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Welcome back to this series of lecturers on optimization. So, in the last class, we started 

studying about conjugate directions and we saw some of the properties of conjugate 

directions. So in today’s class, we will disuss about expanding subspace theorem, and the 

use of conjugate gradient method to quadratic as well as non-quadratic functions. So let 

us first consider the quadratic function, which is to be optimized. So, let the function to 

be optimize be half x transpose H x plus c transpose x, where H is a symmetric positive 

definite matrix. And let us assume that we have n conjugate directions d 0 to d n minus 

1, and we already saw in the last class that these directions which are H conjugate are 

linearly independent. So they form, basis for n-dimensional space. 

Now, let us take the first k vectors d 0 to d k minus 1, and since they are independent 

they will form a basis of a k-dimensional space, which is a subspace of array. So, let us 

denote by B k that subspace with of R a which is spanned by d 0 to d k minus 1. Now, 

vector d k is independent of this, so clearly the space spanned by the k vectors d 0 to d k 



minus 1 is a subset of the subspace spanned by k plus 1 vectors d 0 to d k, because d 0 to 

d k are linearly independent. 

Now, let us take any arbitrary point in the n-dimensional space, and will denote by 

denote x k plus 1 by x k plus alpha k d k asusual, where alpha k is obtained by doing the 

exact line search that is alpha k is optimum minimizing the function f of x k plus alpha d 

k with respect to alpha. Now, x k and d k are known and alpha is a variable here and the 

value of alpha that gives the minimum will be denoted by alpha k. Now, under these 

conditions that d 0 to d n minus 1 are independent, now the claim is that then we find x k 

as by using the conjugate direction method, the minimum value of f of x in the space, 

spanned by x 0 plus d k, that is nothing but x k or in other words. 
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So, suppose, we have a point x 0 from which we start, we get a direction which is say d 0 

and then we get a point which is x 1 on this direction by doing the line search. And then 

we have a direction d 1 along which we do again line search, to get a point x 2. Now, the 

important point is that, d 0 and d 1 are independent, so they will span a two-dimensional 

space. So this is two-dimensional space spanned by d 0 and d 1, and now if we 

considered g 2, the gradient direction at x 2. Now, g 2 will be perpendicular to the space 

spanned by d 0 and d 1 and containing x 0, so this is the space which contains x 0 plus B 

2. 



So, the space containing x 0, and the space spanned by d 0 and d 1 which are linearly 

independent, now the expanding subspace theorem says that the direction g 2 that you 

get at x 2 is orthogonal to this space. Now, if we choose the direction d 2, which is in the 

which is along the or which is the combination of g 2 and the previous directions. Then 

what happens is that when we do the minimization of f of x in the now three-dimensional 

space spanned by d 0 d 1 and B 2. Then the claim is that, we will have got the minimum 

of f x with respect to the three-dimensional space d 0 d 1 and d 2, and if we keep on 

repeating this, for n steps. Then we will have found the minimum of f of x with respect 

to the n-dimensional space and that is what we will see now.  

So, the claim is that, x k that we get is the minimum of f of x subject to the constrained 

that x belongs to the space spanned by d 0 to d k minus 1, and the space containing x 

naught. Now, remember that x naught is any arbitrary point, so it really does not matter 

what our x naught is as long as we get the conjugate directions, then we can say that the 

x k that we get is the minimum of f of x subject to this space. And if we keep on 

repeating this then finally, what happenses that at the end of any tritions we will have 

found x n which will be equal to x star. 
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So, let us true this thing first, now we know that alpha k is obtained using exact line 

search. So, this is the one-dimensional optimization problem, and we know that the way 

to solve it is that take the gradient of this function and equated to 0, because it is one-



dimensional optimation problem. And note that f is also convex quadratic functions in 

this case. So at the new point, the gradient of, of the function at a new point is 

perpendicular to d k. 

And therefore, we can say that g k plus 1 transpose d k is equal to 0, for all k going from 

0 to n minus 1, so or in other words g k plus 1 is perpendicular to d k. So in our previous 

example g 2 will be perpendicular to d 1, but the claim is that g 2 will be not only 

perpendicular to d 1. But also, d 0 or in general g k will be perpendicular to d 0 to d k 

minus 1 that is the claim, and let us see how to show that. So, now, let us look at a 

general step where x k is equal to x k minus 1, plus alpha k minus 1 d k minus 1 and x k. 

Therefore, can be written as some of x j and sigma alpha i d i, i going from j to k minus 

1. So x k can be written in terms of x j and the linear sum of the remaining conjugate 

vectors d i. Now, now if we premultiply both sides by H and add c, so what we get is H x 

k plus c, that will be equal to H x j plus c plus sigma i going from j to k minus 1 alpha i 

H d i. 

So note that, we want to find out what happens to g k plus 1 transpose d j for any j which 

is less than k. We know the g k plus 1 transpose d k is 0, or g k plus 1 transpose d j is 

equal to 0 when j is equal to k. But what happens when j is less than k, and that is why 

we do this multiplication so that now we can treat this as a gradient of the objective 

function. Note that, we are working with the quadratic function of the type f of x is equal 

to half x transpose H x plus c transpose x. So, these quantity denotes the gradient of the 

objective function at x k, and this quantity denotes the gradient of the objective function 

at x j, so we can write g k is equal to g j plus sigma alpha i H d i. And therefore, now we 

want to c what happens to g k transpose d j, so let us multiply both sides by take the dot 

product of both sides with respect to d j minus 1. So g k transpose d j minus 1 is equal to 

g j transpose d j minus 1 plus sigma alpha i d i transpose H d j minus 1. 

Now, g j transpose d j minus 1 is equal to 0, because of this result. Here we have shown 

that g k plus 1 transpose d k is equal to 0. So similarly, g j transpose d j minus 1 is equal 

to 0, so this quantity is 0 and now what about this quantity? So you will see that the ds 

are the conjugate directions so d i transpose H d j minus 1, where i goes from j to k 

minus 1. So certainly, none of the i is going to take the valve g j minus 1, so all these 

quantities with respect to all i is d i transpose H d j minus 1 will be 0. 



So together this whole quantity will be 0, and this will be true for any j. So therefore, 

what we have is g k transpose d j is equal to 0 for all j going from 0 to k minus 1. So, 

here were shown that g k transpose d j minus 1 is equal to 0 for all j, and from this we 

know that g k transpose d k minus 1 also equal to 0. So, in other words, what we have 

shown is that g k is perpendicular to all the d j j going from 0 to k minus 1, or in other 

words g k is perpendicular to the space spanned by d 0 to d k minus 1 and that space is 

nothing but B k. And if we consider the, space containing B k as space spanned by d 0 to 

d k minus 1 that is B k that contains x naught, then g k will be perpendicular to that 

entire space. So this is a interesting observation, and therefore we can say that g k is 

perpendicular to B k. 
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Now, again let us go back to the our earlier alpha determination of alpha j using exact 

line search. And that it shown here where we want to find alpha j by minimizing f of x j 

plus alpha d j with respect to alpha. Now, what we want to show is that, f of x what we 

want to show is that, now if we minimize f of x subject to the consraint that x belongs to 

this space, then that is nothing but x k. Or in other words, so x 2 here is the minimum of f 

of x, subject to the this space which is given by x 0 plus B 2. And now suppose if you 

find the direction d 3 using g 2 and other the d 0 and d 1, such that d 3 is d 2 is H 

conjugate to d 0 and H conjugate to d 1. 



Then, when we find the point x 3 that point x 3 will be the minimum of f of x in the 

space, which contains x 0 and spanned by d 0 d 1 and d 2, so that is going to be our next 

claim. So let us see how to do that, now because of the exact line search we know that f 

of x j plus alpha j d j is less than or equal to f of x j plus mu j d j when mu j belongs to R. 

This is because of the exact line search that along the line, the value of the function at x j 

plus alpha j d j will be always less than or equal to the value of the function at any point 

on the line x j plus mu j d j where mu j belongs to R. And since the function f is 

quadratic, we can use the Talyor series to write f of x as to write the or to expand f of x j 

plus alpha j 2 gradient of f of j transpose d j plus half alpha j square d j transpose H d j. 

And that will be less then is equal to similar expansion of f, then using the Taylor series, 

so we can write this for all mu js belong to R. 

So, what we know is that, along one direction, the function value is minimum at a 

particular point. So, if we consider if we start from x 0 and take d 0 as the direction x 1 is 

the minimum is x 1 is the point at which the function attends the minimum value. So as 

far as this direction is concerned no other point in this direction has a function value 

which is greater than which is strictly less than f of x 1. Now, the same thing holds here 

also, that if we start from x 1 and take this direction now no other point in this direction 

has a function value which is strictly less than f of x 2. So, this is true for one-

dimensional case, but what is the guarantee that the x 2 that we here is actually the 

minimum of f in the space spanned by d 0 and d 1, and that is what we want to show. 

Now, what we need to show is that f of x k is less than or equal to f of x for all x in the 

space spanned by d 0 to d k minus 1 and that space containing x naught. 

So, this is what we want to prove because that is our claim, so that means what we want 

to show if we write x k as x 0 plus sigma alpha j d j j going from 0 to k minus 1. 

Remember that these alpha j is are obtained using the line search in the respective 

directions d j and that quantity, we want to show that that quantity is less than or equal to 

f of x. Now, any general x in this space can be written as x 0 plus sigma mu j d j, where d 

j is the basis of this k-dimensional space j going from 0 to k minus 1 and muj is a real 

number so this is what we want to show. Now, if we expand this using Taylor series, 

because this is a quadratic function, what we can do is that we can write this as, f of the x 

0 plus sigma alpha j g 0 transpose d j plus half alpha j squire d j transpose H d j. 



Now, let us compare these 2 quantities, so suppose here, we write, we combine all the j is 

accmulated so far. So, we take the sum as, sigma j going from 0 to k minus 1 here and 

similarly, here and then combine these 2 quantities then we see that there is a difference 

of these 2 quantities, so here we have d j transpose d j and here we have g 0 transpose d j. 

Now, suppose we show that d j transpose d j is nothing but g 0 transpose d j then we can 

replace this quantity by g 0 transpose d j and then cancel f of x j from both sides and add 

f of x 0 on both sides and then what we get is this quantity? So what we need to show is 

that g 0 transpose d j should be equal to d j transpose d j. So, in other words, the dot 

product of g j and d j should be same as dot product of g 0 and d j, and if that holds let us 

see what happens. So suppose g j transpose d j is nothing but g 0 transpose d j remember 

that we had got this inquality earlier. 
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So, this is the inequality that we had got by doing line search along the direction d j. 

Now, suppose this holds, then what we can do is that we can write this quantity as so the 

f of x j gets cancelled. And we can write this as alpha j g 0 transpose d j this quantity 

remains the same is less than or equal to mu j g 0 transposed d j so the g j transpose d j in 

either side is replaced by g 0 transpose d j, and the reason for doing it is that then it we 

are more closed to the the desired thing. 

Now, we just add f of x 0 on both sides, and then some over all j is. So if we add f of x 0 

on both sides and some over j going from 0 to k minus, because for each j this inquality 



holds. So if we sum them up, then what we get is f of x 0 plus sigma j going from to k 

minus 1 alpha j d j less than or equal to f of x 0 plus sigma j going from 0 to k minus 1 

mu j d j. So, in other words, what we have shown is that at the end of k iterations, we 

will have reach the point x k and that f of x k is less than or equal to f of x for any x in 

that k-dimensional space containing x naught and spanned by d 0 to d k minus 1. So this 

is a very important observation, that f of x k is less than or equal to f of x for all x 0 for 

all x belong in the space x 0 plus B k. So all these was possible, because of the fact that g 

j transpose d j equal to g 0 transpose d j, now we want to see whether this really holds or 

not. 
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So, let us now show that g j transposed d j is equal to g 0 transposed d j, now consider 

any point x j which can be written as x 0 plus sigma alpha i d I, so which can be written 

as a point in j minus j-dimensional space spanned by g 0 to d j minus 1 and containing x 

0. Now, again we want to show the relationship between g j transpose g j d j and g 0. So, 

we we need a gradient information, so we premultiply troughout by H and add c. So, the 

so what we will get is the gradient of f at x j on the left hand side, and this is the gradient 

of f at x 0, so that means g j is equal to g 0 plus sigma alpha i H d i. Now, so what we 

want to do is the that want to show what happens g g j transpose d j so g j transpose d j is 

equal to g 0 transpose d j plus sigma alpha i d i transpose H d j. 



So, now you will see that, the i where is from 0 to j minus 1, so d j transpose H d i or d i 

transpose H d j will be equal to 0, because these are H conjugate directions. So, this 

entire quantity becomes 0 and therefore, what we get is g j transpose d j is equal to g 0 

transpose d j. And because of that, we can say that if this holds then we can write g j 

transpose d j to be g 0 transpose d j and then this holds for all j so sum them up. Then we 

get this quantity then add f of x 0 on both sides the inequality does not change the 

direction. And therefore, we can say that f of x k is clearly less than or equal to f of x, for 

all x in the space x 0 plus B k. Now, if you repeat this step n times, at the end of n 

iterations we will have got the n conjugate directions d 0 to d n minus 1. And we know 

that they are linearly independent so at the end of n iterations whatever x n that we get 

will be, the minimum of the objective function. 
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So, we have this expanding subspace theorem, if we consider the problem to minimize f 

of x to be half x transpose H x plus c transpose x, where H is a symmetric positive 

definite matrix. And suppose d 0 to d n minus 1 H conjugate directions, so which clearly 

from the basis R n and x 0 is any initial point then and if alpha k is chosen using exact 

line search and x k plus 1 is said to x k plus alpha k d k. Then what we have is, g k 

transpose d j is equal to 0, so g k is perpendicular to the space spanned by d 0 to, this 

should be k minus 1. So, g k transpose d j is equal to 0 for all j going from 0 to k minus 1 

g k transpose d k is equal to g 0 transpose d k. And the important thing is that x k plus 1 

is nothing but arg min of f of x, x 0 plus B k. 
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So, this is the important theorem, now we are given a set of n directions d 0 to d n minus 

1, which are H conjugate, and x 0 is in R n. Now, we have seen that it is easy to 

determine alpha i star to be, minus d i transpose H x naught plus c divided by d i 

transpose H d I, and then we know that x star can be obtained using this all this is 

possible provided d 0 to d n minus 1 or H conjugate. 

Now, the important question is that, how do we construct the H conjugate directions d 0 

to d n minus 1, and then we will come up with a iterative procedure, which will construct 

d 0 d 1 d 2 and so on. So, at the end of k iterations, how do you find out alpha k star, 

based on the point x k, because this alpha i star depends on H x naught plus c and all the 

previous conjugate directions. So, so how do we get alpha k at a current point x k, so 

given the H conjugate directions d 0 to d k minus 1 how do we determine alpha k which 

basically the minimizer of this so does there exist a close form expression perpending 

alpha k. So, let us first look at this and then go to the other question where we want to 

construct the H conjugate directions. 
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Now, note that x star can, can be written as a combination as a sum of x 0 and the linear 

combination of d i is where i going from 0 to n minus 1. So, if we premultiply 

throughout by d k transpose H then only 1 quantity on the right side remains the rest of 

the quantity become 0 and the quantity which remains is alpha k d k transpose H d k. 

And therefore, alpha k is equal to d k transpose H into x star minus x naught divided by d 

k transpose H d k. Now, this alpha k is still dependent on x star and x naught and we 

want to get the dependence of alpha k only on x k, so let us see how to do that. Now, 

after k iterative steps, and obtaining k H conjugate directions what we have is x k is 

nothing, but x naught plus the linear combination of the k minus 1 vectors k vectors d 0 

to d k minus 1. Now, clearly, we can say that d k transpose H into x k minus x naught 

will be 0, because d k will be conjugate to all d i is going from 0 to k minus 1. 
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Now, we let us use this fact in this formula, so given that d k transpose H into x k minus 

x naught equal to 0,. We can write alpha k is in the previous formula the previously we 

had written that alpha k is equal to d k transpose H into x star minus x naught by d k 

transpose H d k., so we just add subtract and add x k in this formula. Now, if you expand 

this, so take the first 2 terms and combine them with this and then the take the last 2 

terms, and combine them with this so d k transpose H into x k minus x naught that is 

equal to 0. So, the quantity involving the the last 2 terms vanishes, so what we are left 

with is d k transpose H into x star minus x k. Now, we know that the function that we 

want to optimize is half x transpose H x plus c transpose x. 



(Refer Slide Time: 29:53) 

 

So, the function that we want to minimize is half x transpose H x plus c transpose x, H is 

symmetric and positive definite. So, taking the so we take the gradient equated to 0, so H 

x star should be equal to minus c. So, we use this fact, so this H x star is nothing but 

minus c. And so we replace H x star by minus c and again if we look at the gradient of 

the function so g k will be H x k plus c. So, if we look at the the formula here so what we 

have is negative of H x k plus c. So, which is nothing but negative of g k, so therefore, 

we have got alpha k using g k and d k and H. 

So, we have got alpha k using g k d k and H, so you will see that this alpha k that we 

have got now does not depend on x naught, but it just depends on the the current gradient 

value. So, compare this alpha k with the alpha k that we have got earlier, that d k 

transpose H into x star minus x naught or even before that we had got alpha k which 

depended on x naught so we got the formula for alpha k based only on g k and d k. 
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Now, the important question of finding the conjugate directions, H conjugate directions d 

0 to d n minus 1. Now, let us assume that we have got n linearly independent set of 

vectors and those we are going to denote by minus g 0 minus g 1 to g n minus 1. Now, 

these are the negatives of the gradient vectors that we have got at every iteration, and let 

us assume that they are linearly independent. If they are linearly dependent then at some 

point of time we have the gradient is 0, so gradient is 0 for quadratic function means that 

we have from from the solution. So, this is the case where in n minus 1 iterations we 

have not found the solution. And finally, at the at the end of last iteration, what we have 

is minus minus g 0 to minus g n minus 1 forming a linearly independent set of vectors. 

Now, we have already seen that Gram-Schmidt procedure can be used to find out, the 

orthonormal basis given a set of linearly independent vectors. 

Now, that procedure can be extended to find out the H conjugate directions d 0 to d n 

minus 1, and this is the basis that we are going to use. Rremember that, we are assuming 

that minus g 0 to minus g n minus 1 are linearly independent later on we will show that 

this is indeed case. So, to begin with, we start with d 0 to be the negative of the gradient 

at x 0 and in general we will write the Gram-Schmidt procedure as d k to be minus g k 

plus, linear combination of k vectors d 0 to d k minus 1. Now, this beta j is obtained 

using Gram-Schmidt procedure, and what we want is that d 0 to d n minus 1 to be H 

conjugate. So, if we premultiply this with d i transpose H, there i varies from 0 to k 

minus 1. 



So, then what we get is d i transpose H d k is nothing but minus d i transpose H g k plus 

this quantity now d i transpose H d k is 0 because i is going from 0 to k minus 1 so this 

holds for every i going from 0 to k minus 1. So, we get 0 equal to minus d i transpose H 

g k plus, only 1 term in this expression remains and that corresponds to the vector d i. 

And therefore what we get is the expression for beta i and which is nothing, but g k 

transpose H d i divided by d i transpose H d i. 

So, this is the usual Gram-Schmidt procedure, at i mean to get d k using minus g k which 

is the linearly independent vector in from this set. So, at the k iteration we get 1 vector 

from this set, and we use the combination of all the previous vectors to get d k now when 

we talk about H conjugate directions, this formula becomes much simpler and that is 

what we will see now. So, we will see that the beta j will be 0 for all j going from 0 to k 

minus 2, and only the k minus 1 direction comes into picture. 
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So, let us see how to get that, so if we rewrite that formula d k equal to minus g k plus 

sigma beta j d j wherebeta j is actually replace by this. Now, first let us show that minus 

g 0 to minus g n minus 1, they from a linearly independent set of vectors. Now, note that, 

the span of d 0 to d k minus 1 is same as span of minus g 0 to minus g k minus 1, 

because the way d k is form is using minus g k and all the previous vectors. So, if all g j 

is are independent, up to k minus 1 then span of d 0 to d k minus 1 is same as span of 

minusg g 0 to minus g k minus 1. 



And we have already shown the d 0 to d k minus 1 are H conjugate that is g k 

perpendicular to, and if they are H conjugate then g k is perpendicular B k, this is what 

we have already shown. So, the new direction that we get is perpendicular to the space 

spanned by d 0 to d k minus 1, and that essentially means that g k will be perpendicular 

to the space spanned by minus g 0 to minus g k minus 1. So, which means that, g k is 

independent of minus g 0 to g k minus 1, so therefore minus g 0 to minus g n minus 1 

forms a linearly independent set of a vectors. 
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Now, we have got d k to be minus g k plus sigma beta j d j where beta j is this quantity, 

and we know that x j plus 1 it should be j plus 1 equal to x j plus alpha j d j and g j plus 1 

is equal to g j plus alpha j H d j. So, so let us see what happens to the x quantity in the 

numerator here, so H d j, H d j is nothing but H into x k, x j plus 1 minus x j by alpha j. 

And that is nothing but this quantity, and therefore, what we get is d k to be minus g k 

plus sigma j going from 0 to k minus 1 into this quantity. 

So, we have g j plus 1 equal to g j plus alpha j into H d j, and we use this quantity to 

write this and this H d j in the numerator is now replaced by both in the numerator and 

denominator is replace by this quantity. So, this alpha j k get canceled and what we get is 

g j plus 1 minus g j transpose g k divided by g j plus 1 minus g j transpose d j. Now, let 

us look at this quantity, so you will see that if you do the exact line search, then g k 



transpose g j j goes from 0 to k minus 1 will be 0. And what we are what we are left with 

this quantity g k transpose g k by d k minus 1 transpose g k minus 1 g k minus 1.  

So, the important quantity, that that is left here is this quantity related to only j equal to k 

minus 1, the rest of the quantities become 0, because g k is perpendicular to all g j is that 

we have already shown. So, g k is perpendicular to all g j, j going from 0 to k minus 1, so 

this quantity vanishes and because of the line search, d j transpose g j j going from 0 to k 

minus 1 becomes 0. And we are left with only quantity corresponding to j equal to k 

minus 1.  

So, you will see that, as compare to the usual gramschmidt procedure which used all the 

previous directions and the minus g k direction to find d k, here we use only minus g k 

and only the previous direction d k minus 1. So, because of the H conjugacy of this 

vectors. formula becomes very simple, so we do not have to worry about all the previous 

directions to find out d k v. Or it is sufficient for us to determine d k using minus g k and 

d k minus 1, and this is possible because g k is perpendicular to all the previous g j’s and 

we do the exact line search. 
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So, due to exact line search, g k transpose d k minus 1 is equal to 0 and, and if we 

expand this d k minus 1 transpose g k minus 1, then what we get is this quantity becomes 

0 and only this quantity remains. And therefore, what we get is formula for finding the 

conjugate directions and which is call the Fletcher-Reeves formula or Fletcher-Reeves 



method. So, the direction d k is found using minus g k plus g k transpose g k by g k 

minus 1 transpose g k minus 1 into d k minus 1, so it is a combination of minus g k and d 

k minus 1. Now, here we have assume that d 0 to be minus g 0, so we can get the all the 

n conjugate directions by making use of the gradient at the respective points, and then 

the previous direction. 
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So, here is the Conjugate Gradient Algorithm, so we start with d 0 to be minus d 0, 

initialize x 0 epsilon. And remember that initially we, we have given the algorithm only 

for the quadratic function half x transpose H x plus c transpose x, where H is a 

symmetric positive definite matrix. So, the first step is to find alpha k we have a close 

from expression for this if if we do the exact line search then x k plus 1 is equal to x k 

plus alpha k d k and g k plus 1 is H x k plus 1 plus c, that is the gradient. We determine 

beta k and then d k plus 1 the new direction is determine minus g k pus 1 plus beta k d k, 

and the k is incremented by 1. And we check whether the the gradient of the function, 

and the new point is less than or equal to epsilon less than or equal to epsilon we stop. 

And we get a global minimum of f, because let this a global minimum H is a symmetric 

positive definite matrix for this quadratic function. 
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Now, when we apply this to, the function that we had seen earlier. So, the use of 

conjugate gradient method to this function results in this steps so we start from here, so 

this is x 0 x 1 and x star so within 2 steps we reach the solution. Now, if you start from a 

different point, initial point even then you will see that we reach the solution in 2 steps. 

Now, how do we extend this formula to non-quadratic functions, so this initial step is 

still the same. But then after every any iterations there is a need to restart the method. 

And the reason for this is that, when we talk about non-quadratic function we have to do 

this line search, and sometimes that line search also may not be exact. 



And more over this directions that we get in the conjugate gradient method, where we 

use the Fletcher-Reeves formula ,these directions may not be descent. Now, to make sure 

that in the n retractions, at least 1 direction is negative or at least 1 direction is a descent 

direction there is a need to restart the conjugate gradient method for non-quartaratic 

functions after every n iterations, and this is the restart. That the new point is again set as 

x 0 d 0 is set as the negative of the gradient at that point so which will make sure, that we 

have the descent direction at least one descent direction in n iterations remember start 

with d 0 equal to minus g 0. 

So, at least 1 direction in the n iterations will be a descent direction, and the procedure is 

repeated till norm of g k becomes less than equal to epsilon. So, this is the difference 

between the application of Conjugate Gradient method to Quadratic functions and non-

quartaratic functions. For quararatic functions, we reach the solution in the at most n 

iterations and we did not have to worry about the restart there. And finally, what we get 

here is a stationary point of f of x, Now, if we look at the algorithm we use Fletcher-

Reeves method to find beta k. Now, there exist different ways to determine beta k and 

the different Conjugate Gradient Algorithms vary with respect to this calculation of beta 

k. 
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So, so the formula that we have seen so far is in the Fletcher-Reeves formula, which uses 

beta k to be g k transpose g k by g k 1 g k minus 1 transpose g k minus 1. This is another 



formula for Polak-Ribiere formula, and that uses g k transpose into g k minus g k minus 

1 by g k minus 1 transpose g k minus 1. 

Now, the only difference between these 2 formulas is that, there is a extra quantity here. 

Now, if we use quadratic functions with exact line search, then we know that g k is 

perpendicular to all the previous gradients. So this quantity is 0, so the 2 formulas are 

same, but for non-quadratic function it was empirically observe that, this formula the 

Polak-Rebiere formula performs better compare to the Fletcher-Reeves formula. So, for 

Quadratic functions with exact line search these 2 formulas will give us the same steps, 

there is another formula got Hestenes-Steifel formula, and that is given here now the 

motivation for this formula was different, but we can look it from the B F G S method 

view point for Quasi-Newton directions that we saw earlier. 
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So, recall that the update formula for B F G S method is given here, and there is a variant 

of this B F G S method which is call the Memoryless B F G S method. And in the 

memoryless variant this B is replace by identity matrix, so which means that at every x k 

we do not have to use B k. But use in this case this will be B k minus 1, so we do not 

have to use B k minus 1, but instead replace B k minus 1 by identity matrix. So, if we do 

that, then what we get is called a memoryless Quasi-Newton direction. And if we do the 

exact line search, the delta k minus 1 transpose g k equal to 0, so remember that this 

delta is a function of x k and x k minus 1 and g k is a function of g k. 



So, g k is the gradient and therefore, so if we use this update, the Quasi-Netwon update B 

F G S which uses the Memoryless iteration. So, this quantity will be nothing, but the 

quantity which is given here, and syou will see that this formula this update of d k will be 

same as minus g k plus some beta k into d k minus 1. And that beta k is nothing but the 

formula given by Hestenes-Steifel, so this B F G S method. The D F P method these can 

be thought of other way to generate conjugate directions. 
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Now, now let us look at the the difference between the D F P and the B F G S method. D 

F P or the Quasi-Netwon method and the Conjugate Gradient method. Now, this is a 

algorithm for minimizing ageneral non-quadratic function f of x using Conjugate 

Gradient method. Now, this does not require any second order information, so or it does 

not use any matrix operations. So, the main difference between the Conjugate Gradient 

method and Quasi-Newton method, is that there are no matrix operations involved. 

Secondly the Conjugate Gradient for the Quasi-Netwon method like the D F P method or 

the Quasi-Netwon, the L B F G S method both of them in addition to generating 

conjugate generations. 

They also update the matrix B k, and whenever we are near the solution that B k will be 

a good approximation of the Hessian Inverse, and therefore, the directions that we 

obtained using D F P or B F G S methods near the solution will be a close to the Netwon 

directions, and then the convergence will be faster. So, in addition to maintaining 



conjugate directions strategy, they also find the directions which are more close to the 

netwon directions near the solution. And therefore, they are fast and that does not happen 

in the Conjugate Gradient method. 

Conjugated Gradient method, since it does not work with any matrices there is no 

guaranty for general non-quadratic function with in exact line search, that the direction 

that we get is a descent direction. And therefore, there is a need to restart, while that is 

not the case, this restarting is not necessary for the Quasi-Netwon methods like D F P or 

B F G S. So that is a important point and more over that Conjugate Direction methods or 

Conjugate Gradient methods they are very sensitive to the line search. 

While Quasi-Netwon methods are more robust, now on the other hand the Quasi-Newton 

methods require, the multiplication of a matrix by a vector. And that require order n 

square computations as well as order n square storage, because the matrix the enter 

matrix needs to be store. If we do not use the limited memory B F G S kind of updates. 

Now, that is not the case here, if you look at the storage required here will, will require 

order n storage we need to store some n-dimensional vectors in the Conjugate Gradient 

method. So, the storage wise Conjugate Gradient method has the advantage as compare 

to the Quasi-Netwon method. 

But, both these methods Quasi-Netwon method as well as the Conjugate Gradient 

method, they have better computational complexity as compare to Netwon method. 

Because Netwon method requires inversion of a matrix to get a Netwon direction and 

that is computationally expensive operation. Well, here neither conjugat gradient method 

nor quasi-netwon method require any inversion of a matrix, further Conjugated Gradient 

methods do not even require to store any matrix. 

So, storage wise these methods clearly have a advantage, so if one wants to get a robust 

method one has to for Quasi-Netwon methods. Because they were found to be more 

robust compare to conjugate gradient methods and they are less sensitive to the line 

search, and of the 2 methods D F P and B F G S, B F G S method of finding Quasi-

Netwon direction, what is found to be empirically superior to D F P method. So, based 

on the need, one has to decide the algorithm that can be applied to minimize given 

function. So, for quadratic functions methods like conjugate gradient method are quite 



good, for general non-quadratic case one depending upon the requirement, one can go for 

the Quasi-Netwon kind of update especially the B F G S kind of update. 

So, this completes our discussion on unconstrained and optimization. So, we saw 

Hestenes-Steifel method, then the Newton method, then the variants of Newton method 

the Quasi-Newton method and conjugate gradient method, Now, all these methods are 

useful in different ways to solve given optimization or a given minimization problem. 

And in the next class, we will study the methods for constrained optimization, and find 

the properties related to those methods.  

Thank you. 


