting the entries 

of the vector in the diagonal of the matrix. Find mu k plus 1 to find out the duality gap 

for the next iteration setting k equal to k plus 1. And going back to the step previous step 

where we check whether the duality gap is small enough. So this is the idea of affine 

scaling algorithm and we saw in the last class that the point generated are in the interior 

and this was the plot for the four iterations of affine scaling algorithm. 

Now with this background we move on to Karmarkar’s algorithm. Now Karmarkar’s 

algorithm or Karmarkar’s method makes certain assumptions about linear program. So 

let us first see those assumptions and then study some of the important steps that were 

used by Karmarkar’s method. 
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Again I repeat that Karmarkar’s algorithm was developed first and affine scale algorithm 

was developed as a modification of Karmarkar’s algorithm. Karmarkar’s algorithm is a 



polynomial time algorithm to solve a linear program while affine scaling algorithm is not 

a polynomial time algorithm to solve a linear program. 

But nevertheless it was simple to understand affine scaling algorithm before moving on 

to Karmarkar’s method. So the first assumption that Karmarkar’s method makes is that 

the linear program is in homogenous form. So you will see that in the constraints there is 

no b here involved in the right side of system of equations. So we have the linear 

objective function to be minimized subject to A x equal to 0. And this 1 is a vector of all 

one’s. So the sum of all elements in x is 1 and x is non-negative.  

So this is not a serious this is not a assumption which will be violated at every point of 

time. On the other hand there are ways to convert linear programs in standard form to the 

homogenous form. So we will continue to use this homogenous form when we talk about 

Karmarkar’s method. It is not a serious drawback of Karmarkar’s algorithm. Now the 

second assumption is that the optimum objective function value is 0.  

Now if one has some knowledge about duality and dual functions then one can 

appropriately choose the dual function so that the duality so that the optimum objective 

function value can be assumed to be 0. So these are not serious drawbacks of 

Karmarkar’s algorithm but, these assumptions make the algorithm simple. Now as is the 

case in the case of affine scaling method the idea here is to use some transformation to 

move an interior point of the feasible set to the center of the feasible region.. 

So as was done in affine scaling here also one needs to use the projective transformation 

to move a point. Now in affine scaling we moved the input point to the point which 

contain all one’s in the y space. In Karmarkar’s method the point is moved to a point 

where in the n dimensional space every coordinate has a value m by n. And the then as 

was in the case of affine scaling we move along the steepest descent direction.  

So finding a transformation to move an interior point to the center of feasible region and 

moving along the steepest descent direction are two key aspects of Karmarkar’s method. 

And all these are done with respect to this problem formulation which is the linear 

program in homogenous form and under the assumption that optimum objective function 

value of this program is 0. 



Now as I said that there are different ways to convert a linear program in standard form 

to this homogenous form, so this is not a serious drawback of Karmarkar’s method. 
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Now let us look at the projective transformation used to in Karmarkar’s method. Now let 

us consider the transformation t which is defined by t x equal to x k inverse x by 1 

transpose x k inverse x. So x k is matrix is a diagonal matrix obtained by putting 

elements of the vector x k along the diagonal of matrix x k. And of course, we are 

assuming that x is not equal to 0. So suppose we consider this transformation then you 

will see that 1 transpose y where 1 is a vector of all one’s. So 1 transpose y will be 

nothing but, 1 transpose x k inverse x by 1 by 1 transpose x k inverse x and that is equal 

to 1. So any point x gets mapped to the center of the feasible region in the y space. So we 

consider a mapping from x to y, we will see that y has a coordinates 1 over n for all n 

dimensions and 1 transpose y equal to one. 

So this transformation lets us to map x to y such that y is the center of the feasible 

region. Now it is easy to derive a inverse transformation for this, now from this 

expression we can write x to b. So if you multiply throughout by x k and multiply this 

equation by 1 transpose x k inverse x so what we get is x equal to 1 transpose x k inverse 

into x k y. Now we want to write x in terms of y, so we have to get rid of this x from this 

expression.  



And write it in terms of y so let us see how to do that now 1 transpose x will be nothing 

but, 1 transpose x k inverse x into x k y. Now 1 transpose x we have assumed that 1 

transpose x equal to 1 because that is 1 of the requirements of homogenous linear 

program. So 1 transpose x equal to 1 means that 1 transpose x k inverse x is equal to 1 

over x transpose y. And therefore, we are able to write 1 transpose x inverse x in terms of 

1 transpose x k y, so substitute this value here and what we get is t inverse y will be x 

equal to x k y this quantity and 1 transpose x k inverse x will b 1 over 1 transpose x k y, 

so that quantity is in the denominator. So we are able to get a inverse transformation. 
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So one can check that this transformation t is 1 invertible transformation. Now if we use 

this transformation then the original linear program which was in homogenous form now 

substitute x here x as x k y by 1 transpose y in this homogenous linear program. So we 

get a linear program in y space and that program would look like this where x is replaced 

by x k y by 1 transpose x k y. So the objective function this value is replaced a x equal to 

0 will become converted to A x k y equal to 0.  

And as we saw any point x is converted to y such that 1 transpose y is equal to 1 and y’s 

are greater than or equal to 0. Now for a movement it may appear that a simple linear 

program has been converted to a program which is not linear for example, the objective 

function itself is a fraction of 2 linear terms. So it is not a linear program and therefore, it 

will be difficult to solve this but, if you look at the denominator, note that x k was greater 



than 0. So all the entries in this matrix are positive, y is also point which is in the center 

so y is also positive. 

So 1 transpose x k y is a positive quantity and not only that it is also bounded. So this 

program can be equivalently written in the form minimize c transpose x k y subject to the 

same conditions. So we have gotten rid of the denominator here because the denominator 

here is a positive quantity and bounded quantity and therefore, minimization of this 

fractional form of objective function is equivalent to the numerator since the 

denominator is positive and bounded. The other constraints remain the same So the 

original linear program which is in homogenous form is now converted to another linear 

program in the y space which is also in homogenous form. So now we have to solve this 

program using the steepest descent using the projected steepest descent method. 
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Now as I said that earlier that the equivalence of these 2 is possible because of the 

assumption that optimal objective function value is 0 and 1 transpose x k y is greater 

than 0. So we now see how to get a descent direction for this homogenous linear program 

in the y space. Now the gradient this objective function is x k c and the negative of the 

gradient is minus x k c’s,. 
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So that is the steepest descent direction but, then we have to project that direction on to 

the null space of the matrix a x k and 1 transpose put together and we also have to make 

sure that d is greater than or equal to 0. So the first step is to get a projection of the 

steepest descent direction minus x k c on to the subspace where d satisfies a x k d equal 

to 0, 1 transpose d equal to 0 and d is non-negative. So it is easy to see this because… So 

suppose d is the direction that we are looking for along which we make a movement. 
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So we write the problem in terms of d, so it will be minimize c transpose x k y plus d 

minimize c transpose x k y plus d subject to a x k y plus d equal to 0 1 transpose y plus d 

equal to 1 and y plus d greater than or equal to 0. Now c transpose x k y this quantity is 

already this should be y k, because y k is the current point. So c transpose x k y k is a 

constant quantity so we will be interested in minimizing c transpose x k d subject to A x 

d equal to 0 1 transpose d equal to 0 and d greater than or equal to 0. 
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Now so the way it is done is the following that we first solve d by minimizing or getting 

the projection of X k c on the null space of A X k and the projection of X k c on the null 

space of A X k is obtained by minimizing norm of X k c minus d square subject to the 

constraint that X k d equal to 0. 
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So we have taken care of the first part. Then after having obtained that d 1 projects it on 

the null space of the matrix 1 transpose and then using the algorithm we make sure that d 

is greater than or equal to 0. So if you do this then we will have found the projected 

steepest descent direction of minus X k c in the y space. So let us do this first.. 

Now if you consider the problem to minimize this norm of X k c minus t square to get 

the projection of X k c on the null space of A X k, so we write the Lagrangian, so the 

Lagrangian variables are the d the variables of the original problem as well as the 

Lagrangian multipliers associated with the equality constraint. So the objective function 

plus mu transpose A X k d that will be the Lagrangian. So getting the gradient of the 

Lagrangian with respect to d and setting it to 0 what we get is minus X k c minus d plus 

X k a transpose mu equal to 0. And this gives us d to be x k c minus x k a transpose mu. 

Now remember that d and mu are the variables and we have d written in terms of mu. 

Now this d also should satisfy feasibility A X k d equal to 0. Now if you multiply this 

equation throughout by A X k then the left side becomes 0 and we will get mu in terms 

of A X k and c so multiplying throughout by A X k what we get is A X k square c minus 

A X square a transpose mu equal to 0. And this equation can be used to find mu so since 

A is a full rank full row rank matrix we can invert A X k square a transpose and multiply 

that post multiply by A X square c to get mu. And once we have this value mu we plug-

in that value of mu here and we get the expression for d.  



So finding d which solves this problem is easy. And then one has to get the projection of 

minus d on the null space of 1 transpose. So if you take the projection of minus on the 

null space of 1 transpose, so this is the projection matrix I minus 1 by n transpose where 

1 is a vector of all one’s into the direction X k c minus X k transpose mu where mu is 

obtained using this. So first we obtained mu plug-in that value of mu here and we get the 

projection of minus d on the null space of 1 transpose. Now here we will have to use 

those entries which are not negative. So this will be the direction along which we move 

so the entries which are not negative can be obtained using a simple algorithm. 
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So, here is Karmarkar’s projective scaling algorithm, where the input to the algorithm is 

a homogenous program and we have the matrix A which is a full row rank matrix vector 

c in the objective function and some epsilon used for stopping criteria. Remember that 

one of the assumptions that Karmarkar’s algorithm used was that the minimal objective 

function value is 0. So we can use epsilon instead of 0 to check whether the optimality 

has been reached.  

Of course, in the original algorithm the stopping criteria use was different but, just for 

understanding we have put c transpose x k greater than epsilon to be the stopping 

condition for Karmarkar’s algorithm. One can look at original paper of Karmarkar to see 

the stopping criteria used by that algorithm. So the iteration counter is set to 0, initial 

point is taken to be the center of that feasible region the matrix x k is set. So while the 



optimum objective function value is not close to epsilon and finds the projected steepest 

direction d k. 

And then makes the movement in the y space along that direction so this is the current 

point which is also 1 by n and then, so current point plus alpha k d k. So this is the 

normalized projected steepest descent direction d k by non d k and that is multiplied by 

alpha k. So karmarkar found that good choice for alpha k is 1 by 3 into root of n n into n 

minus 1. So one finds a new point y k plus 1 and then the next step is to project it back to 

the input space x space and that is done using the inverse transformation t inverse. And 

the new matrix x k plus 1 is found iteration counter is increased and 1 goes back to the 

new point and check whether optimality is satisfied. So this procedure is repeated till 

optimum value is satisfied or the procedure is repeated till the current point x k is very 

close to the optimal value. Because with this condition we cannot truly reach the exact 

optimal point but, we will be or the algorithm will be very close to the optimal point. 

So when the algorithm terminates, we stay get the x star to be the current iteration value 

of x. So this is the rough idea about Karmarkar’s algorithm, which was the first 

algorithm which was polynomial time and also efficient than Kutchian’s polynomial time 

algorithm based on ellipsoid method. And you will see that the algorithm is simple and 

easy to implement. And more details about this algorithm like how to find the exact step 

size can be found in Karmarkar’s paper.  

So with this we complete our discussion on interior point methods for linear programs. 

So in particular we saw affine scaling method and Karmarkar’s projective scaling 

method. The reason for studying interior point methods for linear program is that the 

simplex algorithm is not a exponential time algorithm is not a polynomial time 

algorithm. 

It is a exponential time algorithm and therefore, there is a need to design algorithms for 

linear programs which are polynomial time algorithms. And interior point methods are 

one of the approaches which ensure that the algorithms for solving linear programs are 

polynomial time. In fact Karmarkar’s algorithm as a better complexity compared to 

Kutchian’s algorithm for solving linear programs.  

Affine scaling algorithm which we studied is not a polynomial time algorithm but, 

nevertheless it is a simple algorithm and can be used for solving linear programs. So this 



completes our discussion on linear programs. We now move on to constraint 

optimization problems and study some of the algorithms which could be useful for 

solving constraint optimization problems. 


