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Welcome, to the lecture 8th, of the course on, “High Performance Computing”. We are 

in the process of trying to, understand both, how function calls and the returns are 

implemented, as well as, how the MIPS one machine language instructions can be used 

to describe various things. So, the function call and the return is our first example. 

(Refer Slide Time: 00:34) 

 

In the previous lecture, we have worked out the various steps, which must happen as the 

part of a function call and its part of return. And the fairly obvious ones were there must 

be a transfer of control, from the “CALLER” to the “CALLEE”. At the point of return, 

when the return has to be done, there must be also a transfer of control. Then they were 

various other issues which came up, such as, if parameters have to be passed, then that 

must be explicitly done; if local variables are present, then space must be allocated for 

them and so on. If return value to be passed; it must be explicitly done and so on. 



So, in this series of steps, we found that there was an important data structure, which 

would be involved and that was stack, the very same stack that we have talked about 

during stack allocation of data. We talk then about stack allocation of data explicitly, the 

local variables and parameters of a functions, which have a life time of: “the call of the 

function”. In other words, the local variable comes into existence only when the function 

is called, and it ceases to exist, when the function returns. And we now understand how 

that happens; the local variable comes into existence, as part of the function call, because 

there are instructions, which explicitly allocate space for those local variables on the 

stack. 

And those local variables cease to exists, when the function is returned, because there are 

instructions, which explicitly, free the space that was used, for those local variables from 

the stack. And therefore, the stack allocation of local variables and parameters that we 

learn about earlier, we now clearly understand, as something that is implemented either 

by the programmer, if the programmer is implementing this series or steps or by the 

compiler, if it is the compiler that causing instructions, which do all these functionality to 

be included in your program. 

(Refer Slide Time: 02:33) 

 

Since, the stack is the important part of this, we look at how to implement the stack in 

memory and saw that in order to push something, on to the stack, a two-instruction 

sequence was necessary: a subtract or and add, depending on whether the stack is going 



up or down in memory, followed by a store. It would be a store byte, if pushing a byte on 

to the stack or it would be a store word, if you were pushing a word on to the stack. As 

far as the pop is concerned, the pop operation, which removes, the top most elements 

from the stack, is once again a sequence of two instructions: “A LOAD and ADD to 

update the stack pointer”. 

In this particular example and in general we understand that the stack pointer (Refer 

Slide Time: 03:17) is very important part of the stack and therefore, of the function call 

and return mechanism, and since it is frequently accessed, it would not be beneficial to 

implement the stack pointer itself as a variable in memory, but rather to dedicate a 

general purpose register, for the stack pointer. And If one is reading programs in 

assembly language, instead of seeing the general purpose register refer to by its actual 

name R 29, one might for example, find that referred to, by the abbreviation Rsp, or as in 

the case of the assembly language file, that we saw earlier percent sp. So, the stack 

pointer and the stack are very important structures as far as the function call is 

concerned. 

(Refer Slide Time: 04:00) 

 

Now, let us go back to our example of the function call. We had a situation where there 

was some program; there was the function which is being called as function B or void B, 

takes one parameter, has two local variables a, b; and this is the point of return, and then 

there is a function A, which calls the function B with a parameter value of 5. So, in the 



previous lecture, I had these functions with function A on the top and function B at the 

bottom. Here, I choose to do the other way around. Just note that we refer to A as the 

“Caller”, and in other words, the function call takes place inside the caller function and 

we refer to B as the “Callee”. 

So, now we understand the series of steps that has to happen, and let us just run through 

them, in terms of the MIPS 1 instruction, that could implement that step, and the impact 

of that execution of those series of instructions, would have on the stack. So, we are 

going to run through this step by step. 

Now, let us suppose that the stack is as shown in the diagram over here (Refer Slide 

Time: 05:11). Here, I am showing you a slightly different stack, from the one that was in 

our previous lecture, because here the stack, the stack pointer is pointing at this location 

and from the orientation of the stack, you would guess that the stack is going to grow in 

this direction, downward, in other words, in to a higher and higher memory address, 

which is the opposite of what we had with our, in the slide we saw just few seconds ago 

with the push byte and the pop byte. So, this is the stack, which is growing into higher 

and higher memory addresses. 

So, just let us look at the first series of instructions, and try to understand what they are 

doing. We will do this, the other way around. Rather than saying, what series of 

instructions can implement this function this operation, just look at the series of 

instructions and try to understand on how they might be contributing towards the 

function call and return. So, the first instruction that you see here is add immediate, this 

one (Refer Slide Time: 06:09), ADD Immediate R1, R0, 5. 

So, what does this instruction do? It is an “Add Immediate Instruction”, and it has an 

immediate operand of 5, the other operand is R0. R0, you will remember as general-

purpose register zero, which always contains the value of zero. Therefore, what this 

ADD is doing is it is adding 0 to 5, which is equal to 5 (Refer Slide Time: 06:29), and 

putting that result into the destination register, which is R1. In other words, all that the 

first instruction is doing is that it is, getting the value 5, into register R1. So, R1 now 

contains a value 5 and that is all the first instruction is doing. 



Now, the second two instructions look vaguely familiar, the ADD Immediate R29, R29, 

4, and store word zero R29, R1. This seems to be a series of instructions, which is 

capable of pushing on to the stack. Remember, as far as pushing is concerned, we expect 

to see store word or stored byte or store half. So, what exactly is happening over here? 

Here, the first instructions in the sequence, ADD Immediate R29, R29, 4; R29 is the 

stack pointer, so this instruction is incrementing the stack pointer by four. 

So, R29 plus four is a new value of R29. What is that mean to increment the stack 

pointer by four? Why is it being incremented by four? In our previous example where we 

were incrementing the stack pointer or decrementing the stack pointer, we did so by one, 

because we were pushing or popping one byte on to the stack or from the stack. In this 

particular example over here, we are dealing with integers and the assumptions seems to 

be that the size of each integer is four bytes, which is why in order to stored a word on to 

the stack, I need to push four bytes on to the stack or I need to increment the stack 

pointer by four bytes. So, this explains why the ADD Immediate R29, R29 is 4 (Refer 

Slide Time: 07:58). This is causing the stack pointer to get updated by four. 

Then at that particular memory location, which is refer to using, “Base Displacement 

Addressing Mode”, by displacement of zero from R29, is where I store the value which 

is currently stored in R1. What is R1 contained? R1 contains the value 5. So, the net 

effect of these three instructions (Refer Slide Time: 08:19) is to push the value 5 on to 

the stack. This is the stack where at any given point in time, the stack pointer points at 

the current top of stack. Which is why, I increment the stack pointer first and then I store 

into that location, so the stack pointer R 29 always points at the current top of stack. 

So, the net effect of these three instructions is that my parameter of value 5 gets pushed 

on to the stack. So the stack pointer, which uses to point, before the sequence of three 

instructions, the stack point, was pointing over here. After the sequence of three 

instructions, 5 have been pushed on to the stack, and this is the stack pointer that has 

been incremented. Therefore, stack pointers pointing at this current top of stack. This is 

the pushing of the parameter, on to the stack. 

Now, you will call this is the passing of the parameter value 5 (Refer Slide Time: 09:18), 

and that is only other than this value 5, it had no special meaning. It just happens to be 

the value of the parameter in this case. Now, after this the jump transfer of control to the 



function, which is being called the Callee, can take place. As I have been, suggesting all 

this time, the transfer of control, the implementation of the function call, is going to be 

done using the, “Jump and Link instruction- JAL”. 

In this particular case, I will use the two versions of the, Jump and Link instruction, as 

you will remember, as JAL and JALR (Refer Slide Time: 09:53), and they differ only in 

that. Jump and Link, takes it is operand in absolute addressing mode, and jump and link 

register takes it operand out of a register. In our current situation, remembering that, I 

will use labels to represent memory locations in terms of absolute addressing mode. 

In order to refer, to the transfer of control to the function, I use Jump and Link B- JAL B, 

in other words, execute the Jump and Link instruction, the target address of whatever the 

address of B is, and B must be referring to the first instruction in the function B. That is 

what the label B, will be associated with. That in fact, what we have over here, the first 

instruction associated with the function B has a label of B, associated with it. 

(Refer Slide Time: 10:44) 

 

Now, let us just remind our self, what the Jump and link instruction does. Going back to 

the table of the MIPS 1 Jump and link instructions – MIPS 1 JAL, the jump and link 

instruction over here is the example Jump and link R R 2 – JAL R R2. But the example 

we have here, is this Jump and Link to the label B, which is similar. Other than, instead 

of copying the value of R2 into the program counter, we are going to copy or we are 



going to store the address of B, whatever the label associated whatever the address 

associated with the label B, into the program counter. So, the second instruction or the 

second operation is causing the controlled of transfer of control to happen. What is the 

first instruction doing? The first instruction, as we now understand, is helping us in the 

remembering of the return address. 

So, it is remembering PC plus 8 (Refer Slide Time: 11:32), which must have something 

to do with a return address into register R31. Remember, R31 is an implicit operand, of 

the Jump and link instruction. R31 is not mentioned inside the instruction, but it is used 

by the hardware, in implementing the instructions. 

Therefore, in these two steps, the second one is the transfer of control for the function 

which is being called; the first is something to do with a saving of the return address. The 

return addresses is something after the program counter and remember the program 

counter, in this particular case, will contain the address of the Jump and Link instruction. 

Therefore, PC plus 8, is one of the instructions following the Jump and Link instruction. 

(Refer Slide Time: 12:11) 

 

 

 

 

 

 

 

So that seems to be…We will talk more about the 8, where it comes from, shortly. But in 

any event, at this point, we understand that the Jump and Link instruction down here is 

going to cause control to be transferred to the beginning of function B. Now, inside 

function B, you will recall that it is important to we remember the written address. By 



just keeping it in register R 31, where it was left by the Jump and Link instruction, is not 

going to be safe. This is because due to subsequent recursive function calls or nested 

function calls, etc. 

Therefore, one of the first things to be done, inside the body of the function B, is to save 

that return address, as we saw on the stack. How does one save the return address on the 

stack? Once again, using the instructions, corresponding to push, in this particular case, 

once again, I increment the stack pointer using ADDI, immediate R29, R29, 4, and then I 

stored the contents of register R 31. 

What does R 31 contain? (Refer Slide Time: 13:13) For the moment, without fully 

understanding it, we expect that R 31 contains the return address. In other words, the 

address where the address of the instruction to which control is to be transferred, for the 

return has to happen. That is what R31 contains. Why it is PC plus 8? We do need to 

understand, but we are postponing that. 

So, the first thing that we do that we find inside the function call at the end of inside the 

function is a sequence of two instructions, which will push the return address on to the 

stack. As a result, of executing those two instructions, what does the stack look like? The 

stack looks like this (Refer Slide Time: 13:50). 

The stack pointer has gone up by four, and the thing at the top of this stack is the Return 

address, the address in memory of the point in the instruction, which is well control and 

is to be transfer on the Return. We are ready to actually, execute the body of the function 

that is what should follow here. However, prior to doing that, we have to allocate space 

for the local variables. In this particular example, I am not going to include instructions 

for saving and restoring of registers. 

But if it had to be done, then I would have to save registers prior to the function call, and 

restore the registers, just at appropriate point in time. Therefore, in this particular 

example we are not looking at saving and restoring of the registers. However, we do 

have to allocate space for the local variables, since function B does have two local 

variables. If function B, did not have any local variables then this would not have been 

the step that had to be incorporated. 



How do I allocate space for integer a, and integer b? In order to this, I must know how 

much space integer a, and integer b would require. Each of these is an integer variable. 

We are working under the assumption that each integer variable occupies 4 bytes, the 32 

bits (Refer Slide Time: 15:02); therefore, the amount of space that has to be allocated is 8 

bytes for the integer variable a, plus integer variable b. 

How do I cause that space to be allocated? Basically, I can do this, by just incrementing 

the stack pointer by eight, which I do, by a single instruction: Add immediate R29, R29, 

8, the stack pointer will then be pointing at the location of local integer variable b, and 

the space above that is the local integer variable a. Above that is the Return address and 

above that are the parameters, which had been pushed on to the stack. 

Which is in fact is the integer variable x as far as the function is concerned. So, at this 

point the body of the function can be executed. The question that you will ask is, inside 

the body of the function, is it possible that the variable x is referred to? And the variable 

a, is referred to? And the variable b is referred to? How are these variables going to be 

these addresses of these variables are going to be understood? How the compiler is going 

to generate the address of each of these variables? Looking at this diagram (Refer Slide 

Time: 16:11), which is on the right side of the screen, it is fairly clear to know how that 

is going to be done. 

Because we can see, right of the back that in order to refer, to the variable b, one just has 

to refer to the stack pointer with an offset of zero. In other words (Refer Slide Time: 

16:27), 0 (R29), inside the body of the function, 0 (R29) is the address of the variable b. 

What is the address of variable a? It is going to be stack pointer, but 4 bytes above. 

Therefore, this is going to be relative to the stack pointer or to the base register R29. A 

displacement of minus four and that is what the address of a, is going to be. 

What about the variable x? So, this I would call this minus four and this as minus eight. I 

realize that the variable x, the parameter in terms of its local name as x, is going to have 

associated with an address of minus twelve R 29 (Refer Slide Time: 17:11). Therefore, 

inside the body of the function if it has any need to refer x, it will be done so as minus 

twelve; displacement of minus 12 from R 29. We can recall R 29 as the stack pointer, 

which during the execution of the body of the function is pointing at this location, and 



just why using this simple picture of what the stack looks like, the compiler can compute 

the address of any local variable or any parameter. 

Now, I see a lot of local variables and lot of parameters. It could be the case that these 

have a very large negative offsets, and the displacements and therefore, the compiler has 

the option of doing something little bit different. In general, the variation would go along 

the lines of, while a stack pointer is pointing at the top of the stack, the compiler could 

actually associate with some intermediate location in memory, in another register, let us 

say here as R28 (Refer Slide Time: 18:06). For example, let us suppose that R 28 is made 

to point at the return address location.  

The advantage of doing this is that as far as the local variables are concerned, and if I am 

addressing these local variables as displacements, from R 28, rather than from R 29, then 

the local variable a, will have a displacement of plus 4, and the local variable b will have 

a displacement of plus 8. 

What is about the parameter x? It will have a displacement of minus four (Refer Slide 

Time: 18:33) relative to R28. So, under this convention, all of the parameters, and there 

could be a large number of parameters, would have negative displacements from this 

pointer and all local variables would have positive displacements from this pointer. 

One could refer to this pointer by some other name; obviously, cannot be referred to as a 

stack pointer, since by definition, the stack pointer always points at the top of the stack. 

But one could refer it by some other name, and the one name which is often used for it, is 

referred to as the “frame pointer”. So that is something, which the compiler could do. 

But in this particular example it suffices to just refer to local variable “b”, as zero; 

displacement of zero from R 29, whereas, “a”, as minus four; displacement of minus four 

from R 29 and so on. 

So, the compilation of the body of the function, will be done by the compiler, based on 

whatever the different statements are, and uses of the variables x, a, and b can be 

therefore dealt with, appropriately. The next interesting point in the execution of our 

sequence is when we reach the return (Refer Slide Time: 19:36). 



What has to be done at the point of return? One thing, which we saw had to be done, was 

the cleaning up of this stack. We are sort of assuming that we have finished executing the 

body of the Function. We are about to Return transfer control back to the point of Call 

inside the Caller A, and we just want to clean up the stack. We want to get the stack 

pointer back to, what it should like as far as Return to “A”, is concerned. 

How should the stack pointer look like, at the point in time when it has Return to A? The 

answer is in the picture, which shows that it should be the same as it was, when we 

started this example. In other words, the stack pointer should point at that the box label: 

dot-dot-dot, write at the top (Refer Slide Time: 20:19). Currently this stack pointer is 

pointing at the local integer b. I need to make a point at the location, way up there; that is 

going to be a displacement of minus four, minus eight, minus 12 and minus 16.  

In other words, this is done to get the stack point pointing to where I wanted to, in other 

words, in order to implement the cleanup of the stack operation, I need to subtract 

sixteen from the stack pointer. So, I have the instruction: SUBI-subtract immediate R29, 

R29, 16. The basic purpose of this statement is to clean up the stack. 

So, the stack point is now pointing back here (Refer Slide Time: 20:55), and essentially 

these elements, are no longer on the stack. Now, I would remind you that there is no 

subtract immediate instruction in the MIPS one machine language, but there could well 

be a subtract immediate instruction inside a MIPS one assembly language. Since it is 

trivial, for the assembler to translate, the subtract immediate to equivalent add 

immediate, with a negative of 16 as the parameter as the immediate operand. 

At this point we are ready to transfer control back to B. There is no Return value to be 

passed. All that we have to do is to get the Return address into a place, from which it can 

be used to do the transfer of control. Now the Return address is still actually available in 

the memory. Remember we have decremented the stack pointer, at a point at where it is 

suppose to be subsequent to the Return- to the Caller. 

But the Return address is available at plus 8, from the current location of the stack 

pointer. Therefore, to read the Return address, I can look at plus 8 from what R29 

currently points at and what this instruction does is it reads the Return address from 8 of 

R29 using a displacement of 8 from the current value of R 29 and loads those 4 bytes. 



This is a load word instruction into R 31. I am going to use R31 to transfer control back 

to the correct Return address. How do I actually do the transfer of control back? I can do 

that using the Jump Register instruction. I will remind you that they are two kinds of 

unconditional control transfer instructions in a MIPS instruction set. One is a Jump 

instruction, and the other one is Jump Register instruction. In this particular situation, the 

Jump Register instruction is more useful because I have the target address available in a 

register. Jump register will allow me to transfer control back to an address, which is 

specified in a register. The result of this instruction is that control gets transfer to PC plus 

8, which is the value that had been stored inside R 31, by the jump and link instruction. 

This implements the complete sequence set which we were looking for. As I said, we 

have left out some other complexities of some Function Calls like the need for returning 

a value or for saving or restoring registers, but otherwise, we have pretty much 

understood what instructions would be involved and how the stack is involved in. What 

we now see is somewhat complicated Function Call and Return operation. 

Now, just going back to previous lectures you will recall that where I had mentioned that 

in CISC instruction sets, it is possible to have single instructions, which are somewhat 

complicated. It is also conceivable in some of the CISC instruction sets, the entire 

functionality that we see over here, could have been implemented, in one or two 

instructions. Over here, you will notice that the sequence is implemented in more than 

ten instructions.  

Each of those, one or two instructions in the CISC instruction set would have been 

clearly much more complex, than the simple instructions that we have in our RISC 

instruction set. The most complicated instruction that we have in this RISC instruction 

set is the Jump and Link instruction, which does two primitive operations, every other 

instruction just as one primitive operation, so much, for the Function Call and Return. 



(Refer Slide Time: 24:09) 

 

Now, with this in mind, we can go back to picture of from the very first lecture, where 

we talked about how different variables differ in their lifetimes and how some variables 

are statically allocated, like some data is statically allocated in memory. Other data is 

stack allocated in memory, and other data is heap allocated in memory. Now, we can 

now put all of these thoughts together, into a description of knowing how the main 

memory is used by a program. When you write a program and you run it on a computer, 

how the main memory is used. Remember, we use the term “Main Memory”, to refer to 

that box inside the computer organization block-diagram. Because the word memory is 

overloaded, the registers themselves are a form of memory and so on. A very important 

thing, which must be present in main memory, for a program to be executed, is the 

program itself. From now on talking about the program, we bear in mind that the 

program itself contains both instructions and data. I will talk about the instructions of the 

program using words like code or even text (Refer Slide Time: 25:18). You will often 

find the word text or code use to refer to the region to the instructions of a program. 

It is very clear that when a program is executing; its own code or text must be present in 

memory. In addition to this must be present in memory, different data that is used by the 

program and some of the data could be stack allocated. Some of it could be heap 

allocated and some of it could be statically allocated. We have seen how static allocation 

is done, when we see this and we saw this, when we looked at the example of the file 

program dot s (Refer Slide Time: 26:00). 



You remember that we had in connection with I am sorry, not integer but float. In that 

particular program, there was floating point array of size one hundred, and we saw that 

the way the static allocation was done in the assembly language program, associated with 

a label a. There was a space, in other words, an allocation of 400 bytes which is the 

amount of space occupied by 100 floats. Each float is a four byte. I triple e 754 floating 

point value (Refer Slide Time: 26:37). 

So, we saw how static allocation is done. Corresponding to static allocation we will see 

space directive, inside the assembly language program. We have also seen how stack 

allocation is done. We saw that the function parameters and local variables are allocated 

space when the function is called and the space subsequently reclaimed on function 

return, and that the stack allocation is done by explicitly, by instructions, which have 

been included into the program for that purpose by the compiler. 

So, the net effect is (( )) I want to draw diagram which shows me what all is in memory 

when the program is executing. The diagram will look something like this. First and 

most important is probably the text or code of the corresponding, to the program that is 

the instructions of the program. This would typically occupy the low memory addresses 

associated with a program, so memory address 0 etcetera. 

Now, one thing you should bear in mind in thinking about the MIPS instructions. Each 

MIPS instruction is of size 4 bytes, I mention that each MIPS. Just like each MIPS 

register, each MIPS instruction is of size 32 bits or 4 bytes. This was confirmed when we 

look at the 3 instruction formats: the I format, the r format and the f format in lecture 6. 

So, since each MIPS instruction is of size 32 bits; that means, that if the first instruction 

is that at byte address 0, then the second instruction is going to be a byte address four. in 

other words as far as the text segment as far as the instruction are concerned, each 

instruction is of size 32 bits and instruction addresses are going to be multiples of four. If 

the first instruction start at address 0, all subsequent addresses are going to be multiplies 

of four.  

Now, this actually is interesting and answers one question which may have come in to 

some of your minds when in connection with the jump instruction. When we talked 

about the jump instruction (Refer Slide Time: 28:42), we will recall that the jumping 



instruction has a 26 bit absolute operand, and this is the target address. In our notation, 

we actually use a label. But in general, when the machine language instruction 

equivalent, for example, we talked about jump to B, let us say B is the label in the 

program. But that is the assembly language version, in the machine language version that 

would be translated into a 26 bit absolute address. 

Now, this is only 26 bit address, but the PC is a 32 bit register, which means that the 

actual target address must be a 32 bit entity. And in the table on the jump instruction we 

had actually seen that the way that the 26 bit absolute address is translated into a 32 bit 

address is that the 26 bits, which are target 26, are included along with two least 

significant zeroes, which adds up to total of 28 bits, four more bits are still needed. The 

remaining four bits are taken from the more significant bits of the program counter in 

other words P C bits 28 to 31 (Refer Slide Time: 29:50). 

Now, the reason I mention this now, is that we understand where the 0 0 are added as 

least significant bits, as far as converting the 26 bit target address into the 32 bit actual 

address. The two zeroes make sense because any MIPS one instruction is going to have 

least significant bits of 0 0 in terms of its address, given that all MIPS instructions are 32 

bits in size, and that they address are multiples of four. A multiple of four has a property 

that its least significant two bits as 0. Therefore, we understand with the 0 0 are coming 

from.  

That is just fallout of the fact that all MIPS instructions are of size 32 bits and the text of 

your program is going to be loaded from address 0 (Refer Slide Time: 30:37), which 

means that all the instructions are going to have addresses, which are multiples of four. 

What about the other end of the target address generation? Why does it make sense to 

use the most significant bits from the program counter value? You will recall that our 

interpretations of using bits, from the program counter value are the program counter is 

the register which contains the address of the current instruction being executed.  

At this point, in time, we are talking about the jump instruction. Therefore, the most 

significant four bits, we are referring to, are the most significant four bits of the address 

of the jump instruction. Now by copying those four bits into the or by using those four 

bits in the generation of the target address, what we are essentially saying this is the jump 

instruction and its target differ in only 28 bits and therefore, the maximum distance from 



the jump that the target could actually be, is about two power 28 bytes, which is equal to 

about two power 26 instructions (Refer Slide Time: 31:41).  

Remember, that each MIPS instruction occupies four bytes. So, what is this mean? This 

tells us that as far as the actual distance between the jump instruction and its target, the 

number of instructions that could lie between them, is could be as much as two power 

26. How much is two to the power of 26? You remember, the 2 power 20 is 

approximately one million.  

Therefore, the number that we have over here is significantly more than a million 

instructions, that is 2 power 6 multiplied by million instructions, which is tens of 

millions of instructions, which is conceivably, unlikely, to be the case for programs that 

rewrite will have to be an extremely large program, near about million instructions 

before this problem kicks in; that the 26 bit target is not adequate to represent the number 

of the instructions, the distance between the target and the jump instruction. 

 So, going back to the diagram; the data, the stack and the heap, the data is stack this is 

statically allocated variables. The stack is a stack allocated variables and we understand 

that the stack will grow and shrink with Function Calls and Returns, and the heap 

similarly, may have to grow and shrink depending on how dynamically allocated 

variables are created and freed.  

(Refer Slide Time: 33:01) 

 



Now, as far as, stack allocated variables are concerned, let me just recap. The space for 

stack allocated variable such as function calls, function parameters, function local 

variables. This is allocated on function call and reclaimed on return and as we also saw, 

the variables themselves, the addresses are calculated and use by the compiler, relative 

either to the top of stack pointer, or some other base register such as the frame pointer 

that I refer to earlier in this lecture. Therefore, the addresses of these stack allocated 

variables or computed and used by the compiler, based on the picture that we had of the 

stack. 

The compiler knows what the contents of the stack are, since the compiler is in charge of 

generating the instructions, which are going to cause those items to be pushed or popped 

from the stack. So, in some sense, one could summarize stack allocated variables by 

saying that the growth of the stack, the growth and the shrinkage and growth of the stack 

area is manage by the program, as generated by the compiler. If you are writing your 

own assembly language program, it would be on your direct control. If you are writing 

the C language program, you have no idea that these activities happening, the 

instructions to do this are generated by the compiler. 

(Refer Slide Time: 34:15) 

 

Now, what about heap allocated variables? Now, I had mentioned that heap allocated 

variables are the variables, the pieces of data, whose lifetime starts from an explicit 

creation point, and the life time ends at an explicit reclamation point or freeing point. 



And that this is done in C programs by a memory allocation library. We know that there 

are Functions like malloc, realloc, and free. Malloc is used to allocate a dynamically 

dynamic variable. 

Now, I am not telling you that these functions are actually members of a memory 

allocation library. So, just like they were a Mac library, there is memory allocation 

library. So, some where there is going to be a dot o file (Refer Slide Time: 35:05) which 

is going to get linked into your program and as a result of which the instructions of the 

memory allocation library get executed when there is a call from your program to do a 

malloc.  

Once again a series of instructions are going to get executed through which the dynamic 

allocation of space in memory happens, and the implementation of that allocation is done 

by the memory allocation library. So, somebody writes this library, the functions of this 

library, such as malloc, realloc and free, and make some available to you, and you get the 

compile version inside the object files, such as a malloc dot o. Now, if your program uses 

such functions then this just like the Mac library, the memory allocation library will get 

linked to your program and will (( )) those functions will be available when your 

program executes, just like any other functions. 

So, these are the functions, just like any other functions. So, just like the function call 

and return that we talked about, the function call and return operation, that we talked 

about would happen in connection with the malloc, realloc and free. They are functions 

in a library, which are called by your program when it does a heap allocation. So, what 

about the growth of the heap area? What you are being told now is the memory 

allocation library is returned to allocate space, out of memory on requests for a malloc, 

realloc, free etcetera, but how is the allocation of that memory actually done. 

We saw that the compiler does the allocation of stack allocative space. In the case of 

heap allocated variables this is obviously, managed by the library functions. They may 

be situations where it needs more memory to be associated with it, in which case, it 

would get those additional space allocated to it, and then proceed, and we will be able to 

talk more about that only after a few more lectures. For the movement, it is clear that for 

programs is do a lot of dynamic, use lot of dynamic variables. These functions and their 

implementation could be crucial to the performance of the function, therefore one could 



conceivably even think of writing one’s own version of these functions if one is 

uncertain about the quality of the functions that are available by default.  

And in a basic (( )) on data structures, one might learn simple ideas about how to write 

Functions of these kinds. Now with this, we have seen a simple example of writing MIPS 

code, we will see more examples of dealing with MIPS instructions, when the need 

arises, and where necessary I will revert back to the table of instructions. So, that, the 

meaning of each instruction and its form that it takes will be quite clear. 
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Now, we need to move on to our next important topic of discussion, which is, to actually 

learn more about… Actually, before I proceed, let me just remind you that at this point, 

we seen a lot about Main Memory. We have seen a lot about the CPU in the sense of we 

know now what the different kinds of instructions, and the different kinds of addressing 

modes that the CPU has to deal with that; and we understand pretty fully what the 

registers are; that they are special registers like the program counter of the instruction 

register, and the general purpose registers, and that basically the execution of the 

instructions is manage by the control. We have not seen anything about the MMU or 

cache yet, but you will do so, shortly ok. 

Now, we are going to now move into a stage where we concentrate on the Functioning of 

the processor. We want to understand what happens when an instruction is executed. We 

know what happens when a program is executed. We talked about how when a program 

is executed the program is present in main memory and the instructions of the program 

one by one get executed inside the processor. So, we are now at that level where we want 

to understand. We will understand more about what happens, when a program executes, 

the basic step in the execution of program, is execution of a single instruction, which is 

our next target. We want to understand what happens when a single instruction executes.  

So, what are the steps in processing a single instruction? Our base assumptions (Refer 

Slide Time: 39:15) is that to start off with the instruction is present in Main Memory, and 



that to be executed, the instruction must be present inside the processor, because it is the 

processors that has the hardware to execute an instruction. The Main Memory just has a 

capability of remembering things. 

(Refer Slide Time: 39:33) 

 

Therefore, as far as the steps in instruction processing are concerned, the first step must 

be to get a copy of the instruction from main memory in to the processor, and a word 

which is typically used to describe that operation is the word, “Fetch”, so one talk about 

fetching an instruction from main memory in to the CPU. So, that is the first step. 

Now, once the instruction has been fetched from the CPU into the memory, it can be 

processed. Because the instruction will be present inside the instruction register, which is 

one of the special purpose registers, inside the CPU. And therefore, the control hardware 

can examine that instruction and start processing it. But, how does it process the 

instruction? We seen that the instruction will be in a well defined format and so, it is 

possible that the first instruction is jump register instruction in which case we know that 

it is in that, say the I format. So, how does the processor hardware process the instruction 

from this point on? 

Now, the first thing that the processor hardware must do is, given that the instruction is 

present in the instruction register, it must understand the instruction, and typically the 



name that is given for this step of processing of the instruction is to use the word, 

Decode (Refer Slide Time: 40:44).  

You will remember that the instruction is present in memory in the binary from, and 

some of the bits of the instruction are contained information, about what the instruction 

is suppose to do, other bits in the instruction contain information about what the different 

operands are, in the case of the MIPS one R format, the information about what the 

operation of the instruction is contained in some of the most significant bits which was 

the Opcode field, as well as, some of the least significant bits, which was the functions 

field.  

Therefore, all of that information together will be necessary to decode the instruction. 

Therefore, while the instruction is sitting in the instruction register, the hardware must 

examine the appropriate bits of the instruction in order to understand what instruction is 

suppose to do, using the information about the instruction format. In other words, what 

bits of the instructions are used for what purpose? Once this has been done, instruction 

can be executed (Refer Slide Time: 41:38). In other words, the operation that is required 

of this instruction can be done. 

And the term, which is given for that is to talk about the instruction being executed, 

doing whatever the required operation associated with that instruction is. Once this has 

been done, the result of the instruction can be written (Refer Slide Time: 41:57). So, this 

will be refer to as, “Write”, typically for many instructions the completion of the 

instruction will involve writing a value into a destination register. Hence, the names of 

this particular step as write. 

Now, we could look at the sub steps involved in each of these main steps, where there 

this four means steps: fetch, decode, execute and write. Now, what are the sub steps? As 

far as fetch is concerned, it is a fairly clear that in order to get the instruction out of 

memory, the processor must give memory, they must identify to memory, which 

instruction it is interested in. The processor keeps track of which instruction it is 

interested in its special purpose register Call the program counter. Therefore, the way to 

look at the first step of instruction execution is that processor sends the value inside the 

program counter to the main memory. 



The main memory on receiving that information looks up in its memory and returns the 

instruction at that particular memory location to the processor. The processor then takes 

the instruction that is got from memory and put it into the instruction register.  

So, the steps involved in fetching the instruction from main memory to the processor we 

can now write think of as the processor sends the program counter value to memory, 

memory sends back the instruction to the processor, the processor puts it instruction into 

the instruction register, and then this additional step, increments the program counter. 

Now, let us just think of the situation where the second step is not there. What would 

happen? The program counters, unless there was a control transfer instruction program 

counter, which remain unchanged.  

In other words, the same instruction would get fetched over and over again, and executed 

over and over again, very clearly, since the default mode of execution is for the processor 

to finish executing one instruction and if it is not control a transfer instruction to then go 

on to the next instruction. 

There is a need to automatically increment the program counter as part of instruction 

execution and in this particular description of instruction execution, instruction 

processing, I am talking about incrementing the program counter at the step of 

incrementing the program counter as happening inside the first step of instruction 

processing. In other words, I am choosing to describe increment program counter, as an 

operation that happens during the fetching of in instruction. 

So, if the program counter value, which was sent to memory was 100 (Refer Slide Time: 

44:34), then after incrementing the program counter, bearing in mind that each 

instruction is of size 4 bytes, the value should now be 104. Therefore, when we talk 

about incrementing the program counter, what we actually mean is, incrementing by four 

since the MIPS one is byte addressable and the size reach instruction is 4 bytes. 

So, we fully understand what the first step in processing an instruction is. The step, 

which we call fetch instruction. What is involved in decoding the instruction? The next 

step now, as I had mentioned the decoding the instruction involves, the hardware inside 

the processor examining the instruction, the various bits of the instruction, as it resides in 

the instruction register with the purpose of understanding what the instruction is of; what 



the instruction is in terms of; what the operation is suppose to be; what the different 

operands are; what addressing modes are used; etcetera.  

Now, before the instruction can actually be operated, its operands must be available. I am 

having shown that as an explicit separate step inside this four step sequence. Therefore, 

that must be the second basic operation that happens as part of decoding the instruction, 

getting the operands wherever they may be. Now, in the case of the MIPS one instruction 

set, we know that the operands could be in registers, in which case they can be of general 

purpose registers or are the instruction register, in which case they could be immediately 

be obtained within the processor itself. If on the other hand, the operands are to be 

obtained from memory, as this is the case with the load and stored instructions. 

Remember, in the MIPS one instruction set, the only instructions, which take operands 

out of memory, are the load and store instructions. And the load and store instructions 

take their operands in a base displacement addressing mode, for which certain 

calculation has to be done, in order to calculate the effect the address of the memory 

operand. 

Basically, for example, if there was base displacement addressing mode, as we have just 

seen minus four from R 29. Then in order to find out what this actually means, the 

hardware has to look at the contents of R 29, R 29 might contain the value one thousand 

and then it has to add to this displacement minus four. Therefore, calculates the value of 

the operand is 996. So, that is why there is an explicit step which is called calculating the 

memory address (Refer Slide Time: 47:01) if the certain addressing modes, there is a 

need to do some arithmetic, in order to find out what the memory address is.  

In the case of the MIPS one instruction set, this is the case for the base displacement 

addressing mode, for more complicated instruction sets, you will recall the addressing 

modes, where different kinds of arithmetic may have to be done, such as the index 

addressing mode, where the contents of two registers have to be added, or the post, or pre 

auto increment addressing modes, where a constant may have to be added to a register as 

a side effect of the operand calculation of the memory address. But in general, in order to 

get the operands to the instruction, it is possible, that some calculation has to be done 

first, as in our MIPS one example of base displacement addressing mode. 



So, I am including two basic operations, as far as, fetch is concerned. That is getting the 

instruction from memory into the instruction register, and incrementing the program 

counter. I am including two basic operations, as far as, decode the instruction is 

concerned; understanding the instruction, as well as calculating memory operands and 

fetching operands. What is involved in executing the required operation? Well this will 

depend on what the operation is, you will know that if it is an add instruction, then the 

add functionality in ALU will have to be activated. If it is a multiply instruction, the 

multiply will have to be activated. 

If it is a control transfer instruction, something else will have to be done. If it is a load or 

store instruction, memory will have to be involved in doing the required operation. So, 

the step of doing the required operation will depend lot on what the instruction is and on 

case by case basis, the hardware would have to do the appropriate, initiate the 

appropriate activity. For the net effect will be that the instruction will get executed or 

whatever the instruction had whatever the intent of the instruction was will have to be 

achieved. 

Finally, once the instruction, that operation has been completed, the results of the 

execution of the instruction can be committed, can be written. For example, if the 

instruction was ADD R1, R2, and R3. Then as part of execute the value inside R2 and 

the value inside R3 would have been added, yielding a result, which is what will be 

stored into R1, in the write the result of the instruction stage. So, we need to stress this 

out a little bit more. 
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So, the steps in instruction execution we can now talk about as follows: fetching the 

instruction from memory to processor, decoding the instruction, and getting its operands, 

executing the operation, and writing back the result, which we explicitly write down as, 

fetching the instruction involves two operations: one is sending the program counter 

value to memory, memory will respond by looking up with the current contents of that 

memory location or sending a back to the processor, which stores that instruction into the 

instruction register.  

In addition the processor will increment the program counter, which is same as far as the 

MIPS one instruction set is concerned, the same as PC equals PC plus 4 (Refer Slide 

Time: 50:09). Decoding the instruction getting its operands, involves decoding, 

calculating the address of the operands, getting the operands either from registers or from 

memory into the ALU. They are required inside the ALU, since it is within the ALU that 

the instruction functionality is implemented in hardware. What is the executing the 

operation involved? It involves triggering the appropriate functional hardware and if it is 

load or store instruction, it involves triggering an operation at memory, in the main 

memory. 

Finally, writing back the result, we typically involve updating destination register or 

memory. So, this is just a slightly more systematic description of the operations as we 

have described them. I do want to comment on just one thing in before closing this 



lecture, and that is, the fact that we have assumed that the incrementing of the program 

counter by four as what happen in the case of the MIPS one instruction set, happens as 

part of the first step in instruction processing, is interesting. Because this now gives us a 

little bit of an idea, about the description of some of the instructions, in terms of the 

meaning of the instruction, in the tables that we saw.  

And if you look back at the meaning of some of the instructions, where they was some 

doubt has to why PC was not used, but rather PC plus 4 was used, or P C plus 8 was 

used. You now understand that at the time that the instruction is being executed, if one 

wants to refer to the address of the instruction, one should understand that subsequent to 

incrementing the program counter, the address of the instruction is self will be P C minus 

4. Because the program counter would have been incremented by four, before the 

instruction itself is executed, and therefore, the address of the instruction which is 

currently being executed will actually be P C minus 4. 

 And therefore, in looking back at the table that I am referring to, the table of meanings 

or the different instructions, in this slide, a little bit more idea about what is actually 

happening will arise. Of course, we are still not too sure about the P C plus 8, as far as, 

the jump and link instruction is concerned. You will recall that in the jump and link 

instruction at the value PC plus 8 get stored into R 31, which is still a little bit of a 

mystery.  

So, we will have to wait for little while before we understand this. So, at this point we 

understand the steps involved in instruction execution, and in the next lecture, we will 

proceed to look at how those steps would actually get implemented in terms of very 

simple hardware, and the implications of that very simple hardware on the amount of 

time that it would take to execute any one instruction of a processor, which implements 

something like the MIPS one instruction set. 

 Thank you. 


