
High Performance Computing 
Prof. Matthew Jacob 

Department of Computer Science and Automation 
Indian Institute of Science, Bangalore 

 
Module No # 09 
Lecture No # 40 

 

This is lecture forty of the course on High Performance Computing. For the past few 

lectures, we have been looking at parallel programming. We had a brief look at 

characteristics of parallel machines. We understand that a parallel machine is a computer 

system in which there is more than one processor. 
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This could range from something like a cluster of workstations, a cluster of PCs, in other 

words, a network of computers to a specially designed machine which has multiple 

processors sharing physical memory. In the process of trying to understand more about 

how to program a parallel machine not using shared memory ideas, which we saw during 

our discussion of concurrent programming, but rather the programming of parallel 

machines using the message passing idea which we had mentioned earlier. But we are 

now looking at, in more detail. Now, in order to program, to write parallel programs in 

which the individual processes communicate with each other through message passing, 



there must be support provided by the underlying operating system which runs on the 

individual processors of the parallel computer. And this must take the form of what I will 

call functions provided or supported by the operating system for the explicit sending of 

data from one process to another such as in this notation which I am using here, this 

particular notation is not standard to any particular system, which is unfortunate that it 

becomes necessary for the programmer to learn the specific details of sends and receives 

as these functions are often called, on the different operating systems or systems on 

which the parallel programs are to run. 

Fortunately, we have message passing libraries which abstract that way making it 

unnecessary for the programmer to learn about the individual systems, but rather just has 

to learn the library functions of that particular message passing library. And we are 

talking about MPI- Message Passing Interface, which is a currently a fairly popular 

library for the message passing programming of parallel computers. 

(Refer Slide Time: 02:13) 

 



(Refer Slide Time: 02:18) 

 

These are two good references to read regarding MPI. And as I mentioned, MPI is a 

application programmer interface for writing message passing parallel programs which 

hides the hardware and software details of the underlying system, thereby making it 

possible to write portable programs- parallel programs which you could run on one 

machine and then without any change to the program, run it on another parallel machine 

as long as  both the parallel machine support the message passing interface MPI. 

MPI is implemented as a library. So, as far as you are concerned, you write your, what I 

will call MPI program. Make sure that the system on which you are going to run it, 

supports MPI. In other words, that the MPI library is available and subsequently 

regardless of whether the system uses very standard hardware and software or custom 

designed hardware and software, your program will be able to run on the system which is 

the portability advantage. 
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I had briefly looked at some of the key functions and constants of MPI in the previous 

lecture. We noted that all the MPI functions and constants start with the prefix MPI 

underscore making it quite easy to recognize them. A program, an MPI program must be 

written to start by initializing itself using the MPI init function, and as you would 

possibly imagine, what this function might do is to set up the infrastructure. It is possible 

that its need to set up some buffers or it needs to set up processes on the individual 

compute nodes in order to allow the message passing communication to happen. 

Subsequently, the programmer must know how to do sends and receives and we must 

understand the details of the send and receive functions more carefully and in these 

function calls, one may need to make use of certain predefined constants which are given 

rather than having to value of the constants 0 1 2 or 3. One could use a name for the 

constant which gives the program a better readability. 

So, we do need to understand more about these functions. We will manage with 

approximately with an understanding of about ten functions overall which should be 

adequate to write most of the parallel programs that may be of interest to us. 



(Refer Slide Time: 04:24) 

 

Now, one question which will arise before we move to the individual functions is how 

does one construct an MPI program. With the discussion that is going to follow in this 

lecture, we will know how to write an MPI program. But obviously, that MPI program 

will subsequently have to be compiled or something of that kind before it can be 

executed on a parallel machine and that is what I am referring to by the word making-

how does one construct and write a parallel program and then cause it to be a 

transformed into version that can be executed on a parallel computer. 

Now, the thing which must be noted is that, in compiling an MPI program, one must of 

course make sure that it is linked with the MPI library functions. Because when you 

write a MPI program, it will be using the functions that we had seen on the previous 

slide. And they are not present in your programs, instead you did not write them and they 

are present in the library which must therefore, be incorporated into the executable 

version of your program by linking. And this is similar to the way that you had to link 

the math library if your program was using a math functions. 

So, just like there is a math.h header file, there is an MPI.h header file in which the 

declarations and definitions are contained and subsequently by the linking of the correct 

MPI.o file, the various functions would be incorporated for use by your program at 

runtime. Now in the previous class, I had talked about the different versions that a 

program may take depending on whether one is running the program on an MIMD 



parallel computer using Flynn’s classification or a SIMD parallel computer. And I had 

used the notation SPMD standing for Single Program Multiple Data or for Shared 

Program Multiple Data as a kind of programming model which could be used to 

program, let us say an SIMD computer. 

Now, it turns out that in MPI, people commonly use this SPMD mode. In other words, 

they will write a single program which generates a single executable; what I mean by an 

executable is an executable file like an a.out and this executable file will then be run on 

each of the processors or each of the nodes of the parallel computer. So, it is the same 

program that is running on the each of the nodes. And we have seen an idea like this 

when we talked about concurrent programming. 

You will recall that we talked about the possibility of writing a program which runs as 

two or three processes. So, one would write a single C program, let us say, and one 

would compile it and then one could run the program. In the context of concurrent 

programming, there was no question of running it on more than one processor because 

we were talking about a situation where there was only one processor, but the program 

could run as multiple processes because we may have included a fork system call, which 

cause a new process to be created when the program was executed. So, in that sense, 

what we were doing in that form of concurrent programming was to write a single 

program which could run as many processes. And the idea that we are talking about over 

here, is similar. 

Rather than writing a separate program to run on each of the nodes of the parallel 

computer, we write a single program which contains information about what all the 

different processes which are cooperating towards the common objective are going to do. 

Along the lines of what we did in the case of the concurrent program, you will recall that, 

in case of the concurrent program, we looked at the return value from fork to determine 

whether the process which was executing at that point in time was the parent or the child 

process and depending on the return value we would then move to a different part of the 

program to do what the child had to do over the parent had to do. And something this 

similar could be done for an MPI program where, depending on the identity of the 

process which is running the program a different portion of the program could be 

executed thereby allowing many different activities to be described. 



So, this is one of the more popular modes of writing MPI programs. MPI programs could 

be written in different modes as well, where you have different executable for each of the 

processes. The simplicity one gets from this is that, there is a single executable file which 

could be run on each of the nodes. Now, some multiple instances of it executed in 

parallel; one instance of this executable running on each of the processors of the parallel 

computer. 

Subsequently, there is the other issue which we have talked about last time. How does 

one actually cause, let us suppose, I have a parallel computer with one thousand nodes 

then I would have to cause this executable file to run on each of the thousand nodes 

which would take a long time for a human being to do. One would have to type a.out on 

the shell prompt of each of the one thousand processors constituting the parallel machine 

which would take a long time. 

So, fortunately the implementations of MPI will typically provide you with a command 

which is often called MPI run, through which you would cause the initiation of the 

thousand processors to happen through the services of MPI run; to the single executable 

file a.out would be taken as input by MPI run and run on all the thousand processors. 

Now, depending on how many processors you want use on the parallel computer, you 

could provide inputs to the MPI run. 

So, the options to MPI run will typically be the number of processes that you want the 

MPI program to run as, and if you have sufficient knowledge about the parallel 

computer, specifically which processors of the parallel computer you want the different 

processes to run on. As you can imagine, to specify a processor of a parallel computer, 

one would have to have processor IDs of some kind and therefore, its more often useful 

to try to think of scenario if one was writing an MPI program to run on a network of 

computers in which case each of the computers in the network would have its own 

network address or IP address and one could possibly specify the individual processors 

in that form by the IP address of each of the processors in the parallel computer. But 

these are the two options which MPI run, a typical implementation of the MPI run would 

take- the number of processes that you want to program to run as and further possibly the 

specific processors where you want the processes to run. 



Now, this is an interesting idea because it suggests that you could write an MPI program 

without taking into account the actual details of how many processes that is going to run 

as. So, you could write an MPI program so that it runs as some n-processes and then you 

could actually run it as sixteen processes one day or as thirty-two two processes the next 

day without actually changing the program, but by just providing the correct information 

about the number of processes in the execution of the program through MPI run. 
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Now, one of the important concepts in MPI is what is known as the MPI communicator 

and you will recall that, when we talked about send and receive, I pointed out that it is 

critical that the identity of the sender and the identity of the receiver must be known 

because, in doing the send, the program of the sender must mention the intended 

recipient. So, there is this need to have the identities specified within the program and 

therefore, to distinguish between the different processes constituting the MPI program 

and central to this is a notion of a communicator. 

Basically, a communicator is a mechanism to define a communication domain for a 

given communication operation, essentially the set of processes that are allowed to 

communicate among themselves. So, an MPI program could be written to have many 

different sets of processes depending on what communication requirements of the 

program are. Let me just give you a very simple example, 



that suppose if I am writing a parallel program which I know is going to run as four 

processes, but I know that in achieving the common objective, it is sufficient for process 

P 1 and process P 2 to communicate with each other. There is some data which must be 

communicated between P 1 and P 2 possibly both ways. Further, I know that it is 

necessary for process P 3 and P 4 to the communicate with each other and it might be the 

case that, I also know that towards the end of the program, process P 2 and P 3 have to 

communicate with each other. 

So, I know that there these three pairs of communicating process that have to be 

achieved through the MPI program. Now, one way that I could handle this is by setting 

things up so that, all the processes allowed to communicate with each other. An 

alternative is that, I could use this idea of the MPI communicator and note that for the 

earlier parts of the program, I have to have one communicator which I will call- c one, 

which is defined as the communication for the communication between P 1 and process 

P 2. I could define another communicator which defines communication to in process P 3 

and process P 4 and possibly a third communicator which indicates communication 

between process 2 and process 3, thereby avoiding the necessity for declaring all the 

processes as being part of one communicator which could potentially have to 

communicate with each other. But the communicator itself is just this. They construct 

within MPI through which the system keeps track of what processes may have to 

communicate with each other. 

Now, the way that things are set up is that, when you write of MPI program by default, 

initially, all the processes will be assumed to be part of a single communicator. And we 

can refer to that single communicator as MPI communicator world. The word world here 

is suggesting that it includes everything; all the processes which will come into existence 

when this program runs. 

So, in in effect, the default will be that the program, an MPI program would run as with a 

single communicator. In other words, with a possibility that any two processes on the 

system can communicate with each other, since all the processes form part of single 

communicator. This would have been the case, in our example, If I had not tried to 

declare communicators, but I had just used the default, in which case, when I run the 

program as four processes, they would all be part of MPI comm world, the initial default 



communicator and therefore, any two processes in this set a four could communicate 

with each other. 

Now, within a communicator, each process has what is called a unique rank. And I had 

use this term when we looked at the list of functions in the previous lecture. Essentially, 

what the idea of the rank is going to do is serve the purpose of the process identifier. 

Recall that, in doing sends or receives, one had to, there was a need to specify the 

intended recipient by its identity and I had pointed out that, using the a Linux or Unix 

process ID which is unique on one processor, but not possibly unique across processors; 

since Unix may or Linux may keep track off on a given processor may keep track of the 

different processes that were created for execution on that processor, starting with P IDs 

going from zero upwards and similarly on other processors, the same P IDs might be 

used for the local processes. 

So, the notion of rank, abstracts, process identification to a level beyond the individual 

processor. And the way to look at this is, on a given, within a given communicator, the 

different processes which have communicating with each other through the 

communicator are assigned ranks numbered from 0 through n minus 1. 

So, if there is a communicator with four processes, then to have one processes whose 

rank was 0, another with rank of 1 and so on; assuming that there are n process 

constituent as parts of the communicator. And as I had mentioned, other communicators 

could be established for other groups of processes. So, long the lines of the upper 

example which I had used. 

So, the two important concepts we see here are, one is the concept of the MPI 

communicator with the default of MPI comm world. Secondly, the notion that every 

process which comes into existence when an MPI program is executed will have the 

unique rank. Now, I should point out right now, that MPI comm world follows the 

syntax, the notation that we had seen for the various MPI functions and for the various 

MPI constants. Its starts with the prefix MPI underscore and from this notation you 

would understand that basically MPI comm world is one of the MPI constants. 

So, just think that it might it might be a constant, let say with a value of 0. So, just think 

that the different communicators associated with an MPI program each has a unique 



constant associated with it and the default communicator has the constant, whatever the 

constant, MPI comm world relates to or corresponds to. The MPI comm world is one of 

the MPI constants which in fact, was on the list that we had seen. 
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Now, let us just look at a very simple example of an MPI program, just to make sure that 

we understand how simple it is to write an MPI program. 

So, basically I am going to be using that SPMD. I am going to write an example where 

there is a single program which is going to be run on all the processors, the one process 

per processor possibly of the parallel machine. 

So, I am writing the single programming in C. So, I am showing you this main of the 

single C program. You recall that any MPI program must start by doing the initialization 

by calling MPI init. So, that is the first thing that I include in my MPI program and any 

MPI program must start by end by finalizing. 

So, I put that is the last thing, the last component of main. In between, there could be 

various kinds of activities that different processes do, based on their activity as required 

by the common objective. The same program is going to run on each of the processors 

which I specified through MPI run. And therefore, very clearly, in the code that follows I 

have to set up things so that, the word executable as when running on one processor, 

possibly running as process with a rank 13 will do different things from the same 



executable running on another processor, possibly running as process number 27; the 

process number 27 in terms of its rank. Therefore, what follows must first of all, make 

certain determinations about this particular execution of the MPI program. For example, 

how many processes are there in this particular MPI program and there is an MPI 

function through which the program can determine how many processes this program is 

running as. Further, there is a function which can be used by any particular process to 

determine what its own rank is. So, we had seen MPI comm rank; a function through 

which an MPI process can determine what is own rank is. So, in this particular call to 

MPI comm rank, there is a need to the two parameters, one is the particular 

communicator that one wishes to know what the rank is and then one passes a parameter 

into which the return value, in other words, the rank of this  process which is running, 

which is executing this particular function, will be returned in the variable MPI rank. So, 

MPI rank would have been declared as a variable, I am sorry, my rank would have been 

declared as a variable, an entity variable in this program. So, after calling MPI comm 

rank, the value of that variable will be the rank within the communicator MPI comm 

world of the process which is running this particular instance of the program. And if I am 

running this program on each of hundred processes or each of each of a hundred 

processors in a parallel computer, then each of the processes running on the hundred 

processors would receive a different value as its my rank. 

So, you can also see that its possible for one process to be part many MPI 

communicators and it could determine its rank in each of those communicators using, by 

putting the correct number of the communicator into the first slot of the call to MPI 

comm rank. Subsequently, depending on what this particular process find its own rank to 

be, for in this particular example over here, I am sort of assuming that if there are a 

hundred processes, then one of them is going to be doing important work which I 

designate as the work done by the master process and the others, the remaining ninety-

nine are going to be doing very similar work which I will designated as the work done by 

the slave process and it looks like I am setting up this MPI program, so that, after each of 

the hundred processes has determined what its own rank is, each of them then proceeds 

to determine if its rank, to check if its rank is equal to 0 and if its rank is equal to 0 it will 

run the function called master. 



Now, only one of the processes will therefore, run the function called master. But if it 

finds that its rank is not 0, then it runs the function, it executes the function called slave. 

And therefore, in writing this MPI program, I would write a function called master which 

contain the functionality to be done by the mater process. and would write a function 

called slave which contains the C functionality describing what is to be done by each of 

the remaining ninety-nine processes in order to achieve the common objective. 

So, this is the general structure of this SPMD, a single program which we will be run and 

each of the hundred, in these example, processes of the parallel machine to achieve the 

common objective. So, this was just to illustrate the notion of rank and communicator 

and how the rank of a process can be determined by the process. 
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Now, just to complicate the example a bit, very clearly the reason that we want the 

processes to know the rank is partly so that, they can each end up doing the right work. 

For example, the master process does a master work and all the slave processes do the 

slave work. 

But at some point in doing this work, there may be the need for one process to 

communicate with another process and that is where the calls to MPI send and MPI 

receive will enter the picture. So, in this particular example, we once again have, I am 

not having, I am not showing you the call to MPI init and MPI finalize. In this example, 



we are assuming that this is just an extract form a larger program. But in this example 

what we are doing is, trying to see how two processes could send; one process could 

send data to another process. 

So, once again I am assuming that each process knows its own rank. And if process can 

find out its rank by calling MPI underscore comm underscore rank, subsequently that the 

whether I say things up is, I know that the process whose rank is 0 is supposed to send 

the data to the process whose rank is 1. Therefore, in the program as I write it, there is a 

part of the code which checks if the rank, if the process finds out that its rank is 0,then it 

is the process which must do the send. On the other hand if the process finds out that its 

rank is 1, it is the process that must do receive in connection with this communication. 

And the parameters of send and receive, you will see about a little bit shortly, but you 

will notice that in common, if you if you look at the way things are set up, the process 

which is going to do the send has a local variable called x and it is the value of that local 

variable which is apparently going to get send. The process which is going to do the 

receive also has its own local variable called x  which is the variable into which it is 

going to receive the value. Subsequently, if either of these process receives first of the 

variable x will actually be referring to a variable that had the same value at least soon 

after the send and the receive were done. But this is how a send and receive pair could be 

set up for process 0 to send to process 1. And in general, prior to this, we were thinking 

of process 0 as operating system process 0 and operating system process 1. Now, we just 

think of them as the process who happens to have a rank of 0 when the MPI program was 

run and the process which happens to have a rank of 1. 
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Now, one of the parameters in call to send and the call to receive, you would have 

noticed, was a parameter with the name m m s g tag which is actually referring to 

something called a message tag. This is another important concept in MPI 

communication, the idea of the message tag. And basically, the reason that a message tag 

is necessary because it is quite possible if you are writing as non-trivial program that 

processes which are communicating with each other toward the in terms of needing to 

corporate may in fact, need to send more than one message to each other. So, it may be 

necessary to process P 1 process with a rank of 1 to send one message to process P 2 

early in the program and send another message to process P 2 a little later in the 

program. 

So, the message tag is one of the parameters in the calls to send and receives. And there 

is a facility through which it is possible to differentiate between different messages that 

are being sent between let say, the same pair of processes. So, the message tag value is 

carried along with the message in both and used in both the send and the receive calls, 

and provides this capability of distinguishing between two messages that was sent from 

the same sender to the same recipient and that is what we have illustrated in this 

example. 
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So, once again, I am showing an example, an extract from a larger MPI program. Here 

the objective is that, after the processes have determined what their ranks are, process 

with rank 0 is sending data to the process with a rank 1. So, process with rank 0 does 

certain things, the process with rank 1 does other things. In this particular example, the 

process with rank 0 is doing two sends; first this send and that send to the process with 

rank 1. And in order to distinguish between these two sends, it could use a different 

value for the message tag variable and once again, message tag is a variable local to the 

process with rank 1 which could be set up with an the integer variable called message 

tag. 

So, it is possible that message tag the first message is sent with the message tag of one 

and second message is send with a message tag of two. Similarly, the first receive could 

be set up to receive with a message tag of one and the second receive could be set up to 

receive with a message tag of two and the consequence of doing this is going to be that, 

whatever was sent by the process with rank 0 in the first message will be received by the 

process with rank 1 in the first receive. And whatever was sent by the process with rank 

0 in the second send will be receive by the process with rank 1 by the second receive, 

and that will avoid possible confusion about what which data is going to be received by, 

which data sent is going to be received by which of the receives. And we should notice 

that there is a possibility and a very complicated parallel machine that the two send 

messages may actually not be received in the same order, such all the more important to 



have this message tags to distinguish clearly between, the data sent by the one send and 

the data sent by another send. 
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Now, so, the idea of a message tag, we understand, we should note that it is conceivable 

that, in a particular program, you may have setup the programs so that it is not critical, 

that the messages be received in a particular order and that you do not really care 

whether the first receive receives the data sent in the first send, over the second receive 

receives the data sent by the second send. So, if you if the application is such that you do 



not really care, unfortunately there are no option of mentioning message tag one or 

message tag two in both of these locations. 
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And therefore, MPI actually give us an option for message tag which is what is called a 

wild card. It is basically wild card indicating that it is not a specific value of message tag, 

but some general kind of a notation for a value. And this is to be used in the special case 

where we do not really want to match a particular send and a particular receive, but do 

not mind which data is received by any one of the receives in process P 1 in our example. 

So, this case one would include as the message tag, is the MPI constant MPI any tag. 

MPI any tag is what is referred as a wild card to be used in cases where one does not 

really care what the value of the message tag is. In another words, for the many 

communications between process P 1 and process P 2, we do not mind which order they 

are received by the process P 2 and therefore,  all of the receive MPI calls within process 

P 2, we could use the MPI any tag as the message tag. 
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So, the consequence is that they need not be sending matching sends and receives. Now, 

the default as we understand is that, one may use message tags and that the sender will 

specify in the MPI underscore send function call. The send ,in our example process P 0 

must mention what the destination is. In other words, that you want to send it to the 

processor with rank 1 and it could also specify the tag. And at the point of receive, we 

note that once again, the receive function it indicates the recipient not only where the 

message came from, but also the tag with which it was sent and that this, as part of the 

function receive, an attempt is made to check whether the value of this these two fields 

match with each other. 

Now, in the case of the tag, we saw that there was the possibility of indicating that we 

did not care which tag the message came with. The same is also true in the case of the 

source of the message. So, in the receive system call, it is possible to say rather than 

saying that this message receive is supposed to receive a piece of data that was sent by 

process with rank 0, one could say that this receive can receive data sent from any source 

using the MPI constant, MPI any source. 

So, it is possible to overcome the default of matching sends and receives using these two 

wild card values for the sender and tag message tag options of the send and receives 

functions. Now, further there are a few flavors to sends and receives. Two flavors to send 

and receives in MPI which are what are called synchronous and asynchronous. we have 



seen these two words earlier, when we talked about asynchronous I/O- input and output 

and there is a similar flavor to what is happening in the case of MPI. 
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Now, the idea of the synchronous message passing is, that after the send and receives, 

the send and receives routines return when there is a message transferred has been 

completed. So, the idea is that I could have a process with rank 0 and a process with rank 

1. And the process whose rank 0 does a send and the process with rank and MPI 

underscore send the process with rank 1 does a receive. These are both function calls in 

those processes if the process. if the functions that I have used are what are known as 

synchronous MPI sends and the synchronous MPI receive. And the property is that the 

actual return from the function MPI send will happen only when the data transfer has 

successfully happened. Therefore, the return from receive similarly will happen, in other 

words, you will proceed MPI program proceed to the next statement in C program, only 

when the actual message transfer has happened. So, in some sense, one could say that, in 

the case of synchronous send, the send; the process which is doing the send will actually 

wait until the complete message has been excepted at the receiving end. It does not 

proceed to the next statement in the program just because the local activity relating to 

MPI send has been completed. 

Similarly, with the MPI synchronous receive, it return, it continues execution of the 

receive only after the data has actually arrived. In some sense therefore, one could say 



that the synchronous message passing primitives available in MPI do two activities. 

Because data to be transferred from the sender to the receiver, but in addition, they 

synchronize the processes because, until the message transmission has been completed, 

both this the process P 0 and process P 1 will be within the MPI function send or receive 

and not able to proceed to the next point in their program. Therefore, the synchronous 

sending and receiving provide us not only with the capability of transferring data from 

one process to another, but also with the capability of synchronizing processes. 
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The asynchronous version, on the other hand, does not provide this facility and may be 

useful in certain kinds of settings. The bottom line is that, the MPI send and the MPI 

receive do not wait for the action to be completed at the other end before they return, and 

allow the individual local process to continue to the next statement in the program. And 

this had consequences as far as the implementation of MPI send or MPI receive is 

concerned because it will require that some local storage be used to remember the 

message and the way to think of this is, if there is a function called MPI send and as soon 

as the MPI send has transferred the data which is supposed to be send to a local variable 

of the MPI library, you can go on to the next statement. Very clearly, there must be this 

local storage, in order to allow the MPI send to quickly go to the next statement in the 

program which is why I reminded you that we have seen asynchronous I/O where it was 

possible immediately after a file I/O operation for the process which did the file I/O 

operation to go on to the next statement in its program, regardless of whether the I/O 



operation had completed or not. The situation is very similar here. The idea is to allow 

the programmer to write the MPI program to do other activities after the MPI sent has 

been finished some of its activity in the interest of reducing the amount of time that the 

process is blocked waiting for the transfer of data to actually complete. 

So, it will try a little bit more careful programming by the programmer to make sure that 

the receipt of the data by the receiver it not assumed in the statements that immediately 

follow the send. 
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Now, we can now look at the parameters of the typical MPI send function. Now, the 

typical MPI send function has six parameters- the first parameter is the address of the 

buffer which contains the data that is to be sent. The examples that we had for example, 

there was the address of the variable x which contain the value that process 0 wanted to 

send to process 1. The second parameter is the number of items that are to be sent. Now, 

until now we would be assuming that a single integer value had to be sent. But what if 

this buffer is an array which contains a large number of integer values. It should still be 

possible for the entire array of values to be sent .That is why there is this notion how 

being able to specify, how many values from the buffer are supposed to be sent as part of 

the message. So, if for example, we want the first three values in the buffer to be sent, 

then we could indicate that the number of values from the buffer that are to be sent is 

equal to three. And how big each of the values that is to be sent? That is specified by the 



third parameter which is the data type. The data type specifies how many the type of 

each of the elements which is supposed to be included in the message that is sent. So, if 

for example, this is the buffer of integers, then the fact that it is integer is what will 

become radiant the data type and you will remember that we had MPI declared constants 

such as MPI int and this is this kind of a situation where one would use the MPI constant 

MPI int, for example, to indicate that each of the values, which each of the three values 

in this example which is supposed to be sent as part of the message is of type integer. 

Now, as always, we know that the destination intended recipient of the message must be 

mentioned in the send call by its rank. Finally, we know that the tag may be used. By 

default, one could use the MPI any tag if one is not too concerned and finally, the 

communicator within which this particular communication is happening is also a 

parameter So, here for example, if we are just using MPI comm world, the default 

communicator, then the declared constant MPI comm world would be the value of this 

parameter. 
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At the receiving end, there is a matching set of parameters which I therefore, would not 

go to in detail, rather let me spend a little bit of time talking about two other variants on 

the kinds of sending that can be done in MPI which are known as the blocking and the 

non-blocking versions of send. Now, the property of the blocking version of send is that 

the the send call returns immediately after the local variables have. The local actions 



associated with the send have been completed regardless of whether they message 

transfer has happened or not. 

As opposed to the non-blocking where returns immediately even though, after the local 

actions relating to the send operation have been completed. And again this would recall 

using the blocking, in the case of the blocking, notice that it talks about returning of that 

local operations have been completed; where as in the non-blocking, it returns 

immediately even if the local operations have not been completed. What do I mean by 

local operations. Basically, one must understand that ultimately the transfer of data from 

process P 1, process with the rank 0 to process with rank 1 is going to happen using some 

underlying operating system functionality and they will be a need to therefore, pass the 

information from the MPI program to the operating system, possibly by copying it into 

an MPI buffer as I had mentioned. And there will be various other local operations 

between MPI, between the your program and the MPI library and also between the MPI 

library and the underlying networking software on the computer system. 

So, these about we are referring to as a local actions. So, in the case of a blocking MPI 

send, so, only after the local operations are completed that the return will happen from 

the send, where as in the case of the non-blocking, even if the local operations have not 

been completing have been completed, the return from the non-blocking send could 

happen. And this once again, will assume that there is adequate storage, for example, for 

the buffering of the information contained in a message and this may be something that 

the programmer has to take care of the allocation of adequate storage for this purpose. 

So, it is, as I pointed out in the second bullet, a little bit of a concern to the programmer 

because the amount of local buffer space which may be available for this local activity 

may be implementation dependent and this may cut into the portability of the program 

that we are talking about. And therefore, one must use a non-blocking calls only after 

carefully understanding the implications in terms of what other, but other kinds of 

facilities may have to be included in the MPI program as for example, ensuring that 

adequate local buffers space is occupied. Where as a non-blocking case would be much 

easier for us to setup, ensuring that the problem any problems with the amount of local 

buffers space are not present. 
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So, I had indicated that, each of the facility send and receive is actually a collection of 

functions because we now understand that there is going to be a separate function for 

sending, a blocking send, the separate function for a non-blocking send and therefore, 

one will come across a family of names for example, the non-blocking send is known as 

MPI underscore Isend and the parameters are similar. There is one additional parameter 

because there is a need for this synchronization to understand whether at what point in 

time the operation has actually finished this local activity. Therefore, I included this slide 

just let you know that in addition to MPI send, one may find other variance in which this 

this concepts of non-blocking or blocking may also be present as different functions. 

And that the other end they will be the non-blocking receive which may be which is refer 

to as MPI underscore Ireceive. 

Now, in the case of this non-blocking send and receive there is a need for the sender to 

actually have some way of finding out when and as and when the send actually 

completes and hence there additional functions is known as MPI wait and MPI test along 

the lines would have to be done in the case of asynchronous I/O for the sending program 

the sending process to check when the send has completed and hence continue to the 

next part of its functionality. 
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Now, the next important part of MPI communication. Now that we have a rough 

understanding of the nature of the send and receive basic functions is another kind of 

communication which is known as group communication. As the name suggest, the idea 

here is, rather than talking about communication between one process and one other 

process, we are taking about ways to do communication between groups of processes 

and as that is as described by disk bullet because until now, the kind of send and receive 

that we were talking about were functions that could be used for what is called point to 

point messages. A communication between process P 0 and process P 1 could be done 

with a send and the matching receive. So, that is what we refer to as point to point 

message. What we are now going to talk about are communication mechanisms for 

communication between groups of processes. 

So, possibly one process sending a message to ten other processes or ten processes 

communicating data to a single process. So, these are what is known as groups. a group 

communication. Now, the group communication as you would understand is actually not 

essential for programming because if you have a mechanism through which you can 

communicate between one process and one another process, then you could use the same 

mechanism to communicate between one process and ten processes, you just have to 

include that mechanism ten times. 



So, the reason that MPI includes group communication is to make thing easier for the 

programmer. Programmer does not have to include the ten sends when one process wants 

to send data to ten other processes, but rather can just include one of the group 

communication calls. So, it is not absolutely essential, but it makes programming a little 

bit more convenient and it may be possible for the MPI library to do the group 

communication in a more efficient fashion, then the programmer may think of while, if 

you were to set it up, he or she was the set it up using point to point communication. 

Now, the examples of group communication which I am going to talk about, are the 

kinds of group communication which are generally known as broadcast, gather, scatter, 

and reduce. I want to talk about barrier. I will talk about barrier as an example, in the 

next lecture. So, what are broadcast, gather, scatter, and reduce? Now, they all functions 

which are available in MPI. For example, the broadcast function is available in MPI by 

the MPI function, MPI underscore Bcast. Similarly, there is MPI underscore Reduce, 

MPI underscore Scatter, MPI underscore Gather and so on for the various other kinds of 

group communication. 

(Refer Slide Time: 42:24) 

 

First of all, let us try to understand what the broadcast functionality is. I am going to 

describe this diagrammatically. So, the situation is, let us suppose that I have a parallel 

program which is running as n processes and the processes have ranks 0 through n minus 

1. Now, each of these processes is going to run, let suppose on a different processor. It is 



going to run the same program and let suppose that I have a requirement that I want to 

particular piece of data to be communicated from Process 0 to all of the other n minus1 

processes. This is the kind of situation where I can, which I can achieve using a call to 

MPI broadcast. So, at the appropriate point in the program, I would have to include a call 

to MPI broadcast. So, that it is executed by all of the processes and what this is going to 

allow me to do is, going to allow me to communicate a single piece of data which is part 

of the address space of process P 0 to all of the other processes with a single 

communication. 

So, with the single call, I have been able to broadcast the value to all the other processes. 

Remember, the alternative what have been that the process 0 would have add to do a 

send to process P 1 followed by a send to process P 2 and so on. It would have had to do 

nine MPI sends and each of the processes in turn would have had to do an MPI receive, 

but the net effect would have been that the programmer would have had to write a more 

complicated program in the current version with broadcast. The programmer just writes 

its very simple program in which each of the communicating processes just does in MPI 

broadcast. 

Now obviously, there is going to be some interesting parameters in MPI broadcast 

because they were all executing the same program which means that the fact that Process 

0 was a process which was doing the broadcast and that the other processes what the 

processes which were receiving the broadcast must somehow be indicated within the 

function call. 



(Refer Slide Time: 44:09) 

 

If you look at the parameters to MPI broadcast, that is would we will find we will find 

out that in addition to the buffer count and data type which was present in MPI send or 

MPI receive and in in addition to the communicator information which was also present 

in MPI send or MPI receive, there is one additional parameter which is what is called 

root and the root is basically the specification of which is the process which contains the 

data that is going to be broadcast to the other processes. 
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So, in our example the example which I am referring to as this one, this Process 0 which 

is the root of the broadcast in some sense, it is the root from which this tree of 

information is going out to the other processes and therefore, the value of root, we would 

find would be equal to 0 in all of these calls to MPI broadcast. So, MPI broadcast is a 

function which is provided in the MPI library for this kind of group communication and 

as you would imagine, this kind of group communication may be fairly wide spread, may 

be necessary for a lots of different kinds of parallel programs which is why it is provided 

by as a basic function of MPI of the MPI library. 
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Now, the next function which I have talked about was a function call scatter. We are 

talking about the different kinds of group communication functions provided by MPI and 

once again we will look at a diagrammatically. So, we have a situation where there is a 

parallel program running as n processes and once again a single call to MPI scatter is 

going to satisfy our requirement. Now, what is the requirement? The requirement is that I 

have a collection of data which happens to be present on let’s say process P 0 in a buffer 

and what I want to do is, I want to distribute the data which is present in the buffer across 

all the n processes of the parallel program. To be more precise, I want the first element in 

the buffer to go to process P 0, I want the second element in the buffer to go to process P 

1 and so on. 



Now, this primitive operation is what is known as a scatter and the name make sense 

once you understand what it does. Essentially I had this collection of data and I want to 

scatter it across the different processes of my parallel program. In this particular 

example, one element is going to each of the processes. So, very clearly once again, if 

we looked at the parameters of MPI scatter, we should find out that it should mention 

both the buffer as well as the location into which the data is to be scattered further 

individual process. In addition, the identity of the root of the scatter must be indicated. In 

other words, the fact that it is Process 0 which actually contains the buffer which is to be 

scattered across all the n processes it is important to note that unlike the case of 

broadcast, it is the scattering of the data includes process P 0 or the root of the scatter 

within it. 
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So, we expect that the parameters are going to be very similar to what we had in the case 

of broadcast. In other words, this set of parameters. The only additional parameter that 

we will have will be the buffer which is going to be into which this scatter is going to be 

done. Notice that we had both a buffer from which the scatter data came and a buffer into 

which this scatter data goes. So, one additional parameter in the case of scatter if 

compared to the broadcast group communication. We will now move to gather. And as 

the name suggests, this is going to do the opposite of what scatter did. In other words, 

this is going to gather data from n processes into one into one process. 
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So, once again in a parallel program running as n processes is suspect that there is data 

which has been scattered or which is available, one data item on each of the n processors, 

but that we want to gather it into either a buffer within one of the processes, let suppose 

that it is Process 0 which contains that buffer. So, the effect of the MPI gather call is 

going to be that the data is going to come from each of the variables data in each of the 

individual processes and gets put into the appropriate slot in the gathering buffer. In 

other words, the data from Process 0 goes into the zeroth element of the buffer, the data 

from process P 1 goes into the first element of the buffer and so on. 

So, this can be, as you can see by scattering data and subsequently by scattering data, it 

might be possible to for example, distribute work to be done by the individual processes 

of the parallel program. For example, if I wanted to do some computation and each of the 

elements of this array, then I could write a parallel program which scatters the data 

across the processes of the parallel program. A processes could then independently 

operate on their portion of the data and after that the computation had been completed, 

they could conceivably send their newly computed value back to Process 0 using a 

gather. So, one can see that in certain applications these kinds of group communication 

could be very useful. 
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There was one other group communication primitive that I had included in my list and 

that was an operation called reduce. And as the name again suggest here, what is going 

to happen is some large collection of data is going to get reduced into possibly a single 

value and in our scenario, where there are n processes, we would understand that the 

objective of reduce must be to take data which is present one value on each of the 

processes and somehow combine it into a single value which will be available on one of 

the processes. So, the question is, what kind of reduction operations might be possible. 

We have come across the notion of reduction operation earlier. We talk I talked about the 

notion of a vector sum reduction. You will recall, when we are talking about the 

different, when we were looking at cache optimizations of loops of programs, one of the 

operations that I talked about was a vector sum reduction where essentially, we were 

computing the sum of the elements in a vector and that is an example of a reduction 

operation of the kind that we were talking about over here. 

So, the reduction that we were talking about might involve gathering the values from all 

of the processes in the variable which they individually call data into one of the 

processes and at that process reducing it by, may be by adding all the values together to 

produce a single value which might be the result of the MPI reduce call. So, in MPI 

reduce obviously, the parameters would be like the parameters in scatter and gather, they 

must be mentioned of the individual data items, the variable which is going to be reduced 



and also of the buffer into which the accumulation is going to be done or the reduction is 

going to be stored. 
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What are the different kinds of reduction operations that are supported by MPI? Here, I 

have actually shown you the parameters of MPI reduce, as we always suspect there is 

going to be the need to specify the communicator in which this communication is going 

to happen. In this particular situation, there is going to be the need to specify both the 

buffer into which from which the data is going to come. 

So, this is what had been referred to as data in my example, and the buffer into which the 

reduction is going to happen which was referred to as buf in the example. Some 

indication of how much data is going to have to be accumulated and of what type from 

each of the buffers and which is the root of the reduce operation. In our example, the root 

was zero. And finally, what operation is going to be used for the reduction. So, one has 

options about a few different operations which could be used in the in the reduction to 

the two which I will mention.  First of all, the possibility of actually doing the sum of the 

different values of data using MPI sum as the reduction operation. Another possibility 

which is supported is to actually compute the maximum of all those values and this again 

may be useful in certain kinds of parallel activities. 



So, in short, there is a family of these group communication primitives through which it 

is possible to improve the performance in MPI program by utilizing the improved 

version of communication as an alternative to individual processes communicating 

values by separate sends and receives. 
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Now, as the closing example, I mean I will go through one more example after this, but 

just to sort of put these things together. Here we have let say, a situation, a brief MPI 

program which you will notice is using three of the MPI functions, is using MPI rank, is 

using MPI size, which I have not talked about. Let me say a word about that. And it is 

using MPI gather. Gather is the group communication function which will gather values 

from each of the n processes into a buffer an array in the root process. 

Now, the objective of this particular program as the common suggest is that, there is a 

collection of ten pieces of data and that we want to gather it into one of the elements of 

the, one of the processes of the MPI program. So, this is declared in all of the processes 

which are running. So, in this program each of the processes determines its rank, stores 

at in its local variable my rank, and depending on whether the process is the root of the 

group communication or not, if the process is the root of the group communication, then 

it finds out the size of the communicator. 



Now, MPI comm size is one of the functions that we had seen in our list or functions, but 

I had not talked about. What MPI comm size returns is the size of the communicator in 

question. And by size, we mean the number of processes involved in the communicator 

or the number of processes in that communicator and the therefore, the drawings of the 

processes within the communicator would go from 0 to group size minus 1. And you will 

notice that what the processs which is the root of the communication is doing, is it is 

allocating a buffer of adequate size to all the data which is going to come from each of 

the processes which is going to be involved in the gather. 

So, it declares a buffer which is going to be the buffer which is used in the call to gather. 

Now, the data which is going to be gathered is going to come from the individual 

processes. So, each of them has data inside its data object data which is going to be 

another of the parameters. So, data is going to be another of the parameters in the call to 

gather, not listed here. Each of them is going to provide ten pieces of data from its, I am 

sorry, ten pieces of data, I am sorry that is the way things are setup. The way things are 

setup is to do this using gather, but you will remember that, in gather we actually had a 

piece of data coming from each into a global buffer. So, in this example, the global 

buffer is of adequate size because it has been declared to be of that size and the 

individual values are coming from the individual communicators from their buffers 

called data which must be specified as the other parameter in the call. Now, from each of 

the. So, buffer was missing in this particular list. From each of the buffers as you will 

notice that ten values had to be communicated and that each of those values was in 

integer which is why we talked about communicating ten values each of type integer, 

from each of the processes to the root process into the buffer. That is why buffer was of 

size 10 multiplied by group size multiplied by size of int. 

So, if there were ten communicating processes, then buffer would have been of size 100 

multiplied by the size of int, possibly four hundred bytes. So, this was a slightly more 

complicated example, but what we will do in the next lecture is to actually look at a 

specific example of a computation as a MPI program incomplete, incompleteness and 

then we will proceed to look at some examples of writing parallel programs not 

specifically in MPI, but from the perspective of understanding how the activity of 

writing parallel program from specification of the problem until a clear identification of 

how the different processes might be viewed could be could be conducted. And we stop 



here and proceed with a more complete example of in MPI program in the next lecture. 

Thank you. 

 


