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Hello, welcome back to this series of lectures on numerical optimization. In the last 

class, we started discussing about constrained optimization problems. And in particular 

way, we are looking at problem of this type, where we want to minimize an objective for 

f of x subject to the constrained that the every variable belongs to the set X. So, this set X 

is the feasible set or a constrained set, this is the objective function. And we are 

interested in giving some algorithm which is iterative algorithm that generates a 

sequence x k, which converges to a local minimum of this problem. 

So, a conceptual constrained minimization algorithm would look like this that given x 0, 

which is feasible and setting a iteration counter to 0. We continue the algorithm till the 

stopping condition it satisfied at x k. And at every step of the algorithm, what we do is 

that find x k plus 1 in the feasible set X, such that the value of the objective function at 

that point x k plus 1 is less than the value of the objective function at the current point. 

And then, we increase the iteration counter and the process is repeated. And finally, at 



the end when the algorithm terminates we get a local minimum of f (x) over the set X 

which is the feasible set so, so this is one of the solutions of this algorithm this problem. 

Now, what we are interested in is that, what is this stopping condition that next to be 

satisfied at x k? If you recall for, for an unconstrained problem, we choose your stopping 

condition to be the norm of the gradient to be less than some epsilon. But that condition 

cannot be directly used for a constrained problem, because the gradient of the objective 

function may not vanish at a local minimum of a constrained problem. So, we need to 

come up with a different condition which can be use as a stopping criteria for this 

algorithm. And later on we will find a see different ways of finding x k plus 1 belong to 

belong to the feasible set such that the value of the objective function decreases. So, let 

us start looking at this stopping condition that needs to be satisfied at local minimum. 
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So, consider this problem and recall the definition of strict local minimum that we 

discuss in the last class. So, if x star is a strict local minimum if there exist some epsilon 

which is the positive quantity such that in the neighborhood of in the epsilon 

neighborhood x star in the set x, the value of the objective function f of x star is strictly 

less than the value of f (x) for every x in the neighborhood where x is not equal to x star. 

So, so at a local minimum of constrained minimization problem you can see that the 

function does not decrease locally by moving along the directions which contain feasible 

point. 
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So, suppose we want to minimize a function, so suppose that this is an interval that we 

are looking at and the function is one dimensional, if suppose the function is something 

like this. So, we saw in the last class that this point a is a local minimum then this point 

is also local minimum. So, so if we consider this point; this point is also a local minimum 

and this point is also local minimum in addition to the point a. So, we saw that these are 

local minimum and this point and this point is a strict local minimum, while this point is 

not a strict local minimum, because if you see that in the neighborhood the function is a 

constrained. 

So, if, if you consider this point and this is going to be our feasible region, so our feasible 

region is closed interval a b so which denoted here by this portion, so this is a our 

feasible region. So, if you move along the feasible region from the point a, the function 

strictly increases same is to here. So, if you move either from this point if you move 

either in the increasing direction of x or in the decreasing direction of x the function 

value strictly increases. So, and if you look at this point then in the neighborhood of this 

point, if you move the function at least, does not decrease. So, what we are interested in 

is finding out those points in whose neighborhood if we make a movement in the feasible 

set the function at least does not decrease. 



(Refer Slide Time: 06:44) 

 

So, in other words we are at a local minimum of constrained minimization problem, the 

function does not decrease locally by moving along directions which contain feasible 

points. Now, this is a statement which describes a local minimum. Now, how do we 

convert this statement into algebraic condition? That is what we want to see. 
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So, consider the same problem and it is define a set of feasible directions, so a vector a 

non zero vector d in R n is said to be a feasible direction at point x belong to set X. If 

there exist some delta 1 which is a positive quantity such that x plus alpha d belongs to 



the set X for all alpha in the range 0 to delta 1. Note that we are not considering d equal 

to 0, because we are assuring that x is always belongs to the set X. So, we are 

considering all those points which are feasible. 

And therefore, if we take d equal to 0 that is a trivial that this condition is trivially 

satisfied. So, we will not consider d equal to 0 in this case. So, we are interested in 

finding those direction is d such that x plus alpha d belongs to the set X for some alpha in 

the range 0 to delta 1 where delta 1 is a positive quantity. Now, let us see this definition. 
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So, if we have a constrained set X to be set like this and let us consider a point. So, let us 

say that this point is x A, so at x A we are interested in finding out what are the feasible 

directions. So, you would see that some feasible directions are like this. So, if we make a 

small movement along these directions, we still retain feasibility of the set. On the other 

hand suppose if we take this point and then we can move in any direction in the 

neighborhood. So, these are all some of the feasible direction that we are draw here, so 

from this point if you consider the point x A, we cannot move in the direction in the 

other directions, because then we will not return feasibility while if you consider the 

point x B, locally we can move along any direction in the input space and we still remain 

feasible. 

Now, let us consider another example, so let us consider another X which is like this. 

Now, let us consider a point some point, let us call it as x C, so you will see that one can 



move along this lines if you consider a point x D, one could move along. So, what, what 

is draw here is only some set of feasible directions and likewise we can draw feasible 

directions for a given set. Now, let us consider another example. 
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So, let us assume that our set X, this circle, so let me call this is x 1 and this is x 2, so x is 

equal to set of all x 1 x 2, such that x 1 square plus x 2 square equal to 1. So, this is circle 

of radius 1 which is drawn here and so let us take a point. So, let us call this point as x E 

and now suppose we want to find out what are the feasible directions at x E is belongs to 

the set X? Then you will see that we cannot find a straight line direction which is feasible 

from the point x E. But what we can do that we can form, we can get what are call the 

curvilinear directions. So, if you move along this curves we can return feasibility, but 

these are not the straight line directions. So, what we are interested in is getting the 

straight line directions d, such that x plus alpha d belongs to the set X for sufficiently 

small, alpha, positive alpha. 

So, we will not be interested in the directions like this. Now, remember that in this 

example, what we have consider is only a set of directions or what are indicated here are 

only subset of the directions which are possible at a given feasible point. Now, how do 

we get all possible feasible directions and then show them algebraically, because this 

was this is one way to show the directions geometrically. But then how do we represent 

these directions algebraically? That is what we want to see. 
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So, let F of x the script f x denote the set of feasible directions at x belong to the feasible 

set X. So, remember that the feasible directions are always associated with the feasible 

set X so for given feasible set X and a given point x which belong to the feasible set X, 

we can denote the set of feasible directions by F x. Now, if you recall the definition of a 

local minimum in addition to the feasible direction, we need those directions which 

along which if we make a movement we can decrease the objective function. So, those, 

those directions are called descent directions. And we have seen this descent directions 

when we studied unconstrained optimization problems. So, nonzero vector d in R n is 

said to be a descent direction at x. If there exists delta 2 which is the positive quantity 

such that f of x plus alpha d in less than f x for all alpha in the range 0 to delta 2.  

So, note that the descent directions is descent direction is always associated with the 

objective function, while in the definition of feasible directions you will not see any 

mention of the objective function, because of feasible directions are always associated 

with a constrained set and the descent directions are always associated with objective 

function which is to be optimized. In this case we want to minimize this objective 

function f of x, so the descent direction is associated with f. So, so let us denote by the 

script d in the set of feasible directions x belongs to x and as I said that the descent 

directions are always with respect to some objective function f. 
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Now, now we have seen that the contours of a typical objective function would look like 

this, these are the contours of the objective function. Now, let us assume that the 

objective function is differentiable. So, at a given point, so let us take a point. And, let us 

call this is x A, so let us call this is x A. Now, if the function is differentiable, we can 

find out the gradient of the function. And, let us assume that the gradient of the function 

is pointing in this direction. Now, we are seen earlier in when we studied unconstrained 

optimization that the gradient points in the direction where the function increases. So, so 

along this direction the function decreases. Now, we also saw earlier when we studied 

unconstrained optimization problems in that we take tangent plane. So, this is 

orthonormal to at direction then so if we look at this set, set of all directions which make 

an off choose angle with a gradient off at x A. So, if we make a movement along those 

directions then the function value decreases, so those are the descent directions and so 

we have seen this earlier. 
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So, now let us try to would this conditions in algebraic form, now to start with let us 

consider a problem where we want to minimize the function f of x subject to the any 

quality constrained of the type h j (x) less than or equal to 0. And, the equality 

constrained of the type e i x equal to 0 where x is any vector in in dimensional space. 

And let us consider the feasible set X defined using the constrained and x, we mentioned 

earlier that at a local minimum of x star of x, the function does not decrease by moving 

along feasible direction. 
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So, let us consider this problem and so we have a theorem which characterizes local 

minimum of this problem, so x is a nonempty set in R n and x star belong to x the 

feasible region is a local minimum off over x then the set of feasible directions and a set 

of descent directions they have empty intersection. So this is the very important result 

and this gives a necessary condition for the local minimum of given constrained 

optimization problem. So, let us look at the proof of this theorem, so let us assume that a 

x star is feasible and is a local minimum. Now, the proof will be given by the method of 

contradiction and for that we assume that there exists a nonzero d, such that that lies in 

the intersection of F x star and D x star. So, let us assume that the, such as D exist and 

that therefore, this set F x star intersection D x star is nonempty. 

Now, since d belongs to F x star the set of feasible directions. So, by the definition of the 

set of feasible directions, we can say that there exists delta 1 greater than 0 such that x 

star plus alpha d belongs to the set X for all alpha in the range 0 to delta 1. And similarly, 

one can use the definition of D x star to say that there exists delta 2 greater than 0 such 

that F of x star plus alpha d is less than f of x star for all, all alpha in the range 0 to delta 

2. So, there exists delta 1 such that direction d is feasible and there exists delta 2 such 

that the direction d is also the descent direction. Now, if you take a minimum of delta 1 

and delta 2. Then you can see that along that along a direction d as long as alpha e is in 

the range 0 to minimum of delta 1 and delta 2 x star plus alpha d, it was belongs to X and 

f of x star plus alpha d is less than f of x star. 

So, that means that there exists x in the neighborhood of alpha neighborhood of x star 

and which is we intersection that alpha neighborhood with x such that f of x is less than f 

of x star for every alpha in the range 0 to minimum of delta 1 and delta 2. And so that 

means that in the local neighborhood of x star we are able to find some x which is not 

equal to x star such that the value of the function at x is strictly less than the value of the 

function at f of x star, and that contradicts the fact that x star is a local minimum. And 

therefore, because of this contradiction, we cannot have the direction d which is in the 

intersection of the feasible set and the descent set. If x star is a local minimum so this 

contradicts our assumption that x star is a local minimum. 
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Now, first let us look at the way of characterizing on that this set of descent directions. 

And as I mentioned earlier that if we assume that the function is sufficiently smooth then 

the set of the descent directions can be characterize using the gradient of the objective 

function. So, let us consider any x in the feasible set X and assume that f is in C 2, in fact 

for current analysis we do not need f to be in the class of C 2 function, we just need class 

of f, f belongs to C 1 that is the class of continuously differentiable function. But later on 

when we move on to the second order condition, we will need this condition so I have 

assume that f is in the class of twice continuously differentiable functions. 

Now, we already know by the definition of directional derivative that gradient effect 

transpose d is nothing but limit is alpha tends to 0 on the positive side f of x plus alpha d 

minus f x by alpha. So, if this quantity is less than 0 then we can say that in the 

neighborhood of x where alpha is greater than 0 in a sufficiently small neighborhood of 

x. This numerator will be less than 0, so that is gradient effect transpose the less than 0, it 

implies f of x plus alpha d less than f x. And this means that, so this this will be true for 

sufficiently small positive alpha. And therefore, we can say that d is a descent direction 

and therefore, we can say that d belongs to descent D x. 

So, if we are able to find a direction d such that the direction, mention off choose angle 

with gradient effects then we can say that d is a descent direction. So, let us define set D 

tilde to be the set of all directions of d such that those directions make and acute angle 



with gradient of f of x so clearly D tilde x is a subset of D x. And therefore, we can say 

that x star is a local minimum if F of x star intersection D tilde x star is a null set or they 

do they have empty intersection. And as, as I mentioned earlier that. 
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So, if we look at this figure then this open cone, cone of directions these are the 

directions the set of d such that gradient f of x A transpose d is less than 0. So, this open 

cone uses the set of descent directions at x A for the function f so if you make a 

movement along any direction in this cone that will be a descent direction. 
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So, D tilde x is a way to characterize D x in terms of the gradient of the function, so we 

were able to convert the D x in the original condition by D tilde x as D tilde x is a subset 

of D x and moreover D tilde x can be written in terms of the gradient of f at a given point 

x. Now, so if you consider f of x star to be R n that means that every direction R n is 

locally feasible then x star belongs to x is a local minimum that implies that this set has 

to vanish, because if this set is R n. Then the D tilde x star should x star belong to x is a 

local minimum lice that D tilde x, x star should be a null set and that is the set of all 

descent set gradient effect star transposes less than 0 is a null set. 

And this will be possible when gradient effect star is equal to is a 0 vector. And this 

condition confirms with our unconstrained optimization, condition optimization 

problems where we discuss about the local minimum of unconstrained optimization 

problem. So, there we saw that x star is a local minimum implies that gradient effect star 

is equal to 0. So, so, we have seen one way to characterize the said d x star. Now, how do 

we characterize F of x star algebraically for a given constrained set X? So that is what we 

will be seen now. 
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So for the time being let us assume that we are interested in solving this problem where 

we want to minimize f of x subject to only the inequality constrained of the type h j x 

less than or equal to 0 and there are one such inequalities and x is a point in n 

dimensional space of real numbers. Now, again we assume that f and h j is belongs to C 



2 although for the present analysis it is enough that f and x j belongs to C1. But later on 

as I mention earlier that we will need the twice continuous differentiability, so will 

assume that the functions are twice continuously differentiable. Now, so let us denote x 

pi the set of all h j x less than or equal to 0 j going from 1 to l. 
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Now, let us consider a constrained set that we saw earlier the set X suppose a set X is so 

this is a set X. Now, let us consider a point now this constrained set is made up of says 3 

inequalities which are shown here. So, one inequality is introduced in this the other is 

denoted using this and then the third one is denoted is in the green color. So, we have 3 

inequalities which where use to form this constrained set and if we look at a point x A 

will see that the only two constrained are used to represent the point x A. So, this third 

constrained even if you perturb a little bit that is not going to change the representation 

of the point x A. So, in this case these two constraints are set to be active constraints as 

where as the point x A is concern, so if let us number this constraints so let us call this is 

1; this is 2 and this is 3. 

So, at x A, the constraints 1 and 3 are active. Now, if you take a point, so let us take a 

another point x B which is also feasible point, so at the point x B the constraints 2 is 

active, so even if we move the constraints 1 and 3 a little bit point x B is not affected 

while a slide perturbation of the constraints 1 and 3. And if we consider a point x C so let 

us consider a point x C which is in the interior of the set. 



Now, we will see that this point at this point x C no constraints or active that means that 

even if you perturbed any of this constraints a little bit, the point x is still remains 

feasible and does not get accepted. So, at a given point feasible point when we want to 

characterized the set X, the feasible set algebraically or when went to characterized the 

set of feasible directions at x A for the feasible set X algebraically, what we have to do 

that? We just have to consider what are called active constraints, sometimes they are also 

called binding constraints. 

So, if we consider another example, so suppose we, if we have a feasible set X. And let 

us numbered the constraints, so we have 5 inequality constraints and the set is found 

using the intersection of those 5 inequality constraints and if we consider a point. So, let 

us called this point as x D, we will see that the only the constraints 1 and 2 are active 

while if you consider a point x E only the constraints 4 is active as far else the point x is 

concerned and in the interior, if we consider a point x F no, no constraints are active. 

Or in other words we can define active constraints as those in constraints which are 

satisfied at a given point with equality. So, if you look at x A the constrained set 1 and 3 

are satisfied with equality, at x D the constraints 1 and 2 are satisfied with equality. And 

all the other constraints are inactive the constraints 3 4 and 5, because they are not 

satisfied with equality sign. And similarly, at x F, none of the constraints is active as the 

point accept satisfies these constraints with strict inequality. 
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So, let us define the set of active constraints A x to be the set of all j’s such that h j x is 

equal to 0, so though set of all constraints which are satisfied which equality. Now, here 

is a interesting results that for any feasible x, if you defined F tilde x will be the set of all 

directions d such that gradient h j x transpose d less than 0 that means that the directions 

which make an off choose angle with a gradient h j x for all j in the set A x the set of 

active constraints. 

So, if you collect all the active constraints and find out the set d, the set of directions 

which makes an off choose angle with all though gradients of the active constraints. So, 

let us denote that set by F tilde x and the results says that this F tilde x is a subset of F of 

x or is a set of set of a all feasible directions at x. So, the important thing about this result 

is that now we are able to get a set in terms of the gradient of the active constraints and 

that set concern to be a subset of F x. And this will this set F tilde x will be useful for 

writing over optimality condition. 
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So, let us look at the proof of this lemma, so the claim is that F tilde x is a subset of F of 

x. Now, what we have to show is that if we take a new vector d which is in a new F tilde 

x that vector d is also in the set F of x. So, let F tilde x be nonempty, so that there is this 

some direction non zero direction d such that d is in F tilde x. Now, since that its since 

gradient h j x transpose d is less than 0 so that is a d makes an off choose angle with the 

other gradients of the active constraints, we know that d is a descent direction for the 



function h j where j belongs to x we have seen this result to when we talked about the 

objective function. So similar results holds here that d is a descent direction for the for 

the function h j or in other words there exists some delta 1 greater than 0 such that h j of 

x plus alpha d is less than h j x for all j in the set of active constraints set x. And we 

know that since j belongs to A x h j x equal to 0 that means that h j of x plus alpha d is 

less than 0 which means that d is a, or these also a feasible direction. 

Now, if we consider all the, now although constraints which are not active at the current 

point x for them we can write that there exists some delta 3 greater than such that h j of x 

plus alpha d is less than 0 for all alpha in the range 0 to delta 3 and j not in the set of 

active constraints. So, for the set of active constraints we were able to find a direction d 

of we were able to find delta 1 such that h j of x plus alpha d is feasible and for those 

constraints which are not active, we were able to find delta 3 such that h j of x plus alpha 

d is less than 0. Now, if you take a minimum of delta 1 and delta 3 then you we can see 

that h j of x plus alpha d is less than 0 which means that it belongs to the feasible set. 

So, x plus alpha d belongs to the feasible set X for all alpha in the range 0 to minimum of 

delta 1 and delta 3 and that means that d is a feasible direction, because by definition. We 

have found some delta 2 which is greater than 0 such that x plus alpha d is a feasible 

point for all alpha in the range 0 to delta 2, delta 2 is nothing but we know delta 1 and 

delta 3. So, this important lemma let us characterize a feasible set by using the gradients 

of active constraints at a given point at a given feasible point. 
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Now, we can now combine this results which we saw earlier, so let us denote the 

constraints set by the capital by the set capital X. And for any feasible set X in the 

feasible set, we have already defined F tilde x to be the set of all the directions d such 

that those directions d make an off choose angle with the gradients of the active 

constraints and that F tilde x is a subset of F x. And similarly, D tilde x we defined it to 

be set of all directions d which make an off choose angle with a gradient f x and that the 

subset of the set of descent directions. 

And discuss an important result, and we saw earlier that x star in a feasible set is a local 

minimum implies f f x star. The feasible set at x star and the descent, the set of descent 

direction set X star they have a empty intersection and since a F tilde x is a subset of F x 

D tilde x is a subset of D x. We can write this as the condition where the, the sets F tilde 

x star and the sets D tilde x star they have a empty intersection because F tilde is a subset 

of f and D tilde is a subset of d. 

Now, the reason for doing this is that this condition is written in terms of the gradient of 

the objective function and the gradients of the active constraints and so it can be written 

in algebraic form. So, this is the result that we are interested in that x star which is 

feasible is the local minimum implies that F tilde x star intersection D tilde x star is a 

null set. Now, remember that this is only a necessary condition for local minimum, 

because will see later that there could be situations where F tilde x star is a null set or D 



tilde x star is a null set and which will automatically mean that this set is a null set, but 

that may not mean that x star is a local minimum, so this is just one necessary condition. 

And the utility of this condition depends on the constrain representation. So, this is a 

very important point and we will give some examples about that and this condition 

cannot be directly used for equality constraints problem say if you write the equality 

constraints as a set of inequality constraints problem. Now, so let us look at this point 

first that this is only a necessary condition. 

Now, suppose at, at a given feasible point x the gradient of the function vanishes so 

which means that if the gradient of a function vanishes, so gradient affect is 0. Then the 

set D tilde is a null set and if the set D tilde is null set then this set F tilde x intersection 

D tilde x is a null set. And that a does not guaranteed at x is a local minimum, so this is a 

very important point that needs to be remember. Now, the utility of the condition 

depends on the constraints representation, so let us look at the some example. 
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So, let us consider a problem minimize x 1 square plus x 2 square subject to x 1 plus x 2 

minus 1 cube is less than or equal to 0, x 1 greater than or equal to 0, x 2 greater than or 

equal to 0. Now, if we consider the feasible region, so we have x 1 and x 2 along the 

axis. And so this constraints does mean that x 1 plus x 2 minus 1 has to be less than or 

equal to 0, so that x cube is also less than or equal to 0. So, this constraints is represented 

using this and then a so this is the first constraints and let the second constraints is the x 1 



greater than or equal to 0, so it is this. And let the third constraints, so together this forms 

the constraints set. And now if we write this function of the problem is minimize f x 

subject to h 1 x less than or equal to 0, h 2 x less than or equal to 0 and h 3 x less than or 

equal to 0. 

Now, if you take any point, so let us take a point on this, so let this point be x. Now, at 

this point if you take gradient at h x 1 so let me call this point x A. So, gradient h 1 x is 

equal to 0, because this point satisfies x 1 plus x 2 minus 1 equal to 0 and the gradient of 

this quantity with respect to that will be a 0 vector. So, once we have a 0 vector if we 

start looking at the set of a feasible directions at x A, and then represent them using the 

said that we saw earlier. So, we saw that at given point x A the one of the gradients in 

fact the there was only 1 active constraints so that for that active constraints the gradient 

is 0. And therefore, the F tilde x will be a null set and that is clear from this figure. 

So, if you write F tilde x A is equal to set of all d’s such that gradient h 1 x A transpose d 

is less than 0 and since gradient of this active. Remember that at x A this is the only 

active constraints, the first constraints is only the active constraints and this is a null set. 

And therefore, F tilde x A intersection D tilde x A will be a null set. But if you look at 

this problem formulation, so if you look at this problem formulation what we are 

interested in is minimizing x 1 square plus x 2 square subject to this. So, you will see that 

this point the origin this is going to be our x star and certainly x A is not a local 

minimum, but suppose if we represent this constraints. 
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So, if we consider a same problem minimize x 1 square plus x 2 square subject to x 1 

plus x 2 minus 1 less than or equal to 0 and x 1 greater than or equal to 0 and x 2 greater 

than or equal to 0. But if you look at this problem formulation, so if you look at this 

problem formulation what we are interested in is minimizing x 1 square plus x 2 square 

subject to this. So, you will see that this point the origin this is going to be our x star and 

certainly x A is not a local minimum, but suppose if we represent this constraints. Now, 

again if we take the point x A, so this is going to be our feasible region. And if we take 

the point x A, so gradient h 1 x x A will be 1 1 and which is not j. So, the same feasible 

region if we represent it using a deferent constraints then we get a gradient vector which 

is a non-zero vector and this is different, this is unlike the previous case where we have 

the gradient vector to be 0. 
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So, remember that this is a 0 vector, so you will see that the same constraints said if it is 

represented in a different way. Then we could avoid the F tilde x A from not becoming a 

null set, so if you write the F tilde x A here. 

So, F tilde x A will be the set of all directions d such that gradient h 1 x A transpose d is 

less than 0. And this is nothing but the set of directions d such that d 1 plus d 2 is less 

than 0. And this set is not a null set, so we were able to get a F tilde x j which is not a 

null set and clearly we know that x A is not a local minimum of this problem. Now, 

another important point that 1 has to notice that this condition cannot directly be used for 

equality constraints problems and we will see that now. 
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So, if we minimize x 1 square plus x 2 square subject to x 1 plus x 2 equal to 1 this is our 

equality constraints problem. Now, this problem we can write this as minimize x 1 

square plus x 2 square subject to x 1 plus x 2 greater than or equal to 1 and x 1 plus x 2 

less than or equal to 1. Now, this constrain, we can write this as minus x 1 plus x 2 less 

than or equal to minus 1. So, so h 1 x less than or equal to 0 is a given is this constraints 

and h 2 x less than or equal to 0 is the constraints x 1 plus x 2 less than or equal to 1. 

Now, you will see that for a given feasible point if we take the gradient h 1 x transpose d 

less than 0 and gradient h 2 x transpose d less than 0 that set will be null set. So if we 

write a equality constraints in this form then we will always get F tilde x to be a null set. 

And so the any feasible point F tilde is becomes a null set and that does not guaranty that 

x is the local minimum. Now, will see more about this condition and how to write it in 

the actual algebraic form in terms of the gradients of f and then the gradient of the active 

constraints in the next class.  

Thank you  


