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Hello, welcome back to this series of lectures on numerical optimization. In the last class 

we started discussing about the duality theory. And, in particular we looked at a simple 

problem where we want to minimize a function f(x) subject to a single inequality 

constraint, which is h(x) less than or equal to 0 and x belongs to a set X. So, we saw that 

in order to solve this problem; we transformed it to a another space which we called it as 

y z space; where y is equal to h(x), and z is equal to f(x). 

So, every point in the set X is transformed to the y z space; and the corresponding set of 

points in the y z space, suppose the points in the on or the interior of this surface. Then, 

we are looking at the feasible points; and then the set of feasible points is the set where y 

is less than or equal to 0. So, this is the set that we are interested in it. And, what we want 

to do is that we want to find the minimum of this problem; and that minimum of this 

problem is the point which is. So, this is the optimal solution to the original problem. 



And, then what we did was we defined a function called theta lambda; theta lambda is a 

function f(x) plus lambda h(x). So, theta lambda is minimize x belongs to X f(x) plus 

lambda h(x), and this f(x) plus lambda h(x) corresponds to a line in the y z space; the line 

z plus lambda y. Now, let us assume that lambda is nonnegative. So, it is a line with 

slope minus lambda. 
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And, let us look at the picture again. So, z plus lambda y equal to constant is a line; in 

this space z plus lambda y is equal to alpha is a line with the slope minus lambda. Now, 

if you want to find out theta lambda. So, theta of lambda is nothing but minimum of f(x) 

plus lambda h(x); x belongs to X. So, for given lambda we are in we are interested in 

finding out the line; which supports this feasible set from below and also touches that 

feasible set. So, for a given lambda we are interested in getting a line which is having the 

same slope; and this is z plus lambda of y is equal to beta say. So, the so the minimum 

value is theta lambda. Now, we have already seen that optimal objective functional value 

is here. 

So, for a given lambda the theta lambda that we get is somewhere here; which is 

different from the optimal objective functional value. So, what we are in interested in is 

finding out that lambda which is nonnegative such that the theta of lambda is maximized. 

So, in other words we will be interested in looking at a line, and this is z plus lambda star 

y is equal to gap. So, this is the line with slope minus lambda star and that is obtained by 



solving this problem. And, this problem is called the dual problem. So, we are interested 

in finding out the dual problem. And, the reason for doing this is that many a times the 

dual problem is easier to solve. We will some examples in today is class about this, but it 

not always true that one has to always the dual problem. Because sometimes one can get 

a duality gap then one solves also given dual problem. 
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So, for example we saw another example where in the y z space. If the set g is something 

like this and the feasible region is. So, then we will see that the minimum of this is at this 

point. And, if we solve the dual problem so we would get a hyper plane like this or line 

like this. So, this is the theta of lambda star and this value is p star. So, you will see that 

there is some duality gap. And, therefore it is not always advisable to solve the dual 

problem. But in some cases it may be a good idea to solve the dual problem because it 

may be easier to solve. And, not only that the optimal dual value will be equal to optimal 

primal value. So, what are the conditions under which the duality gap is 0? So, we started 

looking at this question. 
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And, we saw the first part of this theorem which says that optimal primal and dual 

objective function values for this problems are same; if and only if x star lambda star mu 

star is a Lagrangian saddle point. That is the conditions for the saddle point holds; when 

L is the Lagrangian is the function under consideration. 
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And, we saw this proof in the last class that if x star lambda star mu star is Lagrangian 

saddle point. 
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Then, we showed that x star is primal feasible and then lambda j star of x star is equal to 

0. 
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And, therefore what we get is theta of lambda star mu star is equal to f of x star. So, 

which means that there is no duality gap. 
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Now, we will see that the other part of the proof. Now, to prove this… 
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So, what is given to is that f(x) star is equal to theta of lambda star mu star. Of course, 

we assume that x star primal feasible such as satisfies all the primal constraints; and 

lambda star mu star satisfy all the dual constraints. 

So, this is given to us. Now, we want to show that x star lambda star mu star is a 

Lagrangian saddle point. Now, if we look at L of x star lambda star mu star; that is 

nothing but f(x) star plus sigma lambda j star h j of x star plus sigma mu i star e i of x 



star. Now, since x star is primal feasible we can say that this quantity is 0. Now, what 

about this quantity? So, suppose this quantity is 0 we are not sure as of now but suppose 

this quantity is 0. Then, we can write this as f(x) star and what is given to us is theta of 

lambda star mu star. And, theta lambda star mu star is by definition minimize our x 

belongs to X f(x) plus sigma lambda j star h j(x) plus sigma mu i star e i(x). 

Now, this quantity is nothing but minimize x belongs to X the Lagarngian of x lambda 

star mu star. And, therefore we can say that L of x star lambda star mu star which is a 

minimum of L of x lambda star mu star over x belongs to X. So, therefore L of x lambda 

star mu star is less than or equal to L of x lambda star mu star for all feasible x. So, the 

question is that can we show that lambda j star of x star is equal to 0? So, if we show that 

then one part of the saddle point conditions are satisfied. Now, similarly once we show 

that lambda j star of x star is equal to 0; then what we get is L of x star lambda star mu 

star is equal to f of x star. 
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So, L of x star lambda star mu star is equal to f of x star. And, if we choose lambda’s to 

be nonnegative then we can write this as this is nothing but which is greater than or equal 

to f of x star plus sigma lambda j h j of x star plus sigma mu i e i of x star. Now, this 

quantity is 0, h j of x star is less than or equal to 0 and lambda’s are nonnegative. So, f of 

x star; so this quantity is always less than or equal to 0. And therefore f of x star is 

greater than or equal to this and this is nothing but L of x star lambda mu. So, L x star 



lambda star mu star is greater than or equal L x star lambda mu. So, both the saddle point 

conditions both the conditions related to the saddle point are satisfied. And, therefore we 

can say that under the 0 duality gap condition there exists a saddle point. So, the 

important thing we have to show is that lambda j star h j of x star is equal to 0; and that is 

what we will show now. 
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So, note that x star is primal feasible and lambda star mu star is dual feasible. And, also 

let us assume that x is a primal feasible point and lambda j’s are nonnegative for all j. 

Now, theta of lambda star mu star is nothing but minimize effects subject to lambda j 

star; subject to x belongs to X minimize f(x) plus sigma lambda j star h j(x) plus sigma 

mu i star e i(x).  

And, this is less than or equal to f of x star plus lambda j star h j of x star plus sigma mu i 

star e i of x star. Now, x star is primal feasible so this quantity is 0. And, lambda j star h j 

of x star is summed up for all the constraints and added to f of x star. So, this is what we 

get. Now, what is given to us f of x star is equal to theta of lambda star mu star. So, there 

is a strict equality in this case. So, now since lambda j star are greater than or equal to 0 

because they are dual feasible; and h j of x star is less than or equal to 0. This quantity is 

less than or equal to 0 and therefore, this is less than or equal to f of x star. Because 

lambda j star is nonnegative h j of x star is less than or equal to 0 for all j. But we are 

given that theta of lambda star mu star is equal to f of x star. So, this quantity has to be 0. 



And, therefore what we get is lambda j star h j of x star is equal to 0 for all j. And, this is 

what we wanted to use. 
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Now, one can write the Lagrangian of at x star lambda star mu star to be this sum and as 

I mentioned earlier that e i of x star is 0, lambda j x star h j of x star is 0. And, this 

quantity is nothing but f of x star. And, therefore we can write this as theta of lambda star 

mu star because there is no duality gap. So, theta f of x star is nothing but theta lambda 

star mu star. 

And, by the definition of theta of lambda star mu star we have minimum theta of lambda 

star mu star to be minimum of x belongs to X, L of x star lambda star mu star. And, 

therefore what we have what is that L of x star lambda star mu star is less than are equal 

to L of x star lambda star mu star; that is our first condition. Now, we again look at L of 

x star lambda star mu star. Now, we have already shown that lambda j x star h j of x star 

is equal to 0 and we know that x star is primal feasible; so this quantity is also 0. So, L of 

x star lambda star mu star is nothing but f of x star that we have already shown. Now, 

that quantity is greater than or equal to f of x star plus this quantity because this quantity 

is anyway 0. 

And, remember that lambda’s are nonnegative h j of x star less than or equal to 0. So, f 

of x star is always greater than or equal to this quantity; and this quantity is nothing but L 

of x star lambda mu. So, we have got another condition we show that L of x star lambda 



star mu star is greater than or equal to L of x star lambda mu. Now, if you combine 1 and 

2; we can see that x star lambda star mu star is a Lagrangian saddle point. 
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Now, so for we have shown that there is no duality gap if and only if there exists a 

Lagrangian saddle point. But how do we find out saddle a saddle point if such a point 

exists? 

Because it is very difficult to check the saddle point conditions. So, is there any better 

way of ensuring the existence of saddle and finding it out. So, let us consider a general 

non-linear programming problem; there be a minimize effects subject to the set of 

inequality constraints and the set of equality constraints. Now, under certain convexity 

assumptions one can show that the KKT point is a Lagrangian saddle point. And, KKT 

points as we saw in one of the earlier classes there easy to check. So, here we have 

another important theorem which states if f and h j x are continuously differentiable 

convex functions. 

So, the objective function is convex the functions associated with the inequality 

constraints of the type h j(x) less than or equal to 0. So, the function h j(x) are all convex 

and the function e i(x) are affine functions. So, in other words e i(x) is nothing but a i 

transpose x minus b i. And, assume that X is also convex set. So, we have a convex 

programming problem. So this is no longer a general non-linear program, but it is a 

convex programming problem. There we want to minimize a convex function subject to 



a convex set. And, it is clear that this set is convex set because it is a intersection of all 

convex sets. 

Now, we also assume that latest condition holds. So, that means that it the constraint set 

has nonempty interior; the constraint set is convex and has nonempty interior. Then, the 

first result says that if x star lambda star is a KKT point; then x star lambda star mu star 

is a Lagrangian saddle point. And, the seconds result says that if x star is primal feasible 

and it belongs to the interior of the set X and lambda star is dual feasible. And, x star 

lambda star mu star is a Lagrangian saddle point then x star lambda star mu star is a 

KKT point. 

So, under certain convexity assumptions and the Slater’s constraint qualification 

condition a KKT point is a Lagrangian saddle point. And, therefore for such problems 

the duality gap does not exist. And, it is sometimes easy to solve the dual problem rather 

than the primal problem. So, we will first study the proof of this theorem and then later 

or we will see some examples related to this conditions. So, the first part of the proof is 

about proving that a KKT point under the convexity assumptions is a saddle point. So, let 

us look at that condition that proof. 
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So, we assume that x star is primal feasible. Therefore, satisfies all the inequality and 

equality constraints. And, of course, x x star belongs to the set X. Now, we are given that 

x star lambda star mu star is a KKT point. So, it has to satisfy 3 conditions along with the 



feasibility conditions. So, the first condition is that the gradient of the Lagrangian should 

vanish at x star lambda star mu star the gradient which is evaluated with respect to x. So, 

gradient of the Lagrangian is gradient f of x star plus sigma lambda j star gradient h j of x 

star plus sigma mu i star gradient ei x star. 

And, that should be equal to 0. And, second condition is about the complimentary 

slackness condition. So, lambda j star h j of x star equal to 0 for all j. And, other 

condition is that all the Lagrangian multipliers lambda j star are nonnegative. Now, these 

conditions along with the feasibility ensure that the KKT’s conditions are satisfies by x 

star lambda star mu star. Of course, we are assuming that x star also belongs to set X; 

that is part of the primal feasibility. Now, we make use of the convexity of the functions 

f h and the affineness of the function e i. And, use those conditions to derive that x star 

lambda star mu star is indeed a saddle point. 

So, let us look at the function f. Now, f being a convex function we have already seen in 

one of the earlier classes; that an affine approximation of a convex function at any point 

does not over estimate the function. So, since f is convex we saw this result earlier that 

f(x) for every x in the feasible set X f(x) is greater than or equal f of x star plus gradient f 

of x star transpose x minus x star. So, the right side is an affine approximation of the 

function at x star. And, we know that that does not over estimate the function. Now, the 

same result can be applied to the convex functions related to the inequality constraint. 

That is the function h j x less than or equal to the constraints h j x less than or equal to 0 

and the associated functions are h j x. So, for every h j x which is a x which is a convex 

function h j(x) is again greater than or equal to h j of x star plus gradient h j of x star 

transpose x minus x star. Now, e as affine function. Therefore, we can write ei(x) equal 

to ei of x star plus gradient ei of x star transpose ei of x minus x star. 

Now, remember that we want to find out the conditions associated with the Lagrangian 

saddle point. So, the Lagrangian saddle point is nothing but I am sorry the Lagrangian 

function L x lambda mu is nothing but f x plus sigma lambda j x h j x plus sigma mu i e i 

x. So, in order to get towards those conditions what we need to is that we need to 

multiply this equation; equation 4 by lambda j and equation 5 by mu i. Then, sum them 

up and the same exercise has to be done in the right side. Since, lambda j’s are 

nonnegative; the inequality sign inequality direction does not change. So, even if you 

multiply lambda j throughout the inequality same inequality holds. And, this is a equality 



and mu i ei is an affine function and mu i is unrestricted in sign. So, we can multiply mu 

i by mu i both sides and then we add up the left hand side as well as the right hand side. 

Now, when we add the right side in the first term what we get is f of x star plus sigma j h 

j of x star plus sigma mu i e i of x star. Now, if we multiply by lambda star and mu star. 

Then, what we get is gradient f of x star plus sigma lambda j star gradient h j of x star 

plus sigma mu i star gradient e i of x star; and that quantity is 0 because of this condition. 

So, if you multiply second by lambda j star and equation 4 by lambda j star and equation 

5 by mu i star. Then, this quantity the second terms vanish. 
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And, then what we are left with is the following f(x) plus sigma lambda j star h j of x star 

plus sigma mu i e i of x star. So, that is the first part and that is greater than or equal to f 

of x star plus sigma lambda j star h j of x star plus sigma mu i star e i of x star. And, then 

the quantity corresponding to the second term vanishes because of this conditions. Now, 

we can use this condition further to remove this quantity and the feasibility of x star to 

remove this quantity. So, what we are left with is L f x star lambda star mu star is greater 

than or equal to mu star. Now, f x star is nothing but f of x star plus sigma lambda j star h 

j of x star plus mu i star e i star because this is 0. And, the complimentary slackness 

condition give this quantity as 0. And, this quantity is greater than or equal to f(x) plus 

lambda j h j of x star plus sigma mu i e i of x star. 



And, therefore what we have is L x star lambda star mu star is greater than or equal to L 

x star mu. And, using these 2 conditions we can say that x star lambda star mu star is a 

Lagrangian saddle point. So, this was the first part of the theorem. Now, the second part 

says that if we are given a Lagrangian saddle point in the x star is in interior then the 

KKT conditions are satisfied. So, in other words we have to show that this hold. 
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So, we assume that x star lambda star mu star is saddle point and x star is primal feasible. 

So, that means h j x star less than or equal to 0, e i x is equal to 0, for all j’s and i then x 

star belongs to interior of the set X. 

This is the assumption that we are making and lambda star is dual feasible. Now, x star is 

primal feasible. So, the feasibility conditions for the primal are satisfied lambda star is 

dual feasible. So, feasibility conditions for the dual are satisfied. Remember that the 

Lagrangian multipliers corresponding to the equality constraints are unrestricted in sign. 

Now, x star lambda star mu star is also Lagrangian saddle point. And, therefore one of 

the conditions of the saddle point is L x star lambda mu is less than or equal to l x star 

lambda star mu star. Now, if you expand this so, the and cancelling the f x star term; 

what we get is something like this. Now, using the same logic that we use in the previous 

proof we will we can show that lambda h j (x) star equal to 0. And, therefore 1 of the 

KKT conditions is satisfied. 



So, lambda j star is greater than or equal to 0 because it is dual feasible; primal feasibility 

is satisfied x star belongs to the interior (X). And, we also shown the complimentary 

slackness condition. Now, L x star lambda star mu star is less than or equal to L x star 

lambda star mu star because of the saddle point conditions. And, therefore x star is 

obtained by minimizing the right side function L x star lambda star mu star with respect 

to x belongs to X. So, the x star is nothing but argmin mean of x and the objective 

function is the Lagrangian where lambda star mu star are kept fixed. 
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Now, L x star lambda star mu star this quantity if we expand it so, we have f (x) plus 

sigma lambda j star h j (x) plus sigma mu i star e i (x). Now, f (x) is a convex function, h 

j (x) is a convex function, lambda j star are nonnegative, e i (x) is an affine function. That 

is the problem that we are considering and mu stars are unrestricted in sign. So, since e i 

(x) is affine function f(x) is convex and h j(x) is also a convex function lambda j star 

nonnegative; this function is a convex function. So, L x star lambda star mu star is a 

convex function. 

And, x star is the minimum of that convex function over the set x and we have assume 

that x star lies in the interior. So, the minimum of a convex function lies in the interior 

means that the gradient of the convex function L should vanish at x star. So, in other 

words gradient of L evaluated with respect to x and evaluated at x star lambda star mu 

star is equal to 0. And, this was 1 of the KKT conditions that we wanted to prove 



because we had already proven the complimentary slackness conditions. And, we knew 

that lambda j star is we assume that lambda j stars are dual feasible. So, they are 

nonnegative and x star is primal feasible. And, therefore all the conditions KKT 

conditions are satisfied. And, therefore x star lambda star mu star is a KKT point. 

And, this was possible because of the assumption that x star belongs to the interior of the 

set x and L is the convex function over the convex set x. So, this theorem has important 

implication. And, that this theorem gives us an idea about how to write the dual problem 

of a given convex programming problem? 
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So, let us consider a convex programming problem; where f is a convex function. The 

objective function is convex the constraint the inequality constraints are h j (x) less than 

or equal to 0. And, the function h j (x) corresponding to these inequality constraints is 

also a convex function; the equality constraints are given by a i transpose x minus b i 

equal to 0. And, let us consider the set x to be entire set r n. 

Let us also assume the differentiability of f and h and they are also convex. Let us 

assume that the constraint set finally that we get is also such that it has nonempty 

interior. So, which means that Slater’s condition holds. So, the Lagrangian which is a 

convex function (x) is f (x) plus sigma lambda h j (x) plus sigma mu i e (x). And, the 

dual problem is a max min problem; where we minimize the Lagrangian with respect to 

x belongs to r n. And, then that function is maximize with respect to lambda’s which are 



nonnegative and mu which are unrestricted in sign. Now, if you look at this problem 

minimize x belongs to r n L x lambda mu. 

Since, L is a convex function which we saw earlier. So, the minimum at the minimum of 

this gradient of the Lagrangian with respect to x should vanish. Therefore, the dual 

problem becomes maximum maximize L x lambda mu subject to the constraint that the 

gradient of the Lagrangian evaluated with respect to x vanishes; and lambda’s are dual 

feasible. So, this problem is called the Wolfe dual problem. Wolfe was the first person to 

show that for convex programming problems under this constraint qualification 

condition. 1 can write the dual in a simple form which is maximize the Lagrangian 

subject to the constraint at the gradient of the Lagrangian with respect to the primal 

variable vanishes. 

And, the lambda’s the Lagrangian multipliers are associated with the inequality 

constraint of the type h j (x) less than or equal to 0 are nonnegative. Now, these 2 

problems the original CP and the dual problem CP under the assumption of constraint 

qualification or Slater’s condition have the same optimal solution. So, in other words 

these 2 problems are equivalent to each other. So, one can either solve this problem or 

this problem and 1 would get the same optimal solution or in other words there is no 

duality gap. 

But then 1 may wonder that this was the problem with respect to x; here we have 

introduced more variables lambda and mu. And, therefore this problem may be more 

difficult to solve compared to the original problem. But as we will see some examples 

you will realize that the dual problem is many a times here the Wolfe dual problem is 

many a times easier to solve compared to the primal problem. Although there is no rule 

that every time one has to solve the dual problem; but sometimes the it becomes easier to 

solve the dual problem than the primal. Because some of these variables get eliminated 

and some of the constraints also get eliminated. And, we are left with the simple problem 

than the original primal problem. So, we will look at some examples. 
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So, this is a an example to minimize a 1 dimensional function x minus 2 square subject 

to the constraint that 2 x plus 1 less than or equal to 0 and x belongs to minus 1 to 1. So, 

this interval minus 1 to 1 becomes our constraint set x which is the constraint h(x) less 

than or equal to 0 and this is the objective function. Now, you will see that the objective 

function is the convex function. This constraint set is a convex set and this constraint set 

is also convex set. So, the intersection of the convex sets is also convex set. So, we have 

a convex programming problem and this also satisfies Slater’s condition. Now, let us 

solve this problem. 
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So, we have the problem minimize x minus 2 square subject to 2 x plus 1 less than or 

equal to 0 and x belongs to minus 1 to 1. Now, let us see the graph of the function. So, 

the objective function is a function like this which has 0 at this point; the function value 

0 at this point. Now, let us look at the constraints. So, the first constraint says that x is 

less than or equal to minus half. And, that would be somewhere here and x belongs to 

minus 1 to 1. So, in other words we are interested in this constraint set which is the 

interval from minus 1 to half. 

So, we are interested in finding the minimum of this function over this interval which is 

shown here by shaded lines. Now, it is clear from this figure that minimum of the 

function will occur at x star equal to minus half. And, the corresponding value of the 

objective function f(x) star will be minus half minus 2. So, which is equal to 25 by 4. So, 

this our primal objective function and this is the solution to this problem. Now, let us 

write down the dual problem. And, see how the dual can be solved? 
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So, let us look at the dual function. So, dual function is a function theta lambda which 

minimizes x which is in the interval minus 1 to 1 x minus 2 square. That is the objective 

function and lambda into the constraint and the constraint this 2 x plus 1. Now, this 

function is a quadratic function in x. In fact it is convex because the coefficient of x 

square is positive here. So, we differentiate this function with respect to x and equate it 

to 0. So, differentiating with respect to x and equating to 0, what we get is 2 into x minus 



2 plus 2 lambda is equal to 0 and from that we can get x star. And, therefore x star to be 

minus lambda plus 2. 

Now, remember that x has to be in the interval minus 1 to 1. So, in order that x has to be 

in the minus interval minus 1 to 1. So, which means that x star also has to be in this 

interval we have to set a range for lambda. So, the lambda should belong to since x star 

belongs to minus 1 minus 1 to 1 lambda should belong to the interval 1 to 3. So, this will 

make sure that x star also lies in this interval. And, if we substitute this x star here what 

we get is so therefore, theta lambda theta lambda will be equal to substitute this value 

here. So, what we get is lambda square and then minus 2 lambda square plus 5 lambda. 

And, this is nothing but minus lambda square plus 5 lambda. If lambda belongs to the 

interval 1 to 3 so we have got theta lambda. So, now the dual problem.  
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The dual problem is maximize theta lambda with respect to lambda which is in the 

interval 1 to 3, and this nothing but maximize minus lambda square plus 5 lambda; 

subject to lambda belongs to 1 to 3. Now, this is a concave function. So, again we 

differentiate this function with respect to lambda equate it to 0. And, what we get is 

minus 2 lambda plus 5 equal to 0 and which gives lambda is equal to 5 by 2. 

So, therefore, the dual objective function value d star which should be we plug-in this 5 

by 2 in the objective function. And, what we get is minus 25 by 4 plus 25 by 2 and which 

is nothing but 25 by 4. Now, if we compare this dual objective function value with the 



primal objective function value that we got which is nothing but f (x) star. We see that 

this dual objective function value and primal objective function values are the same. 

Now, with respect to the y z space what happens? So, let us look at that. 
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So, this is the y z space that we have. So, z is nothing but f (x) and y is nothing but h (x). 

Now, h(x) is nothing but 2 x plus 1 and f(x) is nothing but the given objective function 

which is x minus 2 square. So, set x is the interval minus 1 to 1. Now, this interval we 

take each value of x from this interval and map it to the y z space. So, we get a curve like 

this. So, in other words when x equal to minus 1. So, this that is the quantity which is 

here minus 1. And, then when x equal to minus 1 what we get is 9. So, this point which 

corresponds to (No Audio From 49:01 to 49:09) so this point is minus 1, 9. When x equal 

to 0 y is 1. So, this is this quantity this point in the y z space; and when x is 0 this is 4. 

So, this is 1 4; and when x is 1 y is 3 and z is 1. So, we get a function like this and what 

we are interested in is y less than or equal to 0. 

So, we are interested in only this part of the function. Now, if we take a line which 

supports this feasible set from below. Then, that line will have slope which is minus 5 by 

2. And, moreover as we saw earlier that the optimal primal and dual objective function 

values are same. And, therefore there is no duality gap. 
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So, the dual function is minimize x minus 2 square plus lambda 2 x plus 1. And, 

therefore the Wolfe dual problem is maximize minus lambda square plus 5 lambda and 

lambda belongs to the close interval 1 to 3. And, therefore by solving this we get lambda 

star to be 5 by 2. And, the optimal objective function and for the dual problem; which is 

25 by 4 is same as the optimal objective function value for the primal problem. Now, 

look at another example. 
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So, we have a problem to minimize norm x square subject to the constraint that x 1 plus 

x 2 up to x n equal to 1. This is a convex programming problem because the objective 

function is convex the constraint set it is affine. So, Slater’s conditions are automatically 

satisfied. Now, we can see that the solution to the this problem is that all values of the 

coordinates are same and they are 1 by n. And, they are optimal objective function value 

is 1 by n. 

Now, let us look at the Lagrangian. So, Lagrangian is nothing but the objective function 

plus mu times the constraint; this mu is associated with this equality constraint. Now, we 

can write the Wolfe dual of this problem; so one of the conditions that is used in the 

Wolfe dual is that the gradient of the Lagrangian is respect to the primal variable 0. And, 

this implies that x i equal to minus mu by 2. Now, if we plug-in x i equal to mu by 2 in 

this Lagrangian. Then, we can write the dual problem Wolfe dual problem as maximize 

the Lagrangian with respect to the constraint that the gradient of the Lagrangian with 

respect to x vanishes. 

Now, note that mu is associated with the equality constraint. Therefore, there are no sign 

restrictions on mu. Now, by plugging-in in this value of x i which is equal to mu minus 

mu by 2; in this Lagrangian we get a function which is minus n by 4 mu square minus 

mu. Now, what is the advantage of writing the Wolfe dual? So, you will see that the 

Wolfe dual problem is a 1 dimensional optimization problem in this case. In fact it is a 

unconstraint optimization problem. So, the original n dimensional constraint 

optimization problem which had some nice properties that like it is a convex 

programming problem and Slater’s condition are satisfied. So, such a n dimensional 

optimization problem we were able to convert it to a 1 dimensional unconstraint 

optimization problem. 

And, not only is that because of the condition because of the results that we saw earlier 

for such problems the duality gap 0. Because the KKT point is a Lagrangian saddle point 

and therefore, the duality gap is 0. We can solve this problem and get a solution to this 

problem. Now, this is a unconstraint optimization problem in mu. So, if we differentiate 

the objective function is convex in terms of mu. So, if we differentiate this objective 

function with respect to mu and equate it to 0; what we get is mu star to be minus 2 by n. 

Now, if if you plug-in this value of mu star in this what we get is x star to be 1 by n. 



And, that is same as this. So, this is a very important example in the sense that it gives us 

some idea about the advantage of solving the dual problem. In some practical situations 

the original problem could be an infinite dimension problem; where the norm is defined 

in that infinite dimensional space. And, solving an infinite dimensional problem is very 

difficult but in that case if we can convert the problem into a dual problem. It may so 

happen like in this case that the dual problem is still with respect to number of variables 

in dual problem is still very small and manageable. And, in that process we will not lose 

anything because the optimal primal and dual objective function values are same. 

Because of the existence of Lagrangian saddle point or for the convex programming 

problems the KKT point and the Lagrangian saddle points are the same. If the Slater’s 

condition qualification holds. 

So, from this example we can see that there is some advantage in solving the in writing 

the dual problem of the convex programming problem. Of course, most of this results for 

convex programming problem. For general non-linear programming problem but dual 

problem may not be equal to the primal problem and there could be a duality gap. And, 

therefore, when 1 applies duality ideas 1 has to be careful about the convexity and the 

constraint qualification conditions that we discussed today. So, we will see some 

examples in the next class. In the last class we were discussing about Wolfe dual. And, in 

particular we consider this problem that we want to minimize x 1 square plus x 2 square 

up to x n square subject to the constraint that x 1 plus x 2 of x equal to 1. 

So, this was the problem that we were considering last time. And, we saw that this is also 

a convex programming problem and Slater’s condition holds good. And, we usually see 

that the solution is a point where every coordinate is 1 by n and the optimal objective 

function value is 1 by n. So, to write the Wolfe dual we need a Lagrangian. So, which is 

defined as the objective function plus mu time the constraint function; and the gradient 

of the Lagrangian with respect to x equal to 0 implies x i equal to minus mu by 2. So, 

plugging-in in this value of x i in this Lagrangian we can write the Wolfe dual as 

maximize Lagrangian function; subject to the constraint that the gradient Lagrangian 

with respect to x is 0. 

And, using this value of x i which is minus mu by 2 we can write the Wolfe dual as max 

of minus m by 4 mu square minus mu. So, you will see that the dual problem here is 

unconstraint problem in terms of only 1 variable. the primal problem had n variables and 



1 equality constraint the dual problem has a only 1 variable and it is a unconstraint 

problem. This problem is much easier to solve and as we saw last time mu star is minus 2 

by n and that gives x i star to be 1 by n which is same as what we saw earlier. So, many a 

times the dual problem is easier to solve than the primal problem. Also note that if we 

have a very large value of n then solving this primal will be difficult. Instead it will be 

easy to solve this dual problem. Now, let us look at another program. 
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This program is popularly known as linear program. We will discuss about linear 

problem sometime later but the problem formulation is like this. We want to minimize a 

function c transpose x; subject to the Subject to the constraint x equal to b x greater than 

or equal to 0; where A is m by n matrix, and the rank of the matrix A is m which is less 

than n. The reason why this is called the linear program is that the objective function is 

linear and the constraints are linear in terms of the variables. Now, we can clearly see 

that this constraint set is a convex set and the objective function is also a convex 

function. So, minimizing a convex function convex constraint set is a convex 

programming problem. 

Also, let us assume that the feasible set that we have is a nonempty set and moreover it is 

also a non singleton set. So, which means that there exist a point which lies in the interior 

of the constraint set. So, that implies that the Slater is condition holds. Now, with these 2 

properties that the linear program is convex linear problem and assuming that the Slater 



is condition holds; we can write the Wolfe dual of this problem. So, to write the Wolfe 

dual we need a Lagrangian. Now, there are some equality constraints and some 

inequality constraints. So, there will be a Lagrangian multipliers corresponding to these 

equality constraints which we are going to call them as mu. And, the Lagrangian 

multipliers corresponding to the inequality constraints; we are going to call them as 

lambda. 

So, the Lagrangian is the objective function plus mu transpose b minus Ax minus lambda 

transpose x. And, the gradient of the Lagrangian with respect to x equal to 0 implies that 

c minus A transpose mu minus lambda equal to 0. We need this condition when we write 

the Wolfe dual. So, that is why we have calculated beforehand, and then we are in a 

position to write the Wolfe dual. So, Wolfe dual of this l p the formulation which is 

given here is maximize the Lagrangian subject to the constraint; that the gradient of the 

Lagrangian with respect to x is 0. And, then the Lagrangian multipliers corresponding to 

the inequality constraints are non negative. 

So, if you consider this Lagrangian and consider the fact that the we need to satisfy this 

constraint that the gradient of the Lagrangian should vanish. So, c minus a transpose will 

be lambda minus equal to 0. So, let us substitute this in the Lagrangian expression and 

what we will get is only the term involving mu and b. Because the other terms c 

transpose x minus mu transpose Ax minus lambda transpose Ax will get cancelled 

because of this condition. So, the Wolfe dual of this problem is maximize b transpose mu 

subject to the constraint; that A transpose mu less than or equal to c. 

So, this condition is arrived at by using this expression. So, we have this constraint that 

the gradient of the Lagrangian should vanish. So, which means that a minus a transpose 

minus lambda equal to 0. Therefore, c minus mu equal to lambda and lambda is are 

nonnegative. So, c minus a transpose mu is greater than or equal to 0 or in other words a 

transpose mu is less than or equal to c. Now, this Wolfe dual you just only the variable 

mu, the variable lambda does not appear anywhere in this dual. 

So, you can see that is in the original problem the matrix of A size is m by n. So, the 

number of mu is that we here will be equal to m. So, this becomes a m dimensional 

optimization problem. And, moreover the variables mu is are unconstraint; unlike the 

original primal variables are which a non negativity constraint in them. Also, you will 



see that there are no terms in the dual which involve lambda. So, the number of 

constraints in this problem, the number equality constraints in this original linear 

program is equal to the number of variables in the Wolfe dual. Therefore, if m is the very 

much less than n; then it may be a good idea to solve this problem instead of the original 

linear program. Now, let us take this dual problem and see what happens if we write the 

dual of this problem? So, let us take. 
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So, we have maximize b transpose mu subject to the constraint at A transpose mu less 

than or equal to c. So, we want to write down the dual of this problem. So, this problem 

let us first bring it to the minimization form. And this problem is nothing but minimize 

minus b transpose mu subject to A transpose mu less than or equal to c. So, let us 1st 

write down the dual of the problem which is given in this box and then use the negative 

sign. So, let us look at only this problem 1st. Now, to write the dual we need to write the 

Lagrangian. So, let us first write down the Lagrangian of this we will call it as LD 

because d stands for the dual. 

So, Lagrangian of this dual problem that we are going to write and that is nothing but 

minus b transpose mu plus x transpose A transpose mu minus c this is the Lagrangian. 

And note that this is also a linear programming problem. So, it is also a convex 

programming problem and let us assumes that the Slater is constraint qualification holds. 

So, we can write the Wolfe dual of this. So, Wolfe dual of this problem will be maximize 



LD subject to the constraint that gradient of LD with respect to the primal variable which 

is mu is equal to 0; and the Lagrangian multipliers corresponding to the inequality 

constraints are nonnegative. 

So, here x are the Lagrangian multipliers. So, x greater than or equal to 0 or which is 

same as maximize minus b transpose mu plus x transpose A transpose mu minus c 

constraint qualification holds. So, we can write the Wolfe dual of this. So, Wolfe dual of 

this problem will be maximize LD subject to the constraint that gradient of LD with 

respect to the primal variable which is mu is equal to 0; and the Lagrangian multipliers 

corresponding to the inequality constraints are nonnegative. 

So, here x are the Lagrangian multipliers. So, x greater than or equal to 0 or which is 

same as maximize minus b transpose mu plus x transpose A transpose mu minus c 

subject. So, let us calculate the gradient of LD with respect to mu. So, which will be 

minus b plus Ax equal to 0 and x greater than or equal to 0. 

So, let us take this condition what we have here minus b x plus c equal to 0 which is 

same as Ax plus b. And if we substitute this condition in the objective function these 2 

terms gets cancelled. 
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And, what we are left with is minus c transpose x where maximize minus c transpose x 

subject to Ax equal to b x greater than or equal to 0. So, the this problem which is the 



dual of the problem which is given in the box is. So, the dual of this problem we can 

write this as maximize minus c transpose x subject to Ax equal to b x greater than or 

equal to 0. 

And, remember that there was a minus sign which we had not considered. So, we will 

consider that now so, we have the minus sign. So, here also we will use the minus sign 

and we will carry that minus sign here. And, now even we consider the equivalent 

problem from the negative of max of this quantity is same as minimize c transpose x 

subject to Ax equal to b x greater than or equal to 0. And, this was nothing but the linear 

program that we started with. So, if you write down the dual of the linear program which 

is this. And, the if we rewrite the dual of this dual it is same as the original linear 

program. So, this is where interesting property associated with linear programs. Now, so 

for we were able to write the dual problem in terms of the Lagrangian multipliers 

associated with equality and the inequality constraints; but that may not always be the 

case. 
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Let us consider a simple example. Let us consider a quadratic program to minimize x 

transpose H x plus c transpose x subject to the constraint that Ax equal to b. Now, the H 

matrix is a n by n positive symmetric semi definite matrix and A is n by m matrix and the 

rank of A is m. Now, we assume that the Slater is constraint qualification holds; this is a 

convex programming problem. So, we can write the Lagrangian as the objective function 



plus lambda transpose b minus x b minus Ax. Now, the gradient of the Lagrangian with 

respect to x equal to 0 implies that H x plus c minus A transpose lambda is 0. 

And, therefore Wolfe dual of this original quadratic program is like this where we 

maximize half of x transpose H x plus c transpose x plus lambda transpose mu minus x; 

subject to the constraint that H x minus a transpose lambda equal to minus c and lambda 

is nonnegative. Now, you will see here that the number of variables in this dual problem 

is more than the number of variables that we have in the original primal problem. Here, 

the number of variables where n associated with the variable x or here the number of 

variables will be n plus m associated with x and lambda. So, in this case we really do not 

gain anything by writing the Wolfe dual. Because we have simply increase the number of 

variables and the problem also does not get simplified. Because we still have the 

quadratic programming problem with very linear constraints; same as what we had in the 

primal problem where the objective function was quadratic and the constraints were 

linear. 

So, we do not gain we do not really gain anything in this case. So, this is an example 

where the dual problem cannot be given explicitly in terms of dual variables. Here, the 

variables associated with the dual problem are both x as well as lambda this has to be 

kept in mind. But things can be simpler if we assume that the matrix H is positive 

definite matrix instead of the semi definite matrix. Because if H is positive definite then 

H is invertible. So, we can write x in terms of lambda is by using the fact that H is 

invertible. And, then 1 can write the dual problem in terms of only the dual variables 

which are lambda. 
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So, let us see how to do that? So, as in the previous case we write the Lagrangian and 

then said that the gradient of the Lagrangian with respect to x to 0; which gives us this 

equation H x plus c minus a transpose lambda equal to 0. 

And, then we can write the Wolfe dual by using x equal to H inverse A transpose lambda 

minus c. So, we use this equation and write x in terms of lambda. And, then the dual 

problem becomes maximize lambda with respect to lambda; the quantity minus half 

lambda transpose AH inverse transpose lambda plus AH inverse c plus b transpose 

lambda. So, you will see that by using this transformation we were able to eliminate x 

from the dual problem. And, this dual problem is now in terms of only the dual variables 

which are lambda. And, typically these will be less in number compared to the number of 

variables in the original primal problem. 

Further this problem has the simple constraint of the type lambda greater than or equal to 

0 compared to the constraint of the type Ax greater than or equal to b in the original 

primal problem. So, this problem will be easier to solve compared to the original primal 

problem. So, this an example where we 1st saw that the dual problem cannot be written 

explicitly in terms of dual variables. But then if the (( )) matrix in the original quadratic 

program is symmetric positive definite matrix. Then, one can write the primal variables 

in terms of the dual variable by using the fact that H is invertible. And, then 1 can write 

the dual problem only in terms of dual variables. 
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Let us see 1 more example where we minimize sigma Ax i log x i by c I; where c i is are 

positive constants and the constraints are x equal to b x greater than or equal to 0; and A 

is n by m matrix where m is much less than n. Now, you can verify that the objective 

function is a convex function of x. Now, we have already seen that the constraint of this 

type x equal to b x greater than or equal to 0 which we saw in the linear program case 

these constraints form a convex set. So, this is a example of a convex programming 

problem. And assuming that the Slater is condition holds; one can write the Wolfe dual 

of this problem. So, turns out that the Wolfe dual of this problem is very easy to write. 

And, you will see that the Wolfe dual is a maximization problem with respect to mu and 

the mu is unrestricted in sign. So, the dual of this problem is an unconstraint optimization 

problem which is easier to solve. So, I will leave it as an exercise to write the dual of this 

problem and compare that with the 1 which is given here. Now, before we conclude our 

discussion on duality theory; I would like to make 1 important remark about the dual 

problem. We have already seen that in many cases the dual problem is easier to solve 

than the primal problem. But there is 1 important property of dual problems which makes 

them very attractive. So, let us see that property. 
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So, let us consider a general non-linear programming problem of the type minimize f x 

subject to the constraint that h j x less than or equal to 0 and e i x equal to 0; where x is a 

compact set and x belongs to the compact set. So, x lies in the intersection of the set set 

of constraints which are represented as x less than or equal to 0, e i x equal to 0 and then 

the compact set x. Now, let us look at the dual function which was defined as theta 

lambda mu to be minimize x over x, f x plus sigma lambda j h j x plus sigma mu i e i x. 

Note that as i mentioned earlier truly speaking this is should be Infimum of x over x. But 

we assume that the minimum exists so, if the minimum does not exist 1 has to write the 

Infimum. 

Now, the important point that the we should note that this dual function theta lambda mu 

is a point wise minimum of family of affine functions of lambda and mu. So, the dual 

function is a function of lambda and mu and it is obtained by a point wise minimum of 

different affine functions. And, we already know that such a function is a concave 

function. So, the point wise minimum of family of affine functions is a concave function. 

Therefore, the dual function is a concave function. And, the dual problem which is 

maximize theta lambda mu subject to lambda greater than or equal to 0. 

So, we maximize the concave function subject to this convex set lambda greater than or 

equal to 0. And, maximization of a concave function can be written as minimization of a 

convex corresponding convex function and which is a convex programming problem. So, 



irrespective of what the primal problem is or what is what the nature of the problem is 

the dual problem is always a convex programming problem. And, therefore it becomes 

very attractive to solve this dual problem. Because there is no question of local minima 

as far as dual problems are concerned. So, therefore many applications typically are 

based on the dual problems because which are convex programming problems. And, then 

the solution of the primal problem can be obtained by after obtaining solution of the dual 

problem. So, with this we conclude our discussion on duality theory. 

Thank you. 


