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Welcome to lecture 32 of the course on high performance computing. You will 

remember that in the previous lecture we had looked at many examples of small pieces 

of C program code and try to understand how they would perform for different kinds of 

cache organizations. And, we got some understanding of how one could improve the 

quality of a loop in order to benefit from the spatial or temporal locality that of reference 

through which the performance with the cache would be improved. 
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Before moving into the next topic, I wanted to just quickly address two issues relating to 

caches; one relating to caches and one relating to pipelining which give us slightly better 

idea about what happens in the processors which are currently quite popular. The first 

question relates to caches in the sense of we talked about the C P U sending an address to 

the cache for look up and subsequently if it is a hit, the data would come from the cache. 



But the question has to whether it was virtual or physical addresses that are used by the 

cache is of relevance. 

So we are looking into the relationship between the addresses that the cache uses, the 

cache hardware uses and the address translation; that we now understand the operating 

system manages but is done by a piece of hardware. So we understood that there are two 

possibilities as to how a cache could be built. 
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The first is under the assumption that the cache is actually based on physical addresses; 

in other words after the processor C P U generates an address, it is translated by the 

memory management unit into a physical address which is what goes to the cache. The 

second possibility is that the address which is generated by the C P U is directly used by 

the cache hardware; in other words the virtual address is what the cache hardware uses 

for its look up tag checking and so on. 

These are two different kinds of caches, you will note that in the second option there is 

the possibility of a cache miss and in the event of a cache miss the data will have to be 

fetched from main memory for which a physical address will be necessary. Therefore, in 

the event of a cache miss in the second option, there would be a need for the address 

translation to happen in order to generate the physical address for fetching the cache, the 

missing block from main memory into the cache. 



So, these are the two kinds of caches we might expect to find. And, I refer to the upper 

kind of a cache as a physical address cache because it is organized based on physical 

addresses. The cache hardware is organized to take in physical addresses. And, the 

second, the lower example lower possibility is what I refer to as a virtual address cache. 

And, we look at some of the negative aspects of both of these in the previous lecture. 
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We understood that there are some benefits of the virtual address cache, in that the time 

of a cache hit would be less than that for a physical address cache, partly because 

translation does not have to be done but also for other reasons. But in both cases there 

are some negatives to the use of the cache organization, the physical and the virtual 

address cache; which nears open the possibility that there is another option which might 

in fact be a good idea. And, the what the third option would try to do is to try to have 

some of the positive aspects of the physical address cache and some other positive 

aspects of the virtual address cache. And, mechanism I am going to describe something 

which will just try to use overlapping; in other words it will try to do in parallel some of 

the steps associated with address translation and cache look up. Now, remember that in 

both the scenarios that we had setup either the virtual or the physical address cache the 

processor generates a virtual address. 
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Now, in the first option that we look at the virtual address went directly to the MMU for 

translation and the second option the virtual address went directly to the virtually 

addressed cache. But we could have a third option in which the virtual address goes to 

both, both to the MMU for translation and to the cache for look up. Now, in the event 

there is a cache miss, we will still need to have the translation completed and that is the 

reason that the virtual address is sent both to the MMU and to the cache, but these two 

are going to be happening in parallel. So, while the translation is being done by the 

MMU, the early parts of the cache look up can happen within the cache. 

Subsequently by the time the address translation is completed and the physical address is 

available, the physical address can be used for the subsequent activities within the cache. 

For example, if by the time the translation has been done, the cache look up in other 

words indexing as already been done, then with the physical address that has been made 

available by the MMU due to translation being completed, the tag checking could be 

done using the physical tag. 
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And, that is the idea which I am showing over here the idea that the virtual address goes 

to both the MMU and to the cache. While the virtual address is being used do indexing 

into the cache directory, it is also being used in the MMU for translation. So that not too 

much time later the physical address is available and the physical address can be used for 

the tag comparison. This will allow us to have something which is neither option 1 that 

we saw in the previous slide nor option 2 in the previous slide, but something new. And, 

this in fact has some benefits so over either option 1 or option 2. 
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And, I will refer to this as I cannot prefer to this as either a physical address cache or a 

virtual address cache. Since, it is both neither and both; it uses a virtual parts of the 

virtual address for indexing and it uses parts of the physical address for a tag 

comparison. Therefore, the only good name for this kind of a cache would be to 

elaborate and say that it is a cache which uses virtual indexing and physical tagging. In 

other words it uses the virtual address bits to index into the cache directory, but it uses 

the physical tag due to the tag comparison. So, this kind of a cache would be known as a 

virtual index physically tags cache, suggesting that the other alternatives that we had 

looked at could have similar names. 
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And, in fact instead of refereeing to a cache as a physical addressed cache, when am 

talking it as a physical index physical tag cache. What we call a virtual address cache up 

to now, in our second option might more accurately be described as a virtual index 

virtual tag cache, in the sense that the virtual address cache that we looked at used virtual 

address bits to index into the cache directory; it also used virtual address bits to do the 

tag comparison. Whereas, the third option that we are just seen is what we call a virtual 

index physical tag cache. Now, as it happens the third option is what is used to be in the 

virtual index physical tag cache, is what is used in the vast majority of processes today 

for the level 1 caches. Remember that we understand that in processors today it is we 

expect to find both level 1 caches which are relatively small but extremely fast. 
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But backed up by level 2 and may be level 3 and level 4 caches which will be larger but 

slower and this is done to offset the speed disparity, the growing speed disparity between 

processors and memories. So, the indication that I am giving is that in today's processors 

so level 1 caches actually use virtual indexing and physical tagging. The part of the 

reason for this is likely to be because we saw that the physical address caches suffer from 

large hit time; it takes a long time to get a hit in the cache because the translation has to 

happen before the cache is refer to. On the other hand, the virtual address caches have a 

much smaller hit time and the virtual index physical tag cache will have the same 

benefit. It will not have many of the negatives associated with either of the first two 

options. 

So, it is preferable option and it widely used in the level 1 caches of today. Just to give us 

a better understanding of how these three differ. I will just go through this diagrammatic 

mechanism for showing it what happens to an address in each of the three cases. 
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And, the numbers which I am going to be using for the different bit fields, the size of the 

different bit fields we will assume a 64 kilobyte direct map cache which has 32 byte 

blocks. In addition, since we are also going to be talking about address translation, 

remember that address translation happens on the, involves mapping of a virtual page 

number into a physical page number. So, suddenly it also becomes important to know 

something about the page size. So, this will also enter the calculations in our, into the, be 

a factor in the diagrams that we are going to look at. 

So, we will start by looking at a physical index physical tag cache and when we think of 

a virtual address, we from the perspective of address translation recall that a 32 bit 

virtual address would have least significant bits that we call the page offset bits and most 

significant bits which we call the virtual page number from our discussion of virtual 

memory. How many bits are used for the page offset? That would be determined by the 

page size. So, if the page size is 16 kilobytes they would be 14 bits of page offset, 14 is 

log base 2 of 16 k. The remaining 18 bits are the virtual page number. Now, if you are 

talking about a physical index physical tag cache, then this address will have to be 

translated by the MMU before it goes to the cache. 
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So, what is the MMU do? The MMU actually translates by replacing the virtual page 

number by a physical page number and the page offset bits, the least significant 14 bits 

are not affected by the translation. Therefore, if I show you what the MMU does, it 

would amount something like this; it translates the virtual address into a corresponding 

physical address. The virtual and physical addresses are identical in the least significant 

14 bits for this particular example. And, they differ only in the most significant 18 bits 

because what that MMU did was it replaced the virtual page number by the 

corresponding physical page number, using the information inside the relevant page table 

entry; possibly available in a translation look a side buffer which is a part of the 

processor. 

Where so, this is the address, the physical address is what is going to be used to access 

the cache, in the physical index physical tag cache and it is this address which we have to 

look at in the light of the cache perspective on addresses. 
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So, this is now going to be viewed as a cache block offset which is going to be 5 bits in 

size because the block size is 32 bytes. It is a direct map cache of 64 kilobytes size with 

32 byte blocks from which we can calculate that the number of index bits required is 

going to be 11 and the remaining bits which in this case will be 16 you will be the tag 

bits. So, the 11 index bits are used to index into the cache or the cache directory and then 

the tag comparison is done. The valid bit is also refer to and if all of these indicate that 

this is the cache hit, then the offset bits are use to select the correct bytes out of the cache 

ram to satisfy the processors request. 

So, you will notice that for this particular example the index bits are coming partly from 

the page offset; just look at where the eleven bits are coming from. The bulk of the them 

are coming 9 of them are coming from the page offset bits which are common to the 

physical address and the virtual address and only 2 of the bits are coming from what is 

now the physical page number side of the address bits. 



(Refer Slide Time: 11:35) 

  

Now, if we now move to the second possibility that we had, the virtual index virtual tag 

cache, which is what we were calling the virtual address cache until now. So, in this case 

the address translation may not happen; address translation is not required if there is a 

cache hit. So, the virtual address itself is viewed in the light of a 5 bits of offset, 11 bits 

of index and 18 bits of tag. The index bits are used to index into the cache directory and 

then the virtual page number provides the tag bits which are use for tag comparison and 

if the indications are that it is a hit, then the correct bits are picked out using the offset. 

Now, if it is the cache miss then the MMU does a translation and we get the physical 

address which goes to memory. So, in this case once again you will notice that all of the 

11 bits which correspond to the index, 9 of them are coming from the page offset bits 

and the remaining 2 are coming from the least significant bits of the virtual page number. 

Now, you may be wondering why am I pointing out where the bits of the index are 

coming from. This relates to something that we were doing in the early parts of the 

previous lecture. You recall that when we were talking about how to figure out the 

number of hits, the number of misses for a loop that is of interest to us from a program, 

that we may be running on a computer. We made some we used information about the 

addresses of the arrays array a or array b etcetera. 

In order to calculate what the index bits are in order to get an idea whether they were 

conflicts hits or misses etcetera. And, at that point we were assuming that the cache was 



indexed using virtual addresses; you are assuming that the addresses which the compiler 

generated in other words the virtual addresses are what we being used for access in 

indexing into the cache and for the tag comparison. And, that is a perfectly legitimate 

assumption as far as the virtual index virtual tag cache is concerned, because it is virtual 

addresses that are use for this purpose in such a cache; but is as we now see not entirely 

correct as far as the physical index physical tag cache is concerned. 
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I have gone back to the previous slide, so you will note that in our calculations in our 

estimates for the various kinds of small examples that we looked at, we did the 

calculations assuming that they were virtual addresses. But in reality the cache was 

indexed into and the tag comparison was done using physical addresses. If we are 

looking at example of the physical index physical tag cache and what difference would 

have made in our estimates of hits and misses, we notice that the index the primarily the 

calculations that we were doing in looking at the reference sequence that we had and so 

on, was to try to find out what the index bits were for a given memory reference. 

We now see that for the example that we have for the sizes that we are looking at here of 

the 11 index bits 9 of them are coming from the page offset region of the address and 2 

of them are coming from the virtual page number or physical page number size of the 

address, which means that when we made the assumption that we were using virtual 

addresses; they would have been some to bits in those 2 positions. But in reality when 



the cache is looked up, they will be some other 2 bits depending on how the address 

translation maps the virtual page number into the physical page number. And, therefore, 

a calculation of those index values would have been wrong in the case of the physical 

index physical tag cache, because we were working with virtual addresses; we had no 

means of knowing what the physical addresses work. 

The physical address of a particular page will change as the page moves in and out of 

memory depending on the occurrence of page faults, we have no means of knowing with 

the physical addresses are. However, once again if you think about what we were doing 

in our calculations, we were trying to cause offsets to happen to prevent index bits from 

being exactly the same. And, these were in situations where we were concerned about 

neighboring or contiguous regions in memory, such as the example we had of the array a 

and the array b I am sorry the vector a and the vector b which had assumed base 

addresses of x a 0 0 0 and e 0 0 0 0. And, under the assumption that these are actually 

fitting on the same page, you will notice that there is no problem. 

So, if the data that we are talking about but actually fit on the single page, then this 

problem does not arise at all. Because all the difference in the different addresses will 

occur within the page offset bits and therefore, there is no problem as far as we are 

concerned from that perspective. However, if the problem, if the data is larger and 

actually causes the difference in the index bits to happen between these 2 bits, then the 

calculations that we were doing would be not precisely correct. And, therefore, we have 

to understand what we were doing is just estimating the behavior as far as the hits and 

misses were concerned in the, in case of this being a word physical index physical tag 

cache. 
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Now, moving to the third option that I just introduced in this lecture, which I referred to 

as the virtual index physical tag cache; you will recall that the virtual address is what is 

used to index into the tag directory I am sorry to index into the cache directory. So, it is 

the 11 bits from the virtual address that are used to index. Subsequently, the address 

translation happens and we get a physical tag which is what is used for the tag 

comparison; the physical tag is use for the tag comparison. And, this is what will happen 

in the case of the virtual index to physical tag cache. 

So, this is what we actually understand is going to be present in bulk of the l 1 caches in 

processors today. And, this two will have the problem that we referred to, in terms of the 

tag bits will be a little bit different if we did our calculations for the behavior of our 

programs based on virtual addresses. However, since the indexing is going to be using 

virtual addresses or calculation of index conflicts is going to be accurate. And, therefore, 

there was no need for us to worry too much about the technique that we used in the case 

of analysis of the simple loops, if we were dealing with virtual index physical tag caches. 

Since, our calculation of which different pieces of data like the vector a, the vector b 

whatever; would actually have conflicts as far as the index bits is concerned, what have 

been accurate in the light of I have using virtual addresses, if it was a virtual index 

physical tag cache. 



So, hence this additional information would be important to us if for example, we get 

more details about the nature of the l 1 caches in the processors that we are dealing with. 

And, the techniques we were using a perfectly legitimate for a virtual index physically 

tag cache or virtually index virtually tag cache, but were only be estimate as far as a 

physical index physical tag cache is concerned. Now, moving right along, also wanted to 

make a few comments about the second question; which will give you; give a rough idea 

about a few other developments that have happened in the area of pipelining. So, we 

talked about pipelining in the light of the 5 stage example there was the pipeline where 

there was instruction fetch instruction decode, execute memory operation and write-

back. And, the question is modern processors really built using pipelines of that kind. 
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Now, it turns out that the kind of pipelining which we saw was getting performance 

benefit by overlapping the execution of many consecutive instructions; that is why we 

had 5 stage pipeline you will recall our notation from many lectures back. The 5 stages 

one for fetching instructions, one for decoding instructions and fetching operands, one 

for use of the A L U, one for the memory operations cache operations, cache access and 

one for updating the destination register. And, while one instruction is being fetched and 

other instruction could be decoded and third instruction could be using the A L U, fourth 

instruction could be accessing the data cache and a fifth instruction might be updating its 

destination register. In other words there was substantial improvement in performance 



because of the overlap of the execution of consecutive instructions; it is overlap in the 

sense that each of the instructions is using a different piece of the processor hardware. 

Now, modern processors would actually be much more aggressive in their attempts to 

improve performance, by using more than just overlap. And, one of the directions which 

more almost all modern processors use is to exploit something known as instruction level 

parallelism. And, this is such a frequently used and prevalent concept that it is typically 

abbreviated as ILP; ILP standing for instruction level parallelism. And, the general idea 

of instruction level parallelism is that rather than just overlapping the execution of 

instructions, it should be possible to execute instructions in parallel with each other; if 

they are independent of each other. 

In other words what we mean by in parallel is that two instructions might actually be 

fetched at exactly the same time, two other instructions might be being decoded at the 

same time, two instructions might be executing at the same time. And, this is we 

understand possible if the two instructions that I am talking about are actually completely 

independent of each other. So, this would clearly provide a much greater level of 

improvement in performance; since, instead of having five instructions occupying the 

processor hardware at a time, if I have two instructions being fetched, two being 

decoded, two being executed etcetera; I actually have ten instructions occupying the 

processor hardware. And, therefore, the rate at which instructions would complete 

execution could be substantially higher and this could lead to additional improvements in 

the performance of processors. 

So, today we find that most processors in program in personal computers or laptops that 

you are using would be exploiting this kind of parallelism in their pipelines. And, they 

would therefore, we call ILP processors; processors that exploit instruction level 

parallelism. 



(Refer Slide Time: 21:12) 

 

Now, the challenge in the design of instruction level parallelism processor is being able 

to identify the instructions which can be executed in parallel. It is only if two instructions 

are independent of each other that they could conceivably be executed at the same time 

in parallel. And, there are two approaches that modern processors, the different kinds of 

modern processors used in order to undertake this activity. The first approach is to 

actually design the hardware, so that the hardware itself analyzes the independence 

between instructions. And, if there are dependence is it keeps to track of the dependences 

in order to make sure that instructions which are dependent do not move through the 

pipeline and cause the execution of the program to be in correct. 

So, the management of the instruction level parallelism is done by the hardware in this 

first approach. And, the name given for these kinds of processors is to call them 

superscalar processors. The general idea that one could have in mind when thinking of 

the superscalar processors, is that until now we had a picture of a processor which might 

have a pipeline processor which might look something like this and they could be one 

instruction being fetched, one being decoded, one being executed, one using cache, one 

being return back. But in the case of a superscalar processor it is conceivable to try to 

think of the same processors as having, let say the capability of not only fetching one 

instruction but a fetching two instructions. So, I might think of it as a processor which 

has hardware complicated enough to fetch two instructions, complicated enough to 



decode two instructions, to execute two instructions, to allow two instructions to be 

accessing cache at a time. 

So, in some sense one could think of the superscalar processor has this hardware which 

is like the pipeline set that we saw before, but has this additional capability at each stage; 

so that more than one instruction can be processed in that stage and that will clearly 

require additional hardware. But this gives us the additional necessity to understand the 

processor with us having an additional dimension. Until now, we talked about the 

processor is having many pipeline stages, I talked about the N stage pipeline. And, we 

saw that N stage pipeline could conceive, in this case we have a 5 stage pipeline but in 

general we could have a 20 stage pipeline, where N is equal to 20. And, the speed up, the 

amount by which this pipeline could speed up the execution time of a program was 

related to N. So, this was one dimensional we talked about this as the pipeline depth; N 

was the pipeline depth a number of stages in the pipeline. 

We now understand that in superscalar processors there is a additional dimension, which 

is the number of instructions they could be fetched or decoded or executed or using 

cache or return back at a time in parallel. So, in the example that I mention that it look 

like two instructions could be in each anyone of the stages at a time and that is not depth 

but what is referred to as the pipeline width; so, that is what is refer to as the pipeline 

width. And, in the example that I just mentioned the idea was the pipeline width was 2 

and we could imagine that they could be pipelines which have a width of 4. In other 

words they have the capability of actually executing 4 instructions in one cycle or 

completing 4 instructions in every cycle. 

And, you could understand that if there was a pipeline which are a width of 4, then you 

could conceivably has have 4 times the performance of a pipeline of width 1; pipeline of 

width 1 would be the simple kind of pipeline that we looked at in some detail. And, 

many of the processors that you may be you familiar with today have widths of 2, 3 or 4. 

So, this is one possibility as far as exploiting instruction level parallelism is concerned 

approach one; where the hardware is responsible for the management of dependences in 

parallelism and such processors being call superscalar processors. 
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The second possibility is that the job of identifying independent instructions could be 

done by the compiler. In other words the compiler could analyze the program before the 

program is executed. Identify instructions which are independent of each other and in 

effect pack those independent instructions together; so that they all of the independent 

instructions in a given cycle could be, if packed together could be moved through the 

pipeline together. And, this kind of an approach is what is known as the VLIW; standing 

for very long instruction word processor approach. 

The term very long instruction word comes from this idea of actually packing many 

independent instructions into one mega instruction of some kind. And, consequently one 

could think of the larger instruction which is the packed version, if it has 4 mix one 

instructions packed into one instruction, to all of obviously have to be over larger size; 

hence the name. And, there are some commercial examples of VLIW processors as well. 

So, this is some suggesting in just as minor addition to what we have talked about in 

terms of pipelining; modern processors do more than the just simple kind of pipelining 

we talked about. With this I would like to wrap up discussion of the cache memory. 
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Our next topic, just going through the agenda sequentially refers to program profiling 

and without further adieu we will move into program profiling. 
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Now, in generally in this topic I am going to talk about two things; one is what I will call 

timing and the other is what I will call profiling. And, profiling is actually something we 

have been talking about before without using this term. And, it is essentially the activity 

of identifying the important parts of your program. And, what we mean by important 

parts; the parts of your program where the most time is spent, because it is these parts of 



the program that you would want to look at more critically and trying to optimize your 

program. 

For example, if had a mechanism, if I have a very large program thousands and 

thousands of lines in size, then you would clearly not be possible for me to do for 

example, pipeline analysis or cache analysis of the entire program. Because we saw that 

to do cache analysis, the number of hits, the number of misses that would be generated 

when the program executes going to some detail into the way that the different variables, 

their addresses associated with variables etcetera; interacted with each other. And, 

therefore, if one could on the other hand identify smaller regions of the program which 

are in fact significantly important, then one could concentrate once activity; optimization 

activity on the smaller regions of the program and get possibly a very good benefit in 

terms of proving the execution time of the entire program. 

So, the activity of identifying the important parts of your program from the perspective 

of wanting to spend your optimization efforts on just those important parts of is what is 

typically refer to as profiling. And, it is obviously going to be important to us; we have 

understood a lot about the hardware and the software side of what happens when a 

program executes. But in order to do something about improving the performance of our 

program, we may have to know which part we should concentrate on. So, for this is a 

critical part of high performance programming. 
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Now, you would guess that an important part of doing profiling might be having the 

capability of getting time estimate; so, the knowing the amount of time that it takes so 

your program to do something. And, timing is in general the term given for determining 

program execution time, but I could also referred to timing as activity of identifying the 

amount of time spent in some part of my program. For example, if I have identified a 

particular function of my important as being important, I may want to know how much 

time was spent just in that function, I may not be too concerned about total program 

execution time on the total program execution time; I might be more interested in getting 

the time as far as some important part of the program is concerned. Therefore, associated 

with profiling they may be the need to know something about timing. 

And, hence you will spend one and half lectures or two lectures on understanding 

concepts and capabilities for doing things like this, timing and profiling of our programs. 
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Let me start with timing. Now, the objective here is to measure the time spent in specific 

parts of my program and could be that I want to know the time spent in next feeding the 

entire program, it could be that I want to find get an idea of the time spent in one of the 

important parts of my program; such as one our particular function or a particular loop 

and what could I mean by the different parts of a program. Well, we have seen examples 

where they were loops that we analyzed. 



So loop; a loop like a dack speed loop or a vector sum loop etcetera, could be examples 

of loops. The other examples that I used were, I might be interested in trying to improve 

one particular function of my program. So, in general when I say parts, I could be talking 

about functions or loops. And, at this point I will just remind you that when we talked 

about time earlier in this course, we distinguish between a few different kinds of time. 

Because we understood that on a machine where there is only one C P U, the operating 

system is creating the elusion of many programs being able to share the C P U. By 

actually sharing the C P U time among the different processes used that happen to be in 

memory. And, therefore, there was a need for us to distinguish between at least two 

different concepts of time; one must the actual elapsed time as we would see an a clock 

on the wall and that is refer to as the real wall clock or a elapsed time. 

And, the other is this virtual process related time; the amount of time or of the C P U that 

a particular process are actually got and it is it should be possible for us to find both of 

these times. And, the mechanisms that we are going to look at will either have, will have 

to identify as providing you and estimate either of the real time over of the virtual time. 

And, unless you are aware of what a particular mechanism is giving you, the time itself 

may not be of much value to you in figuring out how your program is behaving. 
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Therefore, in doing a timing estimate, but in doing timing experiments some timing runs 

of programs that you are interested in; there are few decisions that you have to make. 



The first decision that you have to make is, what are, what time are you interested in 

measuring? Are you interested in measuring the real wall clock or a lapse time or are you 

interested in measuring the virtual C P U time? And, they may be some situations where 

you interested in the first, in some situations where you are interested in the second. So, 

this is the first decision that you have to make. And, secondly another decision that you 

have to make is, how fine an estimate of the time do you need? Would it be in, for 

example, would it be enough if you got an estimate that was accurate to the nearest 

second? Or do you need the, an estimate that is accurate to the nearest clock cycle, 

nanosecond? So, that is another decision that you have to make. 

And, you will clearly understand that the decision has to be made in out of for you to use 

the correct mechanism for measuring time, different mechanisms will be provided. Some 

of them might be capable of riding you elapse time only accurate to second, others might 

be capable of giving you C P U time accurate to the nanosecond, but you have to correct 

pick the correct mechanism depending on what you are objective is. So, if you first have 

to decide what your objective is; once you have decided what your objective is, you look 

for the correct timing mechanism which satisfies your objective. In other words if you 

are looking for a elapse time you look for mechanism that can give you elapse time 

measurements and of the appropriate accurate granularity. 

(Refer Slide Time: 32:42) 

 



Now, let us just look at a few of the time relative mechanisms that you will find on Linux 

or Unix systems. Now, one mechanism which some of you may have come across and 

may even have used is what I will refer to as the time command. And, you may have in 

fact used it and the way that you use it is that in response to the shell prompt. If you are a 

intention is to find out the amount of time that it takes in the execution of let say the 

program a dot out, then rather than just executing a dot out which you would have done 

like this; you execute a dot out through the time command, in other words you type time 

space a dot out. And, now the time command will cause a dot out to be executed but it 

will give you or in return information about how much time you took for a dot out to 

execute. 

Let me just give you a few examples. So, let us suppose that in response to the percent 

shell prompt, I typed time l s. Those of you have used Linux or Unix systems, will 

recognized l s as a command which can be use together listing of the files within a 

directory, we learn more about files and directories a little later. But this is l s is a 

command which gives you some information about the different files which are available 

for access. Now, when you type time space l s, obviously the l s command will print out 

the information that it is suppose to I am not going to show you the output of the l s 

command; I am just going to show you the possible output of the time command. I 

believe this was taken on a Unix system, this particular output. 

So, you will notice that the time command is giving me three pieces of information, one 

as labeled as user, one is labeled as system and one is labeled as elapsed. And, therefore, 

we would understand that the time command is giving us the elapse time but in addition 

it is giving us C P U time or a virtual time. So, the elapsed time is obviously the elapsed 

or real or wall clock time, that we talked about earlier. Whereas the other two times 

which have this breakup into user and system what we would refer to as the virtual of the 

C P U time. 

So, the time command is giving us both; it tells us both how much time was spent in 

terms of the virtual timeline of this particular process in user mode and that number was 

so small that it is registers as 0, as well as the amount of time that was spent in the 

execution of l s in system mode and that is given as 0.002, I believe this the unit here is 

seconds. In addition to this it gives us the amount of wall clock time the actual elapse 

time. The amount of time I would have observed if I had time, if I had looked at a wall 



clock before and after the time command was executed and that is given as 0.003. So, in 

this particular case we understand that the bulk of the time of execution of the l s 

command was spent in system mode very little, practically no time was spent in user 

mode. And, the bulk of the elapsed time and the relationship between the elapsed time 

and the amount of time spent to the virtual mode is fairly close. 
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Now, let us just look at another example, this is a more complicated example. Here I am 

going to time; I am going to use the time command to find how much time it takes to 

execute the command man csh. Now, what is man csh? We have come across csh before; 

I could have run the same command type by typing man c s h. We have come across csh 

before, csh was one of the shells that is available on many Unix and Linux systems; it is 

a command interpreter. What about man? Well, man is the common in Unix and Linux 

systems as command that can be used to read a manual entry; so, man stands for the 

manual or the book which contains information about the different commands and that is 

available on line. 

So, when I type man csh in effect what I get is a listing on the screen, a printout on the 

screen of the manual entry for the csh command. And, this is a very long manual entry 

and typically when you type man csh, you do it with a purpose of reading some section 

of the manual entry and therefore, you suspect that if somebody did a man c s h, they 

would spend some time reading the page as it is on the screen. How will that reflect itself 



in the output from the time command? If you look at the output from the time command 

and once again, I am not showing the output from the man csh because that would be a 

30 or 40 page document; so, we do not want to look at that on screen. But you will notice 

that the user time is no longer 0; there is a significant part over second spent in user time. 

This is small amount of time compare to this which is spent in a system mode and the 

fairly large amount of time that is spent in actuality, if I look at the elapsed time. 

So, I believe this is 15 seconds of time of which 0.032 seconds are spent in system mode 

and 0.268 seconds are spent in user mode. So, if I look at the sum of these two times it 

adds up to about 0.3 seconds. And, I look at the amount of that was actually spent in a 

elapsed time its 15.48 seconds. In other words I spent 15 seconds reading the manual 

entry and the actual amount of C P U time, both in user mode and in system mode that 

was spent on this command was only a third of a second. So, where was the remaining 

15 plus seconds spent? It was obviously spent, because I as a user was reading this 

information of the screen in order to understand something about the use of csh and that 

is reflected in the elapse time, but not reflected in the user time in the virtual C P U time. 

Because during the time that I am not interacting with the program, the process itself 

might in fact not be running; it might be innovating mode, it might get blocked. So, this 

is deviling to us and gives us some idea about what kind of time we should be looking 

for depending on our requirement. So, in effect the summary is that; this the time 

command reports both real elapsed wall clock time as well as C P U time or virtual time. 

And, as far as the C P U time is concerned it gives you a breakup between user mode and 

system mode. 
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Now, another command which might be useful to us is called gettimeofday and I am 

using this notation because gettimeofday will be invoked like a function from within a 

program. So, in order to understand how to use gettimeofday, I told you about the usage 

of the time command by just showing you how you could use the time command from 

the shell prompt. The gettimeofday we are, we have told this a function which means that 

we will be using get time of day from within our program. You will write a program 

which can call gettimeofday. And, therefore, I tell you a little bit here about the 

gettimeofday function; it has some parameters and the details about the structures used in 

the parameters as well as the function itself are available in an include file. 

So, if you want to use gettimeofday you would have to include this include file in the 

program. Now, if you actually looked at the timeval struct and you would look at it 

inside the sys slash time dot h include file, you would see that the timeval struct contains 

two fields. One of which is a field that report seconds and the other is a field that is label 

microseconds. The fields are called tv underscore time, tv for timeval; so, tv underscore 

sec and tv underscore microsec or usec. So, clearly this is structure which contains an 

estimate, something to do a time to the granularity of microsecond apparently. And, the 

question is how do we use this? In order to use it we have to know what it the meaning 

of the value that it returns is; and this information I am giving you in that yellow block 

up at the top. 



So, what gettimeofday reports, what is a return as its returned value? In the struct timeval 

parameter is, the real time that has elapsed since 0 0 0 0 Greenwich mean time on the 1 st 

of January 1970 and the manual entries that you read in connection with gettimeofday, 

we will refer to this instant in time as the epoch. So, basically what this is returning to us 

is a number of seconds that have elapsed, since 0 0 0 0 Greenwich mean time on the 1 st 

of January 1970. 

Now, that is rather curious thing to return. But you will understand that if I call 

gettimeofday now, I will get the number of seconds that have elapsed since 1 st January 

1970 and then if I wait sometime and I call gettimeofday again, then I will get the 

amount of time that has elapsed once again since 1 st January 1970. And, the differences 

between these two return values will tell me how much time has been spent by my 

program in between. And, that I can therefore, use the gettimeofday to estimate the 

amount of time spent in a part of my program. So, the idea is that I could use 

gettimeofday by inserting calls to gettimeofday in my C program before and after the 

regions of interest to me, in terms of the region particular region of interest to me in my 

program; which I want to know how much time I was spent in execution. 
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So, let us consider a C program and let suppose that they have some particular region 

that I am interested in, I am interested in this region I want to know how much time was 

spent execute in this part of my program. So, what I can do is, I can setup two timeval 



structures; one called before and one called after. I can called gettimeofday passing the 

parameter before, before the region of interest to me and called gettimeofday passing the 

parameter after, after the region of interest to me. Subsequently, I can compute the 

difference between the sec fields, the second fields of the after structure and the before 

structure, to find out how much time was spent in that particular region of my program. 

And, I could print that out using a print f statement in order to actually get the output; 

which I could subsequently look at to understand, how much time was spent in this 

region of my program. 

Therefore, you can use gettimeofday by inserting calls before and after and subsequently 

computing the difference between the after value and the before value; in order to 

measure the amount of real time. So, the important thing to remember is that we are, 

what we are talking about here is elapse time; gettimeofday returns, a real or elapse time 

or wall clock time value. 
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Now, the next question is whether there other timers which can give us good estimates as 

far as high resolution or very nanosecond type of estimates of how much time are being 

taken by in parts of our programs. And, just to quickly give you an idea about this, I like 

to mention that almost all modern processors provide a mechanism which can be use for 

this purpose. And, these mechanisms are hardware, they built to the hardware and they 

basically return account of the number of cycles that have elapsed. 



And that therefore, one could use a hardware cycle counting mechanism. And, if one 

knows how much time is spent in one cycle of that processor; for example, if I know that 

this is a 1 gigahertz processor, then I know that one cycle is equal to 1 nanosecond; then 

by counting the number of cycles or by using a cycle counting hardware mechanism, I 

can get very accurate real estimates of real as in real elapsed wall clock estimates of how 

much time was spent in a part of my program. Now, how would these mechanisms be 

made available to the programmer, I have suggest that they are available in the hardware. 

Now, if such a mechanism is available in the hardware, we would suspect that in the C P 

U would contain a special purpose register that is incremented every clock cycle. And, 

that is use by referring to this register that the cycle counting mechanism works. So, if 

the processor has this register and the register is incremented every clock cycle, then as 

long as there is an instruction using which we can read the value of that register and 

printed out; then we can use this mechanism in our programs. So, in addition to the 

special purpose register there is incremented every clock cycle, all that the hardware has 

to provide is an instruction to read the value that is in that register. And, this is as I said 

available in almost all modern processors. 

For example, the Intel processors have something called the time stamp counter; they do 

not call at the cycle counter they call at the time stamp counter or t s c time stamp 

counter. And, there is an r d or read t s c instruction; r d t s c instruction using which one 

can access the time stamp counter. This is not a privilege instruction, is an ordinary user 

mode instruction. And, almost all processors today have similar mechanisms. So, one 

could use this instruction before and after the region of interest in the program and by 

calculating the difference between the two and knowing the amount of time that a cycle 

is, one can give very accurate estimates of how much time is spent in a region of the 

program. 
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Now, with this idea about timing, we understand that there are mechanisms at the level 

of full program such as time, there are mechanisms at the level of parts of a program 

such as gettimeofday. And, there are even more accurate mechanisms which will give a 

cycle counts of parts of a program such as the hardware time stamp counter type 

mechanisms. Now, let us go back to the primary question of interest to us that relating to 

profiling; how do we find out the important parts, how do we identify the important parts 

of our program? Now, in order to do this we could of course, use the timing mechanisms 

that we have seen, surrounding the different suspected important regions of our program 

by calls to gettimeofday and calculating the differences. We could do this for all the 

regions for our program and then identify the important regions by such a mechanism. 

But this would be a mechanical process for which we would have to include the calls to 

gettimeofday at various points in our program and might be an inconvenience for 

extremely large programs. So, what we would prefer instead in some kind of a 

mechanism which does this automatically for us. In other words we would like to have 

access to a tool which does a profiling for us. And, if there was such a tool, it would 

obviously be called a profiler. 
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So, going back to the slide a profiler would be a tool that helps you identify the 

important parts of your program; so that you can concentrate your optimization efforts on 

those important parts of your program; and they unfortunately many different profiling 

tools that are available. And, the word profile is used to refer to a breakup typically of 

execution time across the different parts of the program. So, you use a profiler to get a 

profile of your program; the profile may tell you how much time is spent in each of the 

functions of your program or each of the loops of your program. And, using that profile 

you can quickly identify what are the important functions or the important loops of your 

program. 

Now, as I had mentioned earlier you could do this on your own, by adding statements 

into your program such as calls to gettimeofday. But an alternative is to get this done for 

you by a profiler to save you yourself the new sense of having to do this insertion of 

additional statements into your program. The insertion of those additional statements in 

the program is what might be referred to as instrumentation. Instrumentation itself is a 

discipline, it is a branch of engineering; what one studies is a in instrumentation is the 

construction of instruments. Instruments are devices which can be used to make a 

measurement. And, if you think about it the profiler that we are talking about here is in 

fact a tool which is being use to make measurements; measurements through which we 

identify the important parts of our program and the way that the profiler could work is by 

adding statements into a program. 



And, therefore, the statements which are added are the instruments through which the 

profile is obtained and hence the process of adding those additional statements is refer to 

as instrumentation. So, we are currently trying to understand something about the 

profilers which will do this for us automatically; so, we do not have to add the 

instrumentation by ourselves. 
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Now, there are several different profiling mechanisms that are available on the typical 

system. And, these profiling mechanisms will differ in a few ways; one way that they 

will differ is in the level of granularity that is supported. And, to some extent we can 

think of the granularity as being the size of the important region, that we are talking 

about. I talked about using profiling to identify the important parts of our program; so 

how big is a part that is what we are talking about in the section about level of 

granularity, so that a some profilers which give you information at the level of functions. 

So, the level of granularity is the function available and they would be called function 

level profilers. There are some profilers which give you information at the level of 

statements call for example, lines of a program and they may be called statement level 

profilers. 

There are yet other profilers which give information at other levels; one of the more 

popular kinds of levels of profiling is something called to the basic block level. And, 

roughly a basic block is a sequence of a contiguous instruction in a program with a 



property that; that sequence of contiguous instructions in the program has a single entry 

point which is the first instruction in the basic block and the single exit point which is the 

last instruction in the basic block. So, in some sense the basic block is some series of 

instructions in a program such that you enter the basic block only from the first 

instruction and you leave the basic block only from the last instruction. 

In other words if a particular basic block; a basic block is a series of instructions. So, it 

might start with a load word instruction then they might be in add instruction and so on. 

But we as far as a basic block is concerned, we get from the by the definition, we 

understand that if the first instruction in the basic block is executed, then the all 

instructions in the basic block will be executed exactly once. So, that is why this is a nice 

way to look at a program, one could rather than thinking of a program as being made up 

of functions or just statements; at a lower level one could think of the program is being 

made up of basic blocks. And, hence some people like to use basic block level profilers. 

So, profiling mechanisms might be available at different levels in the light of the 

granularity, the size of the important parts that could be identified. 
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And, in general profilers may also differ in the nature of the kind of data that they give 

you. Until now I was assuming, we were assuming that we were interested in finding the 

amount of time that was spent in executing an important part of our program. But they 

could be other considerations that are important other than time. For example, one 



clearly, one important kind of profile data might be a breakup of the amount of execution 

time spent in the different parts of my program or how much time was spent in a 

particular function. 

But in addition to this it might be adequate, if I knew how many times each function was 

executed. If for example, I knew that particular function (( )) was executed 30,000 times 

and all the other functions in the program were executed only 1 or 2 times. Then that 

would be possibly enough reason for me to try to concentrate my attention on that 

function called (( )). So, even just a count of how many times a function or a statement or 

a basic block was executed might be a value to us. And, that would be a different kinds 

of profile data; rather than getting a breakup of the amount of the number of seconds 

spent in each function, I may just get it feedback on the number of times each function 

was executed and that might be different kind of profiling mechanism. 

So, there are will be different kinds of profilers, they will defer in their level of definition 

of important part of program. And, they could differ in the kind of information that they 

provide in terms of trying to classify something is important; they could be based on 

times they could be based on counts. 

Now, what we are going to do is we are actually going to look at two specific profiling 

mechanisms; we are going to look at exactly how they work, we are going to look at one 

of the mechanisms, we are going to look at is at the function level. The other mechanism 

we are going to look at is that the basic block level. We will understand the mechanisms 

that I used behind the scenes, we will understand. Therefore, the guidelines which should 

be taken into account in trying to use these mechanisms. And, we will proceed by 

looking at the function level profiling mechanism in the next lecture, we stop here for 

today. Thank you. 


