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Hello, welcome back to this series of lectures on numerical optimization. In the last few 

classes, we discussed about unconstrained optimization problems and some algorithms to 

solve those unconstrained optimization problem. Now, in practice many problems are 

constrained optimization problems; and we need to solve those constrained optimization 

problems using suitable methods. For example, we have looked at this problem, where 

we want to find out a box of minimum surface area which can accommodates certain 

volume. 
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So, if we take a box, let us assume that its length is l, breadth is b and the height is h. So, 

we are interested in finding the box of a minimum surface area which can accommodate 

a certain volume V. So, we can write this problem as minimize the surface area, surface 

area is 2 into l b plus b h plus l h. Now, this is the surface area and the constrained that 

we have is that it can accommodate, it should accommodate a certain volume V. So, l b h 

should equal to some volume V, and the variables here they are strictly positive 



quantities. So, we can say that l is greater than 0, b is greater than 0, h is greater than 0 

and the optimization variables are l b h. 

So, you will see that finding a box of minimum surface area which can accommodate a 

certain volume V of us a particular matter can be written as our constrained optimization 

problem. So, this is the, our objective function and there are various constrains, the first 

constrains is that the, it should accommodate the volume V. And then the next three 

constraints say that all the quantities or all the variables they are all strictly positive none 

of them can become 0 or negative. Let us look at some other problem. 
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So, suppose we want to move from one place to another place. So, let us call these points 

as A and B, so under the Euclidean norm one can find a straight line path which 

minimizes the distance between the two points A and B. Now, suppose there is one 

constraint that we have to follow. So, we want to visit this road which is given here, a 

non linear road and then go to the place B. 

Now, we want to find out a point say P let us call this point as point P. So, our aim is to 

move from A to P and then P to B. So, what we want to do is that we want to find out the 

point P on this curve such that the total distance travel which is the distance A P plus 

distance P B is minimized. So, let us assume that we are using the Euclidean distance. 

So, let us denote this curve by say H of x equal to 0. So, what we are interested in is to 

solve the following problem where we want to minimize the distance between A P plus 



distance between P B. Now, what are the constraint? The constraint is that the point P 

should belong to the curve H x equal to 0. So, the constraint is that the point P should 

belong to this curve H P. So, we are interested in finding out the point P, I have not 

written this problem formally, because we need to look at the coordinates of the point P. 

And then write the objective function and the constrained appropriately, but what this 

problem formulation essentially means is that we are interested in that point P, such that 

the distance between A P plus the distance between P B that is minimized where the 

point P lies on the curve H x equal to 0. 

So, like that in our daily life become across lot of problems which are constrained 

optimization problems. And it is important to study the behavior of this problems and 

develop some efficient algorithms to solve such problems. Now, many times this 

constrained optimization problems can be written as unconstrained optimization 

problems and then solved. And therefore, it was important to study unconstrained 

optimization problem, unconstrained optimization theory earlier, so that we are in a 

position to study the constrained optimization theory. 
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Now, general constrained optimization problem would look like this, so minimize f of x 

subject to x belongs to X. Now, as usual this f is objective function and this x; this is 

called feasible set or all this is also called constraint set. So, this is the typical 

constrained optimization problem. So, when this x is the n dimensional space of real 



numbers then when the capital X is n dimensional space of real numbers then this 

problem becomes unconstrained problem. Now, some of the typical constrained 

optimization problems that one comes across are the following. 
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So, one problem is that if you want minimize C transpose x subject to the constraint A x 

equal to b, x greater than or equal to 0 where A is a m by n matrix and without loss of 

generate you assume that rank of A is equal to m. So C is a n dimensional vector, b is a 

m dimensional vector and x is non negative. So, the objective function is to minimize C 

transpose x subject to the constraint that x equal to b, x greater or equal to 0. This is 

commonly known, known as linear programming problem, because the objective 

function is linear in the variable, the constraints are linear in the variables. So, this is the 

linear programming problem. 

So, later on we will see how to solve this kinds of problems, because they are the very 

important part of optimization problems and they are exists very good methods to solve 

them. So, in this course some time later, we will study how to solve this kinds of 

problems, so this is called a linear programming problem. Again you will see that this is 

the constrained optimization problem. 
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Let us look at another example, minimize half of x transpose H x plus C transpose x 

subject to A x less than or equal to b x greater or equal to 0 where H is symmetric and 

positive definite matrix. And let us assume that A is m by n matrix and rank of A is equal 

to m. So, the objective function here is a quadratic function the constraints of linear, so 

many problems in practice can be pause as a problems where the objective function is 

quadratic and the constraints are linear in the variables. So, here the variable is x and we 

want to solve this kind of problem. So, this set of constraints say x less than or equal to B 

and x greater than or equal to 0 in this case they from the constraint set so which we have 

called it as capital X, so this is our constraint set. 

So, you will see that lots of problem that we come across in practice are constrained 

optimization problems. And therefore, it is important to study the nature of solution of 

this constrained optimization problems as well as some algorithms to solve this 

constrained optimization problems. So, in the next few lectures, we are going to 

concentrate more on the constrained optimization problems, the nature of the solution 

how does one get the solution. 
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Now, if we recall in the unconstraint problem case where we solve this problem, we saw 

that the necessary condition for extra to be a local mean is that the gradient of f at x star 

0. We assume that f is smooth so what I mean by smooth is that second derivative exists 

and it is continuous at every x in the domain. So, the necessary conditions for the local 

minimum of this problem are that the gradient of this function should be 0. And the 

sufficient condition is that the hessian matrix should be positive definite, positive semi 

definite. 

Now, if the hessian matrix is positive definite then we say that at that point x star where 

the hessian matrix is positive definite and where the gradient of the function vanishes we 

say that that point is the strict local minimum. Now, we are looking at a different 

problem where we want to minimize f of x subject to x belongs to X. Now, what kinds of 

optimality conditions exists for this problem? So, remember that here we said that the 

gradient of the function should vanish. Now, that condition alone may not be enough for 

this, because now we are working with some constraint. And can we arrive at a 

condition, which is somewhat similar to that first order necessary condition for a 

unconstrained optimization problem. And how do we make use of this set x in order to 

write that our optimization condition for a constrained problem like this and that is the 

part of the next few lectures. 
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So, as I said that constrained optimization are very important and let us start looking at a 

general constrained optimization problem. Now, a typical constrained optimization 

problem looks like this, where we want to minimize the objective function f of x subject 

to some constraints of the type h j (x) less than or equal to 0. So, these are the inequality 

constraints then there could be some equality constraints e i (x) equal to 0. So, there are l 

inequality constraints m equality constraints and further x belongs to some set x. So, all 

these together they form the constraint set or the feasible set of this problem, sometimes 

it is also called the feasible region. 

So, the inequality constraints, in this course we are going to denote it by h j and all h j’s 

are functions from R n to R and all equality constraints we are going to denote by e i 

where e i is a function from R n to R. Now, we will a show assume that this f h j and e i’s 

are all smooth. So, what I mean by smoothness is that they are the second derivatives of 

continuous at every point in the domain, they exist the second derivatives exists and they 

are continuous at every point in the domain. So, we will make this essential throughout, 

so that it is easy to write down the optimality condition in terms of the derivatives at a 

later point of time. 

Now, the feasible set x is basically the set of points in the set S which satisfy the 

constraints h j (x) less than or equal to 0 and e i (x) equal to 0 for all j is going from 1 to l 

and i is going from 1 to m. So, this is going to be the feasible set of our constrained 



optimization problem. In many problems this S is nothing but R n and therefore, we can 

replace S by R n here and simply write it as x is equal to all x belong to R n such h j (x) 

less than or equal to 0 and e i (x) equal to 0. 

So, our problem is to minimize f of x subject to x belongs to X. So, this is a compact way 

of describing the constrained optimization problem which we are looking at. Now, let us 

assume that x is nonempty set in R n, because if x is empty then we really cannot solve 

this problem. And suppose x is singleton then that point the singleton point in the set x 

will be an optimal point. So, let us assume that not only that x is nonempty, but x is also 

not singleton. 
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Now, similar to the constraint the similar to the unconstrained optimization problems, we 

have to see the notion local and global minima in the context of constrained optimization 

problems. So, remember that we are trying solve the problem minimize f (x) subject to x 

belongs to the capital set x or x belongs to the feasible region. So, a point x star in the 

feasible region is said to be a global minimum point of f over x if the value of f (x) is 

greater than or equal to f of x star of all x in the feasible region and if this inequality 

holds strictly then the point x star is called strict global minimum. So that is if f of x is 

greater than f of x star for all x in x where x is not equal to x star then x star is said to be 

a strict global minimum point of f over x. Now as is the case of unconstrained 

optimization problems is a global minimum or are to obtain. 



So, one looks at the local minima, so one can define the local minima in the following 

way, so a point x star which is feasible said to be a local minimum point if there exists a 

neighborhood of x star or there are exists a epsilon neighborhood of x star such that f of 

x is greater or equal to x star for all x in the epsilon neighborhood. And again when this 

inequality is strict we called it as a strict local minimum. Now, let us see some examples 

of the local minima and the global minima. 
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So, let us consider a problem where this is x suppose this is the origin and from the y 

axis we will plot x. So, this is f of x; this is our origin and suppose that the function that 

we have is in the interval say a to b and the function is like this. So, although the function 

may be defined over the entire real line we are only interested in the closed interval a, b. 

So, what we are interested in is solving this problem minimize f of x subject to x belongs 

to a b. Now, now let us look at the global minimum first, now if you just concentrate on 

this part of the function, now this part of the domain a, b of the function. So, we are not 

interested really in this part what happens beyond the other points beyond the closed 

interval a, b. So, if, if you look at the definition of the global minimum which says that f 

of x star should be less than or equal to f of x for all x in the constraint set of the feasible 

set and remember that x star also should belong to the constraint set. 

So, by that definition this point; this point becomes a global minima. So, in the constraint 

set there is no other x which has a value functional value which is lesser than this so this 



is a global minimum. Now if you look at the definition of a local global minima local 

minimum, we will see that those are the points where in the epsilon neighborhood of 

those points, if you look at all the feasible points in the neighborhood the functional 

value is at least the functional value at the given point. 

So, for example, so this point is also a also a local minimum. Now, if you look at this 

point x, x equal to a, you will see that in the neighborhood the functional value is 

increasing, so this is also a local minimum and if you look at this point. So, in the 

neighborhood, you will see that the functional value does not increase or in the 

neighborhood the functional value does not decrease, so this is also is a candidate for a 

local minimum. So, the functional value is at least the value at this point, so, so this point 

is the local minimum. So, there are 3 local minima for this one is x equal to a then this 

point and this point these are the 3 local minima, because in the neighborhood the 

function does not decrease there exists at least some epsilon neighborhood around these 

points where the functional value does not decrease. So, these are the local minima, now 

this point is also global minimum with respect to the constraint set a, b. 

Now, if you look at these 2 points here the functional value locally does not decrease but 

does not increase either it remains constant. So, this is a weak local minimum, so the 

corresponding point, so this point is also a weak local minimum, so where the functional 

value does not increase or decrease but remains constant in the epsilon neighborhood. 

So, these are different characteristics of the local or the global minima. Now, as is the 

case in case any optimization problem we are interested in finding the global minimum 

of our, the optimization problem but that is difficult to find, because of the same reasons 

that we discuss for an unconstrained problem. So, we will be interested in looking at the 

local minima their characterizations and how do we design efficient algorithms to find 

out the global minima. 

Now, you will also notice that the first order necessary conditions that we discuss for a 

unconstrained optimization problem may not always hold at local minima. So, at this 

point the gradient of the function vanishes. So, this is fine; this also this point is also fine, 

but if you look at this local minimum if you take the one directional derivative of the 

function at this point it is not 0. So, you will see that the first order conditions that we 

studied for unconstrained optimization problem cannot be directly used to characterize 

the local minima of a constrained optimization problem. 



So, we need some extra conditions to characterize the local minima of constrained 

optimization problems. Now, under suitable conditions the first order necessary 

conditions for constrained optimization problems are also sufficient and those problems 

are called convex programming problems. 
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Now, in the unconstraint case we saw that if we want to minimize a convex function over 

the set R n then the first order necessary conditions are also sufficient. Now, similar 

result holds in the case of convex programming problem where we are writing a general 

constrained optimization problem, but then the functions which are mentioned here the 

objective function as a there is a constraints they have certain characteristics and because 

of which these problem are called convex programming problem. 

So, the objective function f (x) is a convex function. So, the objective function that you 

want to minimize is a convex function the e i (x) equal to 0 is affine constraint that 

means e i (x) is of the form a i transpose x plus b i for all i is going from 1 to m. So, all 

the equality constraints are of, of the type a i transpose x plus b i equal to 0 or they are 

affine constraints then the h j (x) less than or equal to 0 constraint or the inequality 

constraint is such that the function h j (x) is a convex function and further S is a convex 

set. So, now if you look at this constraints h j (x) less than or equal to 0 where h j (x) is 

the convex is a convex function. So, we have one such constraints so in intersection of 



these, so h j (x) the set of all x’s that h 1 x less than or equal to 0 where h x h 1 x is a 

convex function is a convex set. 

Now, we have one such constraints. So, the intersection of all convex sets is a convex set 

then the intersection of that with affine set is also a convex set and the intersection of this 

convex set with another convex set is a con is a convex set. So, we have studied this 

property of convex sets earlier that the intersection of any collection of convex sets is a 

convex set. So, the constraint set is a convex set the objective function to be minimized 

is a convex function and such problems are called convex programming problems. 

Sometimes, when one wants to maximize maximize the quantity of function that problem 

also subject to convex set that problem also can be written as minimization of a convex 

function, because maximization of a convex function is same as the minimization of the 

corresponding convex function so such problems are called convex programming 

problems. And for such problems every local minimum is a global minimum and there 

are no, the, the set of global minima form a convex set. 
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So, if you want to minimize a convex function, now you will see that suppose we want to 

minimize it with respect to the set a, b. So, you will see that this is a so this point is a 

global minimum and if you look at another convex function. So, let us look at another 

convex function and we want to minimize it with respect to the set a, b. Now, you will 

see that all these are the. So, this entire set of points, so this entire set of points they are 

global minima. So, you will see that they form a convex set, so not only that the glob 

there no question of local minima in the convex programming problem, in fact the all the 

global minima which are possible they form a convex set. 



So, this is an important property of a convex programming problems. And further, as 

later on we will see that the first order necessary conditions for of a next programming 

problems are sufficient under certain conditions. So, we will look at those things 

sometime later, so these are some important properties of convex programming problems 

and later on we will see this problems in detail, 

(Refer Slide Time: 35:32) 

 

(Refer Slide Time: 36:19) 

 

Now, let us look at the problem minimize a f (x) of that 2 x belongs to x which is a 

compact form of a constrained optimization problem where x is a feasible set. Now, 



there are different ways of solving this problem and one of the ways is to converted to an 

unconstrained problem or reformulation to an unconstrained problem. So, let us look at a 

some ways of doing that. So, suppose that we have to solve the following problem 

minimize f of x 1 x 2 subject to the constraint that x 1 greater than or equal to 0. Now, 

here there are a constraints on the variable x 1. So, what one can do is that since x 1 is 

going to be non negative, we can replace this constraint using some new variable of i 

defining some new variable. So, let us define y 1 square is equal to x 1, so since y 1 

square is always a non negative quantity that means that x 1 will also be a non negative 

quantity. And then we can write this problem as minimize f of y 1 square x 2 and now 

the variable is y 1 and x 2. So, you will see that by replacing a non negative variable by 

another variable of the square of another variable y 1, we have converted the given 

problem into an unconstrained problem where the variable is now y 1 and x 2. So, in the 

earlier case the variable was x 1 and x 2, so we written x 2 as it is, but then replaced x 1 

by y 1 square in the objective function and that become the unconstrained optimization 

problem. 
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Now, sometimes we may want to solve the following problem minimize f of x 1 x 2 

subject to constraint that x 1 is greater than 0. So, now we are interested in those x 1’s 

which are strictly positive, so here one can use a new variable. So, suppose if you define 

y, y 1 such that e to the power y 1 is equal to x 1. So, we have defined new variable y 

and we know that e to the power y 1 is always a positive quantity. And therefore, in this 



objective function if we replaced x 1 by e to the power y 1. And then treat y 1 as a 

variable along with x 2 then we have converted this problem to of conse to an 

unconstrained optimization problem and we know different ways to solve unconstrained 

optimization problems. 

So, many a times it may be a good idea to see whether a problem can be converted to and 

unconstrained problem although there is no rule that we always have to convert an 

unconstrained optimization problem to a constrained optimization problem. Sometimes 

the constrained pro optimization problems are easier to solve compare to unconstrained 

optimization problems. 
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Now, one can also have a problem which is of the type say minimize f of x 1 x 2 subject 

to the constraint that l less than or equal to x 1 less than or equal to u. Now, such 

problems also can be converted by defining a new variable. See for example, one can use 

some functions which very over the certain range for, for example, one can write x 1 as 

say l plus u minus l sin square y 1. Now, sin square y 1 takes the values in the range 0 to 

1, so when sin square y 1 is 0 we have x 1 equal to l and when sin square y 1 equal 1, we 

have x 1 equal to u so and since sin square y 1 varies in the range 0 to 1, we have x 1 

varying in the interval l to u and y 1 can be any real number. So, you will see that by 

using such transformations the original problem can be converted to an unconstrained 

optimization problem. Note that this transformations are not unique one can always come 



up with some new transformations depending upon the problem. Now, as I mentioned 

earlier that one has to be very careful when one solves this constrained optimization 

problems by reformulating by them is as unconstrained optimization problems. 
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So, let us suppose consider case where we want to minimize x 1 plus x 2 subject to the 

constraint x 1 square plus x 2 square is equal to 1. Now, let us see the problem 

graphically, so we have x 1 and x 2 as the 2 axis and the constraint set is a circle with 

centre 0 and radius 1 and the objective function is x 1 plus x 2 is equal to constant. So, 

this is the, so this is the objective function x 1 plus x 2 is equal to constant. Now, we 

want to minimize this objective function so you will see that the minimum is achieved at 

this point so, this point is the point. So, this is x 1 star x 2 star, so this is the point at 

which the minimum is achieve. So, you will see that this line the minimum occurs at this 

point and this is our solution of this problem. 
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Now, now let us look at this problem and then converted to an unconstrained 

optimization problem. So, we have minimize x 1 plus x 2 subject to x 1 square plus x 2 

square is equal to 1. Now, if you look at the constraint x 1 square plus x 2 square is equal 

to 1, what this gives us is that x 2 square is equal to 1 minus x 1 square and this implies 

that x 2 is equal to plus or minus square root of 1 minus x 1 square. So, there are 2 

possibilities; one is that x 2 is square root of 1 minus x 1 square and other possibility is 

the negative of the square root of 1 minus x 1 square. 

So, suppose you chose one, one of this possibilities so let us take, so let x 2 to be minus 

root of 1 minus x 1 square, so when we minimize x 1 x 2. So, this was our earlier 

problem and we use this value of x 2 in this, so we this value of x 2 was there are using 

this constraint, so really now do not have to worry about the constraints. So, let us plug 

in this value of x 2 in this and what we get is minimize x 1 minus square root 1 minus x 1 

square with respect to x 1. So, you will see that this is now an unconstrained 

optimization problem. So, this was constrained problem and this is now un constrained 

problem. 
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Now, we are lead in a how to solve this unconstrained optimization problems. So, we 

take the derivative of this objective function equated to 0 and see the candidates for the 

local minima. Now, if we take the derivative of this objective function what we get is 

that 1. So, the derivative of root of 1 minus x square is 1 over 2 root 1 minus x 1 square 

into minus 2 x 1. So, what we have is plus 2 x 1 that is equal to 0 and this quantities get 

canceled and what we get is x 1 to be minus square root of 1 minus x 1 square and this 

implies that x 1 to be minus 1 over root 2. And if we substitute this value of x 1 in this 

formula we get x 2 is equal to minus 1 over root 2 and if you look at the minimum of this 

objective function. So, the x 1 star x 2 star that we get here is minus 1 over root 2 minus 

1 over root 2, remember that this is our origin and so the minimum lies in the third 

quadrant and this is our minimum. 



(Refer Slide Time: 44:42) 

 

(Refer Slide Time: 49:35) 

 

Now, so we use this value of x 2 to be minus root of 1 minus x 1 square to write it as a 

unconstrained optimization problem and then solve it. Now, the same problem, minimize 

x 1 plus x 2 subject to x 1 square plus x 2 square equal to 1. Now, we use x 2 to be plus 

square root of 1 minus x 1 square. And therefore, the given problem becomes, so this 

was the constraint problem and we write it as an unconstrained problem as minimize x 1 

plus square root of 1 minus x 1 square with respect to x 1, so this becomes our 

unconstrained optimization problem. 
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So, again taking the derivatives, so what we get is 1 minus x 1 by root of 1 minus x 1 

square equal to 0 which implies x 1 is equal to root of 1 minus x 1 square, and this 

implies that x 1 is equal to 1 over root 2 and if you plug in this value of x 1 here what we 

get is x 2 to be 1 over root 2. So, now let us look at this point 1 by root 2 1 by root 2 in 

the earlier figure. So, you will see that this point; this point is 1 over root 2, 1 over root 2 

transpose and this in fact is a. So, you will see that this in fact is a local maximum. So, 

when we transform the given unconstrained problem given constrained problem to an 

unconstrained problem, we have to be very careful, because you saw that in this case 

when we 2 case 2 be the minus root of 1 minus x 1 square we got the actual local 

minimum. And if we used x 2 to be plus root of 1 minus x 1 square and plugged in that 

value here we got the local maximum. So, whenever we do any transformation of our 

constrained optimization problem to an unconstrained problem optimization problem we 

have to be very careful. 
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So, the reformulation of to an unconstrained problem is always possible, but that needs 

to be done with some care the other possibilities to solve the constrained problem 

directly. And it is this way of solving the constrained optimization problem that we are 

going to concentrate of all. 
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So, let us consider this compact way of writing the constrained optimization problem and 

as in the case of unconstrained optimization problem, we are interested in deriving an 

iterative optimization algorithm to solve this problem. And that optimization algorithm it 



generates a sequence x k which converges to a local minimum. Now, one has to be very 

careful when one writes this that this x k its always assume that this x k always belongs 

to the set x. So, it is not a any arbitrary sequence x k that we want to generate, but we 

want to generate the sequence which lies in the feasible set x. 

So, typical constrained minimization algorithm is given here the reason why I said that 

this is typically is that there could be some algorithms which not necessarily insure that x 

k lies inside the set x. But when the algorithm converges to a local minimum the point 

convert the point of converges will be in the set x. So, those are the different types of 

algorithms, but the typical algorithm would look like this where we initialize x 0 in the 

set x set the iteration counter k to 0. And then while some stopping condition is not 

satisfied at x k, we find out x k plus 1 in x k a in the set feasible set x such that the 

function value decreases then increase the iteration counter. And the procedure is 

repeated till one gets a point x star at which at which point the stopping condition is 

satisfied and that x star is a local minimum of f (x) over the set x. 

So, you will see that in this typical algorithm of the conceptual algorithm for a 

constrained minimization problem every, at every point or at every iteration the point x 

lies in the feasible set x. So, the initial point itself is in the set x and at every iteration you 

get x k plus 1 in the feasible set x and such that the value of the function decreases. Now, 

there are 2 important points that one needs to consider here is that what is the stopping 

condition that needs to be satisfied at x k? In the case unconstrained optimization 

problem, we said that the norm of the gradient should be less than or equal to some 

epsilon can be one of the stopping conditions. Now, what are the analogous conditions in 

the case of constrained optimization problem? 

Now, secondly how do we get x k plus 1 in x, the feasible set x, such that the function 

value decreases. So, these are two important points that one needs to consider when one 

writes a constrained optimization algorithm. And in the next few lectures, we will look at 

what are the stopping conditions for a constrained optimization problem and how do we 

find the new points x k plus 1? Now, there exists different types of algorithms to solve 

constrained optimization problems and depending upon the application one has to choose 

one of this algorithms. So, we will study those things in the next few lectures. 

Thank you. 


