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Lecture - 13 

Steepest Descent Method 
 

Hello, welcome back to this series of lectures on numerical optimization. So, in the last 

class we started studying about Steepest Descent Method. So, in the Steepest Descent 

Method the idea is to move along the direction of Steepest Descent. So, we use the first 

order approximation of the objective function and that the Steepest Descent direction is 

negative of the gradient direction. 
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So, we saw that if these are the contours of the objective function and if you are currently 

at a point which we call it as x k. Now, this is the first order approximation, this is the 

gradient at that x k and with respect to the first order approximation. The maximum 

decrease in the objective function is possible when we move along the negative of the 

gradient direction. 

So, if you move along this direction, then we get the maximum decrease in the first order 

approximation of the objective function. So, the direction d k is equal to minus of g k is 

called the Steepest Descent direction. So, it will denoted by a subscript SD. So, at the k-



th iteration, the Steepest Descent direction is nothing but the negative of the gradient 

direction, then along with that direction. If we use line search then we have the steepest 

descent algorithm with lines search.  
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So, let us continue our discussion on the Steepest Descent Method. So, as I mentioned 

the Steepest Descent direction is at the k-th iteration is nothing but the negative of the 

gradient at that point and the Steepest Descent algorithm started with the usual 

initialization of the x 0. The tolerance for the norm of the gradient for a used for stopping 

and iteration number is set to 0. So, while the norm of the gradient is greater than 

epsilon, which is the direction d k to be minus g k and this is the thing but the Steepest 

Descent direction and then 1 can use, 1 can find the step length of positive length. Such 

that, the value of the objective function at x k plus alpha k d k is less than f of x k and 

alpha k satisfies Armijo-Wolfe conditions. Remember that, these conditions are 

necessary to ensure convergence of an optimization algorithm these conditions along 

with the condition that the direction is a descent direction. 

And then x k is moved to x k plus 1 by adding alpha k, d k. The iteration counter is 

incremented by 1 and then the whole procedure is repeated till the norm of the gradient 

at a given point x k is less than or equal to epsilon and at that point the algorithm stops 

and as an output. We get x star which is nothing but the x k which is a stationary point of 

f of x. 



And then we started looking at some of the examples, note that the exact or backtracking 

line search also can be used in step two be rather than the two steps which are mentioned 

here. We can use the Backtracking line search or exact line search, we studied 

Backtracking line search in the last class. So, those ideas can we used in step two be of 

this algorithm. 
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Now, then we started looking at some of the examples. So, the first example we took was 

of a function f of x, which is defined as x 1 minus 7 square plus x 2 minus 2 square. 

Now, the gradient of the function is 2 into x 1 minus 7 and 2 into x 2 minus 2 and the 

point at which the gradient vanishes is 7 comma 2 or whose x coordinates is 7 y 

coordinate is 2. The Hessian matrix is also given here. Now, this is a Quadratic function 

those. So, Hessian matrix is independent of x. 

So, x star is a local minimum and if you look at the contours of this objective function. 

So, here the objective function value is 8. So, this contour, this curve colours 

corresponds to the objective function value of 8 and then objective function value comes 

down to 4 to 1.5 and finally, at the 0.7 comma 2 we have the minimum of the objective 

function and let us apply Steepest Descent Method to this objective function. 
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Now, suppose if you start from a point which is 9 comma 4 and applies Steepest Descent 

Method with exact line search to the objective function, then you will see that in 1 step, 

we have reached the solution. Now, were we lucky to start with this particular initial 

point let us find out, let us take another.  
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Let us take the same function but another initial point. So, we have taken the initial point 

whose x coordinate is 5.5 and y coordinate is 3. And you will see that again in 1 step the 

Steepest Descent algorithm converges to x star. So, if we have circular contours of a 



Quadratic function then the Steepest Descent Method would converge to x star in 1 

iteration. Now, let us see when these contours of an objective function which is 

Quadratic are not circular but they are elliptical. 
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So, let us look at another example. So, we have a function 4 x 1 square plus x 2 square 

minus 2 x 1 x 2, the gradient is 8 x 1 minus 2 x 2 and 2 x 2 minus 2 x 1. Now, the 

gradient of this objective function vanishes at the origin. So, that is the stationary point 

and you will see that the Hessian matrix is all positive definite matrixes. So, the origin is 

a strict local minimum of this problem. So, let us look at the contours of this objective 

function so on. 

So, we can see this contour plot of f of x. So, this is the plot corresponding to the 

objective function value f of x equals to 8 and as you move inside the objective function 

value decreases. So, from 4 to 1.5, 0.1 and finally, we get a 0 objective function value at 

the origin. So, origin is a strict local minimum of f of x, which is given here. Now, let us 

apply the Steepest Descent algorithm to this objective function with exact line search. 
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Now, if you start from this point x coordinate is minus 1 and y coordinate is minus 2. So 

if you apply exact line search. So, the first point that, we reach from this initial point and 

then we move along this direction and so forth. So, more than 20 iterations were needed 

in this case to reach from minus 1 to from minus 1 minus 2 to 00. If you use Steepest 

Descent Methods with exact line search. 

Now, you will see that the behaviour, if we apply the Steepest Descent Method in this 

case, we will see that iterates are found in the zigzag directions, before the convergence 

to the optimal point x plus. So, this zigzagging behaviour is very typical of Steepest 

Descent Method for Quadratic functions, where the contours of the Quadratic functions 

are not circular. 

Now, why does this zigzagging takes place? So, we will study that in today’s lecture. 

Now, compare this with the 1 step convergence for the circular contours. So, if the 

contours are circular starting from any point, we could converge to the minimum in only 

one iteration while here, if the contours are elliptical then we require more number of 

iterations.  
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And we will see that if we start with another point again in this case about 4 iterations 

where needed, if we started from this points say whose x coordinates is 1 and y 

coordinates is 0 and about 4 iterations h were needed before the Steepest Descent 

Method converge to the minimum of this objective function. 

So, what is so special about these elliptical contours which make the Steepest Descent 

Method with exact line search behave in this particular way that is what is the reason 

behind these zigzagging directions that we get from Steepest Descent Method applied to 

the quadratic functions which have elliptical contours. So, we will study that now.  
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Before that let us take another example. So, this is standard function which is used in 

optimization literature to study the performance of different optimization algorithms. 

And so, the Rosen Brock function which we studied in 1 of the earlier classes is given 

here and we know that the minimum of this objective function occurs at 1 comma 1 and 

the minimum objective function value is 0. Let us look at the contours of this. So, the 

outer most plots correspond to the function value 16 and then come on to 8, 4, 2, and 1. 

This is the point which is shown by the red star, that point is a minimum of this function. 

Now, let us applies Steepest Descent Method to the function f of x and this time we will 

use the Backtracking line search. 
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So, if we start from a 0.6, 0.6. So, you will see that the first step is to this point and then 

to this point and then there are lots of small steps. So, there are lots of small steps which 

correspond to the circles along these lines and then finally, it goes and converges to the 

minimum which is 1 comma 1. So, lots of small steps are taken before the algorithm 

converges to the minimum. 

Now, here I have used Backtracking line search, 1 can use any other in exact line search 

method the number of steps required could reduce but this is just to demonstrate that how 

the Steepest Descent Method applied to Rosen Brock function with Backtracking Line 

search behaves when we start from particular 0.6, 0.6. Now, let us take another initial 

point and see how is behaviour of Steepest Descent Method with Backtracking Line 

search to Rosen Brock function. 
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So, this is the Rosen Brock function. 
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And so, suppose we start from 1 minus 1.2 and 1. So, the first step that is taken is to this 

point, then the second step comes back to this point and then you will see lot of small 

steps before there is the algorithm takes a big step to this point and then again lot of 

small steps, then again a reasonably big step and then lot of small steps. So, you will see 

that here the steps number, the step size are really small before the finally, the algorithm 



converges. So, a lot depends on initial point special the number of steps needed to reach 

the final point depends a lot on the initial point.  

Now, let us go back to the previous example, where we started from 0.6, 0.6 and reach 

the minimum and let us look at the behaviour of the algorithm for this particular 

problem. 
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So, here is a table which denotes the iteration number in the first column, then the 

coordinates at that particular iteration. Then the value of the objective function is the 

distance between x k and x star, the Euclidian distance and the norm of g k. So, initial k 

equal to 0 and we started with the 0.6, 0.6. The objective function value is 55.92. The 

distance between x k and x star is 0.5657 and norm of g k is 75.59. Now, the Steepest 

Descent Method with Backtracking line search required 2028 in this case to reach an 

optimal to reach very close to the optimal point which is 1 comma 1. 

So, we will see that, we have reached here to a 0.99, 0.99 which is reasonably close to 11 

and the value of the objective function is very close to 0. The distance between x k and x 

star is of the order of point 0024 and norm of g k is 9.97 into 10 to the power minus 4. 

So, in this case I have used epsilon to be 10 to the power minus 3 in the Steepest Descent 

algorithm. So, the algorithm will continue till norm of g k becomes less than 10 to the 

power minus 3. So, you will see that at this step 2028. The algorithm has indeed gone to 

a stage where the norm of the g k goes below 10 to the power minus 3. 



So, I showed here some iteration. So, you will see that from 0 from the initial point to the 

tenth iteration there is quite a bit of reduction in the norm of the gradient from 75 to 0.39 

and then from 10 to 100 iteration. There is a gradual in decrease in the norm again from 

100 to 1000 there is a gradual decrease. So, the Steepest Descent algorithm in this case 

required about 2000 to go to the minimum of this. Rosen Brock function starting from 

0.6, 2.6 and every time you would see that, the function value has been decreasing in a 

consistent way although there could be a the rate of decrease could be very small but 

there has been a consistent decrease in the objective function and the distance for x k to x 

star also comes down at a reasonable rate. 

So, for the Backtracking line search, we need some parameters like alpha hat and row. 

So, in this particular case I had set alpha hat to be point 5 and a row to be point 3 and the 

constant c 1 which corresponds to Armijo-Wolfe conditions was set to 10 to the power 

minus 4. So, this was with respect to the initial 0.6, 0.6. Now, if we turn to the other 

example, where the initial point was minus 1.2 and 1 and as we have seen here it requires 

lot more steps to go to the minimum. 
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So, let us study the behaviour of this algorithm. So, you will see that, the algorithm 

required about 2300 iterations before it reach close to the minimum. Remember that 

minimum is 11 and the point that we have reached this 0.9989, 0.9989, 9979 which is 

reasonable close to 1. So, the distance between the x k and x star is about point 0024. 



And as in the previous case, these two columns denote the coordinates of points at the k-

th iteration, this column denotes the distance between x k and x star and this column 

denotes the norm of g k. So, you will see that initial norm of g k when we started with 

this point the norm of g k was 232.87 and that came down to 7.69 and then 0.4 finally, 

when the algorithm terminated the norm of g k was less than 10 to the power minus 3 

and in this particular case the value was 9.63 into 10 to the power minus 4, you will also 

see, that the distance of x k from x star gradually came down to 0.0024 and the value of 

the objective function finally, was almost close to 0 which is the desired objective 

function value. 

Again in this Steepest Descent Method, I have used Backtracking line search there alpha 

hat again was chosen to be 0.5 row was 0.3 and then the constants c 1 was like in the 

previous case said to 10 to the power minus 4. So, you will see that, the number of 

iterations needed depend a lot on the initial 0.x0. So, you can also try applying Steepest 

Descent Method to different objective functions and study its behaviour. 
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Now, let us look at the Quadratic case or Quadratic function case and see how the 

Steepest Descent Method converges to the minimum. Now, this particular case is very 

important, because even if a function is non-quadratic then and somewhere near the 

optimal point x star, the behaviour of the function is quadratic. So, it is important to 



study the behaviour of the Steepest Descent Method for Quadratic case first before we 

move on to non-quadratic case. 

So, let us consider the problem to minimise f of x where f of x is defined as half of x 

transpose H x minus c transpose x and H is the symmetric positive definite matrix. So, 

this is a convex Quadratic function and. So, the reason for studying these Quadratic 

functions is that for many functions even if they are non-quadratic near x star or near 

their minimum, the behaviour of the function is like a Quadratic function. So, it is 

important to study the convergence of Steepest Descent Method for a Quadratic case. So, 

that is why I have chosen a Quadratic function here first. Now, we know that the gradient 

of this function is H x minus c and if we set the gradient to 0. So, H x minus c is equals 

to 0 gives x stars to be H inverse c. So, this is other optimal point and the since it is a 

positive H is a positive definite matrix the inverse of H is possible and we get x star to be 

H inverse c. 

Now, you want to see how does Steepest Descent Method perform? Apply as applied to 

this particular function f of x. So, in the Steepest Descent Method we have seen that in 

every iteration the direction chosen is a negative of the gradient direction. Now, for a 

Quadratic function like this we can also try using exact line search, because one can 

work out the exact formula for alpha k at every iteration. So, let us assume that we use 

exact line search in each iteration. So, this is an important assumption that we make that 

exact line search is done in every iteration and we uses Steepest Descent directions in 

every iteration. Now with this let us study the behaviour of Steepest Descent Method as 

applied to this convex Quadratic function. 
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As I mentioned that it is easy to calculate the step length alpha k at every iteration k, if 

we use exact line search for Quadratic function. So, let us see how to do that. So, we 

have f of x to be half of x transpose H x minus c transpose x and the gradient at the point 

x k, we are going to denoted it as denoted by g k and that gradient is H x k minus c. 

Now, the Decent direction is d k is minus g k. So, once we chose the direction, we need 

to find out what is the value of the step length. So, for that purpose we define a function 

phi alpha which is f of x k plus alpha d k and we want to find out. What is the value of 

alpha? Or what is the value of positive alpha such that, these functions are minimised. So 

that positive value of alpha which minimises this function will be the alpha k for this 

case. 

Now, since we are talking about the Steepest Descent Method d k is nothing but minus g 

k. So, phi alpha is nothing but f of x k minus alpha g k and in the exact line search the 

alpha k is determine by minimising phi alpha. Now, in our case f is a Quadratic function. 

So, phi alpha also will be a Quadratic function of alpha and it is a minimum can be easily 

found out by setting phi dash alpha to 0 and setting phi dash alpha to 0. So, what we get 

is the gradient of f at x 2 minus alpha g k transposes minus g k equal to 0 and if you 

rearrange the terms. 



So, gradient of f of x k minus alpha g k is nothing but H x k minus alpha H g k minus c 

transpose g k. Now, because remember that, the gradient of x at k is H x k minus c. So, 

we can use this same formula here with x k replaced by x k minus alpha g k. 

Now, if we combine H x k minus c. So, what we get is that is nothing but the gradient at 

x k and which we can write it as g k. So, this quantity can be written as g k minus alpha 

H g k transpose g k equal to 0. So, H x k and minus c are combined to get g k and this 

gives us the formula for alpha k which is nothing but g k transpose g k divided by g k 

transpose H g k. Now, remember that H is a positive definite matrix which is symmetric. 

So, g k transpose H g k is greater than 0, if g k is not equal to 0 and g k transpose g k is a 

norm square that is also quantity which is greater than 0 if g k not equal to 0. So, if g k is 

not equal to 0 alpha k is greater than 0 and then we can use this alpha k to determine our 

x k plus 1 the new point. So, the new point x k plus 1 is nothing but the old point minus 

alpha k g k. So, the alpha k is the quantity which we derived just now into g k. So, that 

gives us the new point x k plus 1.  
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Now, once we find the direction d k which is minus g k and find alpha k using close 

form solution that we have seen. Now, we are interested in finding out at what rate does 

x k converge. So, let us define a function e of x k to be half of x k minus x star transpose 

H into x k minus x star. Now, this function you will see that, this is function is greater 

than 0 if x k is not equal to x star, that is because H is a positive definite matrix. So, e of 



x k is always greater than 0. So, that is 1 important point about this function e. We can 

also call it as an error function because we can write e of x k as f of x k plus some 

constant. 

So, as we have seen earlier that sometimes the behaviour of an optimization algorithm 

can be determined using some error function and an error function can be the objective 

function that we want to optimize. So, minimisation of f of x will be same as 

minimisation of e of x because f of x is just added to this constant quantity to get e of x. 

So, let us now study the behaviour of Steepest Descent algorithm with respect to this 

function e of x and remember that, we are not loosing anything, because e of x is nothing 

but f of x plus constant the reason why e of x is chosen is that because of the nice form it 

has. So, this function is positive when x k not equal to x star and when x k equal to x 

star, the function is 0. So, we will see what happens to e of x k when the Steepest 

Descent Method is applied to minimise f of x. 

Now, to study that let us first define a variable y y k to be x k minus x star and. So, we 

can write H y k to be H x k minus H x star and H x star is nothing but c. So, H x k minus 

c is nothing but the gradient of the objective function and x k and that is nothing but g k. 

So, we will use this property that H y k equal to g k in deriving this expression. Now, we 

have already seen that the new point x k plus 1 is obtained by x k minus alpha k g k and 

alpha k has a close form solution which is g k transpose g k divided by g k transpose H g 

k. 

Now, if we use this then we are interested in finding out what is the relative decrease in 

the function e when we go from x k to x k plus 1. So, in other words we are interested in 

finding out what is e of x k minus e of x k plus 1 by e of x k remember that we are trying 

to minimise the function e. So, e of x k is greater than e of x k plus 1, because we are 

minimising the function e secondly e of x k is always greater than 0 when x k not equal 

to x star. So, assuming that x k is not equal to x star this quantity is going to be always 

positive and we want to see how it approaches towards the how the sequence x k 

approaches towards the optimal point x star now. 

So, if you use this definition of e of x k and since, the factor half is common both in the 

numerator and denominator. So, we can get rid of that factor and what we get is x k 

minus x star transpose H into x k minus x star minus e of x k plus 1 is nothing but x k 



plus 1 minus x star transpose H into x k plus 1 minus x star and in the denominator I 

have replaced x k minus x star by y k. So, what we have is y k transpose H into y k. 

Now, let us simplify this expression further.  
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So, if you simplify this what we get is 2 alpha k, g k transpose g k minus alpha k square 

g k transpose H g k divided by y k transpose H y k and. Now, we can plug in the value of 

alpha k that we have already found for this Quadratic function and if you plug in this 

value of alpha k that we have already found here what we get is e of x k minus e of x k 

plus 1 divided by e of x k which is a relative decrease in e is nothing but this quantity. 

Now, this quantity is still dependent on the matrix H and H inverse. So, if you look at 

this expression this is g k transpose H inverse g k so, this relative decrease in e depends 

on H inverse and g k now can we get a bound on this relative decrease which is 

independent of this h. 

Now, 1 possible thing that we can do is that we can chose g k to be a norm 1 vector. So, 

that g k transpose g k is 1 now can we get some bound on this which depends on H and 

H inverse now if you can do that then this we can bound the relative decrease in the 

objective function now for that purpose we will need what is called Kantorovich 

inequality. 
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So, let us look at Kantorovich inequality. So, let H be a symmetric positive definite 

matrix and let lambda 1 and lambda n be the respective the smallest and largest Eigen 

values of H then for any x which is non-zero this inequality holds. So, x transpose x 

square divided by x transpose H x into x transpose H inverse x is greater than or equal to 

4 into lambda 1 lambda n divided by lambda 1 plus lambda n square where lambda when 

lambda 1 is the smallest Eigen value of H and lambda n is the largest Eigen value of h. 

Now, if you compare this left hand side expression with the expression that we got here. 

We will see that they are same where x is replaced by g k and remember that our 

algorithm converges only at the point when g k is close to 0. So, as long as g k is not 0 

we can write this quantity to be greater than or equal to 4 lambda 1 lambda n divided by 

lambda 1 plus lambda n square. 
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Now, this inequality can be derived in different ways there exist different proofs to prove 

this inequality. So, 1 of the proofs what it assumes is that x transpose x is 1 and then it 

tries to maximise this x transpose H x into x transpose H inverse x subject to the concern 

that x transpose x equal to 1. So, for that proofs we requires some knowledge about how 

to solve a constrained optimization problem. So, let us postponed the discussion on 

Kantorovich inequality till be study something about constant optimization problem. So, 

for the time being let us assumed that this inequality holds and we can use it for our 

purpose. So, if you use this inequality then the relative decrease in function e which is 

nothing but g k transpose g k square by g k transpose H g k into g k transpose H inverse 

g k which same as these when g k is not 0 and that is bounded by 4 lambda 1 lambda n 

by lambda 1 plus lambda n square now the H on the right side of this equation are 

replaced by the Eigen the smallest and the largest Eigen values of h. 

So, therefore, we can rewrite this expression as e of x k plus 1 is less than or equal to 

lambda n minus lambda 1 by lambda n plus lambda 1 square into e of x k. Now, H is a 

positive definite matrix. So, all its Eigen values are positive. So, lambda 1 and lambda n 

both are positive and lambda n is greater than lambda 1. So, if you look at the expression 

here lambda n minus lambda 1 is a positive quantity lambda n plus lambda 1 is a positive 

quantity and more over lambda n minus lambda 1 is less than lambda n plus lambda 1. 

So, that is why lambda n minus lambda 1 by lambda n plus lambda 1 is a positive 

fraction. So, you will see that e of x k plus 1 is less than or equal to this fraction square 



into e of x k. So, that means that e of x k plus 1 e of x k is a decreasing sequence e of x k 

plus 1 is less than e of x k. 
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So, therefore, we have a decreasing sequence and e of x k is a quantity which is bounded 

below by 0. So, we have decreasing sequence of e of x k, that sequence will tend to 0 and 

x k will tend to x star. So, when this e of x k goes to 0 we have x k which goes to x star 

because H is a positive definite matrix. So, with respect to e this Steepest Descent 

Method converges linearly. So, you can see that the definition of linear convergence 

holds with respect to e when Steepest Descent Method applied is applied to a Quadratic 

convex Quadratic objective function. 

Now, the convergence rate is not is no greater than this quantity which is lambda n minus 

lambda 1 by lambda n plus lambda 1 square. So, that means the convergence rate 

depends on the smallest and the largest Eigen values of the Hessian matrix of the 

Quadratic function and the rate is not greater than this quantity. The actual convergence 

rate it does depends upon x naught. So, we saw earlier that different x naught for 

elliptical contours will result in different convergence rates for a Quadratic functions. 

Now, if we define the condition number of the matrix H to be the ratio of the largest and 

the smallest Eigen value of the matrix H. So, let us denote this ratio by r then the 

convergence rate of a Steepest Descent Method it depends on r minus 1 by r plus 1 or the 

condition number of the matrix H. 



So, this is the very important observation that the condition number of the hessian matrix 

of a Quadratic function decides the convergence rate of the Steepest Descent Method. 

Now, when this ratio is 1, then lambda n equal to lambda 1 then what we have is this 

quantity is 0 and then e of x k plus 1 will be 0. So, irrespective of your initial point 1 as 

the goes to the minimum in 1 iteration and when is this ratio 1, when lambda n equal to 

lambda 1 that means when we have circular contours. So that is why we saw that, when 

we considered circular contours and wanted to minimise the objective function using 

Steepest Descent Method the convergence took place only in 1 iteration irrespective of 

the starting point. 

So, if we have r equal to 1 which corresponds to circular contours, then the convergence 

of Steepest Descent Method required only one iteration on the other hand if r is much 

greater than 1. So, which corresponds to the elliptical contours and in that case we saw 

that the convergence required many more iterations before the algorithm reach the point 

x star. So, in that case the convergence is very slow. So, the convergence of the Steepest 

Descent Method although it is a linear convergence, the rate of the convergence depends 

on the nature of the contours of the Quadratic function. So, if we have circular contours, 

we have convergence in one iteration irrespective of the starting point and if we have 

elliptical contours then the convergence is slow lot depends on the initial point. 

Now, for non-Quadratic functions as I said that at this minimum x star the behaviour of 

the function is typically like a Quadratic function and therefore, the rate of convergence 

of Steepest Descent Method to x star depends upon the condition number of the hessian 

matrix evaluated at x star so, this is a very important point for non-quadratic function and 

the theory that we saw with respect to the Quadratic functions typically holds near the 

point x star. So, that is why it was important to study this theory so that the result can be 

used for non-quadratic functions as well. 

Now, if we consider the same example that we saw earlier. So, we have taken the 

function x 1 minus 7 square plus x 2 minus 22 square and we have applied Steepest 

Descent algorithm with exact line search and you will see that, it converge to the 

optimum point in exactly 1 iteration and then we also saw other example, where if we 

start from some other point it again reaches the convergence in 1 iteration. 



Now, if we look at this objective function, whose contours are elliptical, we saw that the 

zigzagging phenomenon occurs and the Steepest Descent Method. In this case required 

many more iterations before it converge to the minimum. Now, what is so special about 

the circular contours which made the Steepest Descent Method converge in 1 step, while 

in elliptical contours, it required more iteration. So, let us try to analyse that. 
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So, let us consider the problem to minimise f of x to be half x transpose H x minus e 

transpose x, where H is a symmetric positive definite matrix and we saw that the 

condition number of the Hessian matrix H which is a positive definite matrix. In this case 

controls the convergence rate of Steepest Descent Method and we also saw that if the 

hessian matrix is identity matrix, that means that the condition number is 1 then the 

convergence of the Steepest Descent Method is fast. Now, can we use this fact to derive 

a method which will be faster even if we use Steepest Descent Methods. So, let us 

consider a simple case.  
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So, suppose what we have here in the first case, we had circular contours and in the 

second case, suppose we have elliptical contours. Now, if we have for a Quadratic 

function, if we have elliptical contours like this. We know that the Steepest Descent 

Method does have slow convergence especially when the contours are elongated. Now, 

can we convert or transform these contours to the circular contours? So that if you use, a 

Steepest Descent Method we will get the convergence in 1 iteration in other words. So, 

suppose we have a function which is half of x transpose H x. 

Suppose we have a simple function like this. Now, can we convert it to a function where 

we can write it as y transpose y? So, suppose we have done some transformations. So, let 

us call this as x-space and this is the contours in the y-space. So, if we transform x to y in 

such a way that for the same objective function the hessian matrix in the y-space is an 

identity matrix. Now, if you are able to do that, then we can apply Steepest Descent 

Method. In this case and get the convergence in 1 step. Now, how do we do this 

transformation? So, for that purpose we need to look at this matrix H. 

Now, suppose if we can write H to be L L transpose, using the Cholesky decomposition 

of H and then to convert x to y. Suppose we use a transformation, which is suppose the 

following. So, L minus transpose x here and then we have x transpose, then suppose if 

we define y to be L minus transpose x, then what happens? So, then this expression. So, 

what we get is a transformation to the y-space. So, because this L transpose and L minus 



transpose get cancelled and L inverse L will get cancelled and what we get is a circular 

contour. So, we will see more about this now. 
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So, let us consider the Cholesky decomposition of the matrix H, which is L L transpose 

and it is defined y to be L transpose x. Now, if we define y like this, then the function f x 

gets transformed to the function h of y and the h of y is defined as f of x and x is nothing 

but L minus transpose y.  
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Now, if we do this then h y is nothing but f of L minus transpose y and. Now, if we apply 

the definition of usual definition of f of x. So, what we get is y transpose L inverse H L 

minus transpose y.  
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So, this should have been y and this also should have been y and then what we get is L 

inverse L is identity and this is identity and therefore, what we get is half y transpose y. 

So, if x is written as L minus transpose y and H is decomposed to L L transpose, then 

because of the nature of this factorisation. What we get is that, these terms get cancelled 

and finally, what we get is y transpose y. So, because of this transformation we were able 

to transform the points here in the x-space to y-space such that the original contours 

which were elliptical they get converted to the circular contours or the spherical contours 

in the high dimensional space circular contours in the two-dimensional space and that 

was possible because of the way H was decomposed and the transformation x was done 

like x. x was transformed to L minus transpose L inverse transpose into y. So, because of 

this transformation the things become easier and then 1 can apply the Steepest Descent 

Method here. 
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So, this is the transformation that took place. So, here we have also included term the c. 

term minus c transpose x. So, L inverse transpose y will replaced x, in this expression 

and therefore, what we have is something which is very nice as I mentioned here, earlier 

that L inverse, L will get cancelled, L transpose, L inverse transpose, L transpose inverse 

will get cancelled and finally, what we get is a Quadratic in y, where the Hessian matrix 

here is the identity matrix. Now, that is very important because now, if we apply the 

Steepest Descent Method in the y-space. So, what we get is y k plus 1 is nothing but y k 

minus gradient of H of y k that is ours standard Steepest Descent Method with alpha k 

equal to 1. So, we are not using any line search in this case or in shot we are just setting 

alpha k to 1. 

Now, if we expand it further, if we take the gradient of H with respect to y it will be L 

inverse into gradient of f of L transpose inverse y k and now, what happens in the x-

space? So, if you want to consider that, then what we have to do is that we have to pre 

multiply the whole quantity by L transpose inverse. So, if we pre multiply this 

expression by L transpose inverse, then what we get is L transpose inverse into y k plus 1 

is nothing but L transpose inverse into y k minus L transpose inverse into L inverse 

gradient of f of L transpose inverse y k. So, now what happens here? So, what is this 

quantity L minus L transpose inverse into L inverse? Now, if you look back the way H 

was defined was L L transpose. So, if you take an inverse of this quantity L L transpose, 

what we get is L transpose inverse into L inverse, which is a quantity here. So, this 



quantity is nothing but the inverse of the Hessian and what are these quantities? These 

are quantities are nothing but x k plus 1 and x k and suppose, if you replace L minus L 

transpose inverse y k by x k, then what we get is x k plus 1 to be x k minus H inverse the 

gradient of f of x k. 

So, the usual gradient direction gets deflected the usual negative gradient direction gets 

deflected by the matrix H inverse and that is used to move from x k to x k plus 1 with the 

step length of 1. So, we have come out with a new method, where instead of the usual 

negative gradient direction. We are trying to deflect the negative gradient direction by 

the matrix H inverse. 

Now, if you do that then that corresponds to the Steepest Descent direction in y-space 

and this steepest Descent Direction in y-space would converge to the optimal point in 1 

step, because the Hessian of the objective function H y which also corresponds to f of L 

transpose inverse y. The Hessian of that objective function is an identity matrix. So, if 

we apply the Steepest Descent Method to the function H y we get is the solution in 1 step 

and that corresponds to deflecting the negative gradient direction by H inverse. Now, this 

method is called the Newton method and we will study Newton method in the next class.  

Thank you. 


