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Welcome to lecture 27 of the course on high performance computing. We are looking at 

cache memories and in the previous lecture, I had introduced the term memory hierarchy, 

which we are trying to understand in little bit more detail. 
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Based on our current look at computer organization, we recognize that there are many 

kinds of memory present in a computer system. Further, we understand that there is a lot 

of interplay between the different kinds of memory. For example, there is interplay 

between disk and main memory as a part of the implementation of virtual memory. 

From our early discussion of cache memory, we understand that there is interplay 

between the main memory and the cache memory and we know that information is 

passed into the CPU registers explicitly, based on request in the form of load and store 

instructions between the CPU registers and the higher and the other kinds of memory 

that we see over here. 
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So, there seems to be something in this relationship between the different kinds of 

memory present that needs to be understood a little bit better, which we try to do 

partially in the form of a diagram which gives us a functional understanding of how the 

different forms of memory relate to each other. In this diagram, we were actually 

understood that as you went we are going to put different forms of memory into the 

diagram and as you go down the diagram, the size increases; in other words, the amount 

of information that can be stored in that kind of memory. Unfortunately, as you go down 

the diagram, the access time also increases. Another way viewing that is that as you go 

up the memory, the speed of the kind of memory increases. So, we have different ways 

of viewing the importance of dealing with different parts of the memory. 

We put registers right at the top, very small in size, but very fast in speed. They have 

very low access time. That is why they are at the bottom of the access time arrow and the 

main memory somewhere in between, the secondary storage devices like disk are right at 

the bottom and the cache memory is intermediate. 
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Now, why is this called a hierarchy? That is the question which we need to get a better 

handle on today and in order to understand why the word hierarchy is appropriate in this 

context, we need to may be first understand whether the word hierarchy makes sense in a 

more general context and I am going to try to do this in the context of let us say, a 

business organization. It could be in the context of the administrative hierarchy in your 

college, if you are studying in a college or school. 
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But we will just think about this in the context of the hierarchy present in a business 

organization and so the question is, if I was to think about a business organization, could 

I think in terms of a diagram of this kind. Obviously, I would have to forget about the 

labels attached to each of these entities including the labels on these axes. Size, access 

time, speed, registers, cache memory, main memory etcetera do not make much sense in 

the context of the hierarchy in an organization, but what do we mean by the hierarchy in 

an organization. 

For example, can we identify your typical organization and you could at this point 

replace the word organization by any company or large company or organization, as I 

said even the administration in your college that you are familiar with and the question is 

can we identify let us say, individuals or an individual who will replace in the place of 

registers over here. In other words, are there individuals who are small in number and 

maybe, I will try to label this. Instead of talking about size, I could use the label number 

on this left most axis. 

So, individuals who are few in number, but have a great impact on the efficiency of the 

organization. Rather than talking about speed, I could put something like individual 

contribution and again this is somewhat subjective labeling of that axis. But could I 

identify let us say, in an organization one person and that is the smallest possible 

number, who contributes tremendously towards the organization and typically, one 

expects that if there is such an individual, he might be the CEO; there may be only one 

chief executive officer, C star O, whatever the little initial may be. There may be only 

one of the individual, but he plays a very important part in the organization in terms of 

making critical decisions, in terms of coordinating those you need them, in terms of 

planning for the future etcetera, in terms of driving the organization. So, if there is one 

critical individual in the organization that is the person typically one would view as 

being the CEO. Now, lower down or just below that one could imagine that there are 

many divisions or divisions within the organization. 

For example, there may be a division which handles finances and another division which 

handles human resource development and so on, each of which might be headed by an 

individual. So, there might be just two or three individuals at the next level, each of 

whom is in almost complete control of one of the key functionalities of the organization. 



This is one way an organization could be structured. Not being an expert in 

organizational hierarchy, I could well be off the mark in terms of the way modern 

companies are run, but very clearly one could imagine that there are at the next level, 

small number of individuals; each of them plays a very important part in his own term of 

expertise and as one goes to the next level, one may find out that in each of the divisions 

that I just talked about, there are three or four vice presidents, each of whom coordinates 

some smaller area of activity within the organization. 
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If you are talking about a software organization and you are wondering what could come 

right at the bottom, it is conceivable that somewhere towards the bottom, there is this 

huge pool of programmers and there could be in a large company, there could be 1000’s 

of programmers or 100’s of 1000’s of programmers, depending on which software 

developers as we shall call them, depending on which the scale of the company that you 

are talking about. 

Once again they are large in number 100’s of 1000’s as opposed to the one CEO and 

each of them plays a very important part in terms of his job definition, but if one looks at 

the overall scope of activity within the organization, the activity undertaken by the 

individual would be small. All of these are key contributions and when added up they 

amount to a huge amount of benefit to the company, but the individual contribution will 

be much smaller than the individual contribution of somebody high up in the hierarchy. 



Hence the labeling of number - now, there is a number of individuals of that kind there 

are in the hierarchy and the individual contribution gives us an idea of what it means to 

have an effective business organization. 

We could readily understand that if I had a business organization in which there were 5 

CEOs and that whenever a critical decision had to be made, all those 5 CEOs had to get 

together and discuss and arrive at a consensus. In other words, all five of them had to 

agree. There could well be situations where it was not possible and they would have to 

differ opinion. Consequently, they may end up in a situation, where rather than looking 

for consensus, they look for majority opinion. 

So, until three of them could agree on something, the decision would not be made and 

this would clearly affect the efficiency with which the company or the organization is 

able to achieve its objectives. By the same token, if I had very few programmers, I just 

had 100 programmers and there were 2000 projects which the company had undertaken, 

then very clearly the organization is understaffed; it is not going to be able to achieve its 

objectives. So, too many at the top and too few at the bottom looks like the wrong way to 

view things from the perspective of the numbers. 
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In general, what this quick diversion into organizational hierarchy suggests is that in a 

business organization, the purpose of the hierarchy or you know that you have a good 



hierarchy, if you have the right number of the right quality human resource to achieve 

the required performance at each level. 

In other words, from the discussion that we had, we were talking about 1 CEO, 2 or 3 

people at the divisional level and then 12 or 15 vice-presidents etcetera and a few 

hundred-thousand programmers and this is what allows the organization as a whole to 

achieve the required performance. 

So, at each level, it was an important to have the right quantity as well as the right 

quality. The training, the background, the education that the CEO has is conceivably 

quite different from the training, the education and the experience that one of the 

software developers has, but it is important to have the right quality human resource in 

the right quantity at each of the levels of the hierarchy. So, that then seems to be the 

moral of the story from the perspective of successful hierarchy in a business organization 

and that was the business organization.  

If we look back at our memory hierarchy perspective of the same diagram, we get rid of 

the CEO's and the programmers; we go back to speed, size and access time. The question 

is what can we understand from memory hierarchy and the answer is clearly we need to 

talk about hierarchy, in the sense of having enough or a fast enough resource in order to 

make the execution time of programs or the well-being of the computer system as a 

whole or the efficiency of the organization as high as possible. 

So, there is a mapping between the concepts for this perspective. So, if the purpose of the 

business hierarchy was to ensure that there were the right quantity of the right quality 

human resource to achieve the required performance, then bearing in mind the realities 

of memory, in terms of the size-speed tradeoff that I alluded to earlier and let me just 

elaborate on the size-speed tradeoff, a little bit. 

We talked about how disks can be extremely large. For example, we could conceivably 

have one terabyte disks today, but they are very slow - several milliseconds to access 

them. One thing which I did not talk about was the fact that they could actually be 

extremely cheap. I had referred to this in passing when we talked about storage in one of 

the earlier lectures. But for those of you who have bought computer systems, you will 

realize that it did not cost a whole lot to upgrade your computer system from 80 



gigabytes of hard disk to 500 gigabytes of hard disk. In terms of rupees, it may just cost 

you a few 1000 rupees to upgrade to from 80 gigabytes of hard disk to let us say, 300 

gigabytes of hard disk. 

Therefore, in general the disks are low in cost and I am using the word low, if I was to 

compare the cost of upgrading disk from 80 gigabytes to 500 gigabytes with the cost of 

upgrading main memory from half a gigabyte to 4 gigabytes. But the cost of upgrading 

main memory from half a gigabyte to 4 gigabytes would be substantially more than that 

of upgrading disk from 80 gigabyte to 500 gigabytes. So, in general, then we can talk 

about the silicon memory as having a higher cost, in order to be large and fast. Now, the 

disks in the packaging are fairly large. One can buy a single disk today which is a 1 

terabyte disk, but in terms of memory, one could think about having a huge amount or 

large amount of main memory. 
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But unfortunately, that may not be possible because of the cost problem. It may not be 

possible to afford a large amount of main memory. Therefore, one talks about the cost. 

One must bring the cost into picture. Otherwise, the terms about large, relative size will 

not make sense. 

We are here talking about on a given budget, how much of that kind of memory might be 

affordable. So, in general, one can talk in comparing disks with circuit memories such as 



those used in registers the cache or main memory. One would use the silicon memory as 

being higher in cost, in order to have larger, faster memory and in that sense, one would 

say that a cost effective memory hierarchy should have certain small amounts of very 

fast memory because the processor requires that there should be some very fast memory. 

So, this is from the perspective of the CPU - very fast memory is possible, but from the 

perspective of budgetary constraints, it might only be able to have a small amount of 

such very fast memory.  

At the other extreme, given the budgetary constraints, it should be possible to have huge 

amounts of very slow memory such as disk. One can talk about terabytes of disk and still 

be able to afford it and in the middle, whatever one can afford. In other words, affordable 

amounts of the medium speed memory, which is the main memory type of scenario that 

in our current hierarchy. 
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So, in this discussion about hierarchy, this is what we are talking about. We are arriving 

at some understanding of why cache memory is small, why main memory is only up to 

about 4 gigabytes and how come there can be such huge amounts of disk. Now, with this 

better understanding of what it means to be a hierarchy, let us look at how the cache 

works in a functional sense using a diagram. So, we will try to run through an example of 

cache in operation. 



So, the setting in which we will do this is that the CPU is generating addresses as always 

and ultimately, the address is of a memory location. We will get into this a little bit more, 

but we are assuming that it is a virtual address. 

The virtual address will get translated into a physical address and the physical address is 

a memory the address of a memory location either one memory location or four 

contiguous memory locations depending on the size of the entity being accessed. Now, 

let us suppose that for a particular address that the processor is just generated. This is the 

element in main memory, the brown blob is the element in main memory that the 

processor actually requires. 

Now, if it is to access this particular entity directly out of main memory, it will take 100 

nanoseconds or more and therefore, we have this cache memory intermediate. The 

purpose of the cache memory is that most of the time, if you are lucky, it will provide the 

piece of data or the instruction whatever this happens to be directly without the need for 

main memory being involved. So, we understood from our discussion in the previous 

lecture, that both the cache and the main memory can be viewed as being organized in 

terms of blocks, not in terms of being byte addressable. 

We view them as both being block addressable and the block is some kind of a design 

parameter of a cache memory. So, rather than talking about individual bytes, this brown 

entity over here could have been 1 byte of data and it might be present in this particular 

block and is one of the bytes within that block. 

So, I show the block as being the larger entity. This is the block containing that particular 

byte. So, both cache and main memory are organized in terms of blocks and we look at 

the first possible situation in connection with the CPU generating an address. So, the 

CPU generated an address and sent it into the memory system and it essentially wants to 

access this brown piece of data. Let us assume that as a piece of data. 

Suppose that this piece of data is currently present in the cache and it is present in the 

cache in this particular cache block. Remember, I am talking about both cache and main 

memory as being organized in terms of blocks I can therefore, refer to a cache block; any 

one of these boxes is a cache block and any of these boxes, I will refer to as a main 

memory block. 



So, the current situation is what I call case 1. In case 1, the required piece of data is 

present in the cache. Now, to understand how the cache works as we figured out in the 

previous lecture, we have to look at the address not as an abstract entity, but as a bit 

pattern. 
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So, let us look at the address as a bit pattern and the bit pattern is as shown in that 

diagram above the address. The font may be a little bit small, but you will notice that as 

far as the address is concerned, I am showing you the address from the perspective of the 

cache. Remember that from the perspective of the cache, the cache hardware views an 

address as being made up of 3 parts. There are the intermediate bits, which are what we 

call the index bits, there are the least significant bits, which are what we call the block 

offset bits and there are the most significant bits, which are what we call the tag bits. 

So, I show the tag bits in red, the index bits in dark green and the block offset bits in 

light green. So, the address that has just been generated by the processor is as shown in 

the diagram on the left. The tag bits are all zeros, the dark green bits are 00101 and the 

block offset bits are 11. 

Now, when the cache does its look up, it will use the cache index bits to identify which 

of So, the terms are that we talk about the tag bits, the index bits and the offset bits and 

we can now think about these addresses in the light of main memory addresses. Now, 



you will recall that main memory itself is accessed in terms of or is viewed as being 

organized in terms of blocks. Therefore, associated with any one of these main memory 

blocks, I can have a block address. 

For example, the block address of that first block in main memory is all zeros because 

this is the main memory block 0. Similarly, the block address of second block in main 

memory is 1 and if you look at the address bits, you will see that they are all zeros with a 

1 at the end; similarly, 2 and so on. So, the main memory blocks each has a block 

address. So, these addresses which I have put over here are block addresses. Just as we 

talked about page numbers When we were talking about virtual memory, we looked at 

each main memory physical page as a physical page number. In this context, we look at 

each main memory block has having a block address and the block addresses go from 0 

up to some maximum possible block address. 

So, if you look at the block addresses now, you will notice that I have used a similar kind 

of a colour coding scheme to identify the different block addresses within main memory. 

I seem to be using a notation, where just as I coloured the most significant bits of the 

main of the address itself for use as a tag and the intermediate bits for use as index, I 

have similarly, split the main memory at block addresses into two fields, one of which is 

the same number of bits you notice here that there are some number of bits which are the 

same as a number of bits in the tag field and over here, there are some number of bits 

which are the same as a number of bits in the index field.  

So, in numbering each of the main memory blocks, we can view that main memory block 

as having some most significant bits and some lesser significant bits. Within the main 

memory block, there are many bytes each of which will have some byte offset. 

In this particular example, it looks like the size of each block is 4 bytes. That is why the 

size of the byte offset field is 2 bits. So, there are 4 bytes per block; that is what we can 

assume and therefore, the 4 bytes within the main memory block 0 would have block 

offset bits of 00, 01, 10 and 11. Now, from this perspective, if I look at the main memory 

block addresses, the first main memory block address is 0, the second is 1, third is 2 and 

so on and if I look at the sub breakup of the bits of the main memory block addresses as 

done per the colour coding scheme that you see here, all of the early main memory block 

addresses have 0 as most significant bits and some of the later main memory blocks such 



as the one with a pink and the green has nonzero in its most significant part and some 

other bits in its lesser significant part. 
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Now, at any given point in time, some number of main memory blocks are present in the 

cache directory and let us assume that I am showing you three of the main memory 

blocks. For example, I am showing you the one if you consider the cache block, which 

contains the piece of data that we are interested in, then it is a cache block which has a 

main memory block address of all zeros, which is the red field, followed by 00101 which 

is remembered in the cache memory, in terms of 00101 as being the index value; in other 

words, which of the cache entries we were talking about as far as this main memory 

block and the tag bits. Essentially saying that among all the main memory blocks which 

have green least significant bits in their block address and there are at least two that we 

can see, the one with all red before the 00101 and the one with all pink before the 0010.1  

At this particular point in time, the one which is inside the cache memory is the red one 

and that is indicated by having inside the cache directory, the red bits. In other words, 

000 all zeros as the tag field. Now, when the time comes for the address when the 

address comes from the CPU to the cache memory, remember that the cache memory 

views the address a tag index and offset and it uses the index bits to identify which 

particular block in the cache could contain the data that is being requested. 



How does it determine whether the red or the pink main memory blocks is currently 

present in that particular cache entry? The answer it does this by comparing the tag bits 

from the address with the tag bits which are kept in the cache directory. So, it does this 

comparison and if they are the same then it is known that there has been a hit. In other 

words, the piece of data which the processor has requested is in fact present; it was 

present in the background; it is not covered up - the brown box and can therefore, be 

provided directly to the processor and that was case 1. 

Now, the alternative is case 2. In case 2, the assumption is that the data is not in the 

cache. In other words, that brown entity is actually not present in this particular cache 

block suggesting that in that particular cache block, what we have is not the red main 

memory block, but possibly the pink main memory block - one of the other main 

memory blocks, which could have been present in that particular cache block. 

Now, when the comparison is done of the tag bits from the address with the tag bits from 

the cache directory, it is found that they are not the same. In other words, this is not a 

situation where the piece of data that the processor is requesting is present in the cache 

directory. This is essentially how the cache hardware views the address and uses the bits 

of the address along with the information which is present in the cache directory to locate 

and check the validity of the data present inside the cache memory. 

So, this is just a rough quick introduction. We now look at the details by looking at 

alternative design ideas which are used in practice in cache memories. Now, some of the 

terminology which I have used: I, in fact, used two pieces of terminology. I talked about 

a hit and a little later, I talked about a miss without telling you what these technical terms 

actually mean. 
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So, let me just run through some of the terminology now that we have this rough 

understanding of how the cache memory operates. Now, the first and most important 

concept in terms of successful operation of the cache is the idea of a cache hit and you 

will recall this is what I describe the case 1, from the example that we just went through. 

So, cache hit is the situation where the processor sends an address to the cache and it is 

determined that the required data is present in the cache. 

In other words, this is a situation where the CPU requests something from memory and 

the required data or instruction is found in the cache. This is referred to as a cache hit. 

The alternative, which was case 2, for example, is what is known as a cache miss. It is a 

situation where the required data or instruction is not found in the cache and very clearly, 

it should be the objective of cache design to try to ensure that the number of cache hits is 

more than the number of cache misses. 

Now, we would therefore, try to talk about We could quantify how successful a cache is 

in satisfying the requirements of a program in terms of memory references by a measure 

called the hit ratio and the hit ratio is computed as the number of cache hits divided by 

the total number of memory references. So, for example, if a processor makes 100 

memory references and 90 of them are actually hits inside the cache, then I would talk 

about this as being a situation with a hit ratio of 0.9, which we may also be described as 

90 percent. We could alternatively talk about the miss ratio which will be 1 minus the hit 



ratio. So, in our particular example I would have a miss ratio of 0.1. So, we would be 

happy, if our programs observe or benefit from a very high hit ratio and we would be 

unhappy, if the miss ratio is high. 

Another property of a cache will be the hit time, the amount of time that it takes to access 

data in a cache and our hope is that this is less than the 1 nanosecond that we are talking 

about. Ideally, we would want the 1 nanosecond to be the amount of time for the cache 

look up as well as the actual time to access the cache RAM and all of these things put 

together is what we talk of as the hit time. 

Finally, we could also talk about the miss penalty. Recall that the cache miss is the 

situation where the required piece that the piece of data, which has been requested by the 

processor is not found in the cache. Now, what does the cache hardware have to do, if 

there is a cache miss? Very clearly, the cache hardware must cause the data to be brought 

from main memory into the cache and subsequently, the data can be provided from the 

cache to the processor. 
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There is therefore, a time penalty associated with every miss and the time penalty is 

basically, the amount of time that it takes to bring a block into the cache and this may 

involve a memory access and therefore, for the kind of cache situation that we are talking 



about right now, we suspect that the miss penalty could be as much as the memory 

access time which might be 100 nanoseconds or thereabouts. 

So, these are some of the terms, which are used and let me just again remind you that we 

would like to have a high hit ratio for our programs and as far as the design of the 

processor is concerned, as far as the design of the computer system is concerned, we 

would hope that the miss penalty has been made as low as possible and the hit time has 

also been made as low as possible so that even every time there is a cache hit, the data 

comes in a very small amount of time and even in situations, where there is a cache miss, 

the amount of time penalty suffered should not be too high. 

Now, in talking about the performance of programs, I have used numbers like hit ratio of 

0.9, which I described as 90 percent as being apparently an achievable target. So, 

suggesting that for the kinds of cache designs that are common today, it is actually 

possible for programs to see cache hit ratios as high as 90 percent. In other words, 9 out 

of 10 or even higher, but this is not very typical; 9 out of 10 times, when the processor 

tries to access something out of memory the data or instruction is available out of the 

cache and therefore, only the remaining 10 percent of the accesses that have to be 

accessed at memory access speeds. 

Now, this is an amazing number, given the size disparity between the cache and the main 

memory. Remember, the typical size of cache that I mentioned was something like 32 

kilobytes and the typical size of main memory that I talked about was something like 4 

gigabytes. Therefore, difference in size between the two is 4 gigabytes divided by 32 

kilobytes and as you recall this is 10’s of 1000’s, 100’s of 1000’s; this is a very large 

number. Therefore, given that the cache is so much smaller than the main memory, how 

is it possible for the cache to contain 9 times out of 10, the piece of data or instruction 

that the processor is requesting? This is in fact, quite difficult to accept - just out of hand, 

but let us proceed to look at some of the cache design properties through which this is 

achieved. 
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Now, when people talk about the organization of caches, they typically stress four design 

parameters of caches and I will present or talk about those four design parameters of 

caches in terms of 4 questions that are addressed by settings of design parameters. 

So I will talk about the 4 Qs - the 4 questions of cache organization and the 4 questions, 

which I will talk about, are: first of all, among all the different cache locations - cache 

blocks for a given main memory block, where could it be placed inside the cache? We 

have seen that the main memory is many times the size of cache – 1000’s, 10’s of 1000’s 

100’s of 1000’s times the size of cache. 

Therefore, very clearly for each cache block, there are going to be 10’s of 1000’s of main 

memory blocks, which will be potentially entering the same cache block, but the 

underlying issue is for a given cache, how is the relationship between the main memory 

blocks and a given cache block specified and the problem is known as the block 

placement or the question is known as the block placement question.  

The second question is how is the block identified in the cache? So, among all the main 

memory blocks, which could be present in the cache, at any given point in time, some 

small subset are present in the cache and how does the cache controller or how does the 

cache hardware keep track of which main memory blocks are currently present inside the 

cache. 



The third question, very clearly, an important question. What is the replacement policy 

used? Evidently, we know about replacement policies from our discussion of virtual 

memory. We realize that in the case of the relationship between cache and main memory, 

replacement is a much more important consideration because of the enormous size 

disparity between the cache and the main memory and we suspect that there may 

frequently be situations, where there is a cache miss and a block has to be replaced from 

the cache, in order to make place for the block, which has to be fetched from main 

memory into the cache, in order to satisfy the processor’s address request. 

Therefore, the choice of replacement policy is clearly going to be important for the 

successful operation of the cache and finally, a new question, the kind of question we do 

not see in connection with virtual memory. What happens on writes to the cache? 

Now, let me just give you some of the answers to these questions and in the case of the 

last question, there are two sub questions, but in the case of the block placement question 

we will look at two answers: one is known as direct mapping, the other is known as set 

associative mapping. These are technical terms, which you may find used in descriptions 

of the operation of caches that you were working with and therefore, they are important 

terms for us to understand. 

In terms of how a block is identified in the cache, we will hear about some of the 

mechanisms that are used inside the cache directory, in order to check whether a 

particular block is in present and in fact, some of the fields of the cache directory entry. 
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In discussing the possible replacement policies used, we will some of our familiar 

replacement policies from our discussion of virtual memory. LRU, FIFO and random - 

all conceivable feasible policies for use inside caches as we will discuss and finally, 

when it comes to the issue of what happens on writes to the cache, this is a new question 

which we did look at one aspect of when we talked about virtual memory, but there are 

basically two sub questions which arise. I will refer to them as sub question a and sub 

question b.  

The first sub question is what happens on the write to the memory, if the write is in fact a 

cache hit. In other words, the processor executes a store instruction, it wants to modify a 

memory location and it turns out that the block containing that memory location is 

present in the cache. Therefore the question arises what happens on that write and the 

underlying question is, is main memory updated along with the cache update or is main 

memory updated only once later on and we showed an allied issue when we talked about 

virtual memory in terms of what happens, when a write happens. 

But there is a new question which could arise in the case of cache memories, in the event 

of a cache miss. Remember what I am talking about here is, writes on a cache miss. So, 

the idea is the processor executes a store instruction. In other words, it wants to modify a 

memory location, but it is determined by the cache hardware that particular memory 



location is not present in the cache and therefore, the cache hardware could be built in a 

few different ways in terms of how to deal with that particular miss. 

Now, in thinking about these four policies, it is not a bad idea to look back and try to 

understand how each of these four questions was answered in the connection of virtual 

memory because we now see that the relationship between main memory and cache is 

very similar to the relationship between secondary storage and main memory that was 

implemented through virtual memory. Therefore, these same issues must have a reason 

when we talked about virtual memory, but maybe, we did not look at in this light and 

therefore, when we look at any one of these issues in more detail, we may just look back 

and see how the same issue was handled in the case of virtual memory. 

With this, we will proceed and start to look at the first question - the block placement 

question. Among all the different cache locations, how does the cache hardware decide 

where a particular main memory block could be present in the cache and we start by 

looking at the option called direct mapping. 
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Now, in discussing the caches, I am going to use diagrammatic examples and just to 

make sure that the diagrams are more useful to you, I will use the consistent notation. 

Now, in this notation, whenever I want to refer to a block, I will use a box that looks 

something like this. 



Now, the reason that I use a box which looks something like this is to indicate that we 

are talking about some number of contiguous locations, some number of bytes and they 

could span more than a word, but we need to have some idea that there are some number 

of bytes associated with each block. 

In this particular notation, the suggestion is that the size of a block is 4 bytes, but that is 

just for convenience in drawing. I am not suggesting that four is a typical block size in 

real caches. We will talk about block size a little bit later, but for the moment, I am just 

using this notation so that I can draw these diagrams a little bit quicker. 

Now, we will use this kind of a box with 4 components in it to represent a block and that 

is just for ease of drawing. Now, in drawing these diagrams, I will have to show you both 

cache and main memory and therefore, I will have to show some number of blocks in 

cache and some number of blocks in main memory and we know that the typical size of a 

cache is something like 32 kilobytes and the typical size of a main memory is something 

like 4 gigabytes. 

But I cannot draw diagrams that large. So, once again that I am just going to show very 

small caches which will be 8 blocks in size and in fact extremely small main memories 

which are only 16 blocks in size and you will notice that this is a ridiculously small size 

for main memory since that would amount to a 64 byte main memory, but for the 

purpose of understanding how these mechanisms work, this is adequate. I am showing 

you a cache which is smaller than the main memory size and which is the at least 

consistent with our understanding of the relative sizes though grossly disproportionate. 

We would expect the cache to be 1000’s of times smaller than main memory. 

So, I will show a cache as something like this. You notice that this cache has several 

blocks. Each of the horizontal entities is 1 block and therefore, in this diagram I am 

showing a cache with 8 blocks. In the diagram on the right, I am showing you a main 

memory; once again, each of the horizontal entities is 1 block. 

I am showing you a main memory which has 16 blocks. Now, since we are going to be 

looking at addresses generated by the processor and we have to look at the addresses of 

blocks, I will number each of the cache blocks and each of the main memory blocks with 

its block number. 



We know that the main memory blocks start from 0 and go up to some maximum block 

number. So, the main memory blocks are 0 to 15. I will number the cache blocks from 0 

to 7 in this example because there are 8 cache blocks and so, this is a typical setting - the 

typical kind of notation we will use in describing the different possible cache 

organizations. 

For example, if at a particular point in time, I am interested in main memory block 6. 

This might be the main memory block that contains the brown piece of data that the 

processor was interested in. If I want to represent the fact that main memory block 6 is 

currently present in cache block 4, I might show it using this kind of a notation. Both of 

them are of the same color and I, in fact, labeled the cache block with the main memory 

block address, just for ease of understanding. 
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Now, let us start off by looking at one of the possible ways that a cache could be 

designed to answer question 1. Question 1 was where can a memory block be placed in 

the cache and this is called the block placement question. Now, we are going to use the 

example of cache with 8 blocks and main memory with 16 blocks, but we need to talk in 

more general terms. So, let us talk about more general terms, where the size of the cache 

is N blocks. 



In other words, the cache RAM is big enough to hold N blocks from main memory. In 

this particular diagram, N is equal to 8, but we will talk in the more general sense of N. 

Now, the block placement question is, where could a particular main memory block be 

present in the cache. Let us suppose that I am currently concerned about some main 

memory block M. M could be 3 M, could be 4 M, could be 15 etcetera. 

I am concerned about main memory block number M. Now, under direct mapping main 

memory block M is placed uniquely in the cache block M mod N, where N is the number 

of cache blocks. So, we notice that this is a situation where a particular main memory 

block is going to be present. If it is present in the cache, it can be present only in one 

particular cache block and the particular cache block is uniquely specified by this 

expression, where M is the main memory block number and N is the size of the cache in 

terms of blocks. Now, in our particular example, we are using the size of the cache is 8 

and therefore, when I talk about M mod N, I am talking about M mod 8. You will recall 

that what I mean by the mod operation is the reminder from the integer division of M by 

8. 

So, let us consider main memory block 0. So, M is equal to 0. If I calculate 0 mod 8, I 

get 0. So, I understand that if main memory block is to be present in the cache and I am 

referring to a direct mapped cache or a cache which uses direct mapped block placement, 

then main memory block 0 could be present only, hence the word uniquely, in cache 

block 0. Now, that is easy to understand, but we should also realize that main memory 

block 0 is not the only main memory block that could be present in cache block 0, even 

for this very small example. 

For example, if I consider M equal to 8 - main memory block 8 then 8 mod 8 is equal to 

0; the reminder when you divide 8 by 8 is 0 and therefore, main memory block 8 also is 

going to map uniquely in cache block 0, which means that if main memory block 8 is 

present in the cache, it could be present only in cache block 0. Hence, obviously, at any 

given point in time, either main memory block 0 or main memory block 8 could be 

present in the cache and not both, if I was talking about a direct map cache. 

Now, just another simple example, it is quite easy to see that if I am concerned about 

what are the different cache, a main memory blocks which could map into cache block 6, 

then it will easy for you to see that both main memory block 6 and main memory block 



14 have the property that M mod 8 is equal to 6 for them. Because 6 mod 6 is equal to 6 

and 14 mod 6 is equal to 6. Therefore, we know that between main memory block 6 and 

14, only one could be present in cache at a time. 

So, it could be that right now, the main memory block 6 is present in the cache in which 

case, the cache will look like what we have on the screen, whereas after this, if main 

memory block 14 enters the cache, then the cache would look like this because both 

main memory block 6 and main memory block 14 mapped to cache block 6. 

So, I will use the word map as a verb and we talk about direct mapping. The relationship 

between the main memory block address and the cache block address is given by main 

memory block address mod cache size. So, that was easy to understand and you will 

realize that this was implicitly what I was assuming in that quick, but detailed example 

that we ran through at the beginning of this lecture. As a consequence, you now 

understand that this is not the only possibility for block placement and that we are going 

to learn about other possibilities which were not taken into account by that quick 

example that we ran through at the beginning of the lecture. 
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Now, the second question which we have to understand little bit about is how does the 

cache hardware identify, whether a particular block is present in the cache or not. We 

understand now that given the main memory block address under direct mapping, I have 



abbreviated direct mapping as DM, we understand how the cache hardware can identify 

which unique cache block could be the identity the cache block, where the main memory 

block is present. But what are the mechanics behind actually figuring out between 6 and 

14 for example, which one is currently present in the cache. Now, to actually understand 

this, once again we will use some specific examples. 

But to work with the specific examples, we will actually use realistic numbers for the 

first time in our discussion of caches. I am going to assume that the size of an address is 

32 bits. I will assume that the size of the cache is 16 kilobytes. So, I am giving you the 

size of the cache not in terms of number of blocks, but in terms of number of bytes and 

finally, I will assume that the size of a block is 32 bytes and 32 bytes is a fairly typical 

block size. 

In the diagram that we had used in our notation, we are assuming a block size of 4, 

which is actually much smaller than what is realistic and you will understand that the 

size of a block will have something to do with the typical spatial locality of reference 

that one should expect programs to show. 

We now understand that it is more in the order of 32 bytes than the 4 bytes from our 

drawing - the pictorial notation. Now, that the first question that we have to understand is 

how do these numbers help us in understanding how the cache operates and we have to 

go back to our discussion about how the cache hardware views an address. 

You will recall that the cache hardware views an address as being made up of three 

fields. If you go from the least significant bit to the most significant bit, it views least 

significant bits as being the block offset. It uses those intermediate bits as index into the 

cache directory and the other bits are called the tag bits and we saw quickly in our 

example earlier in the lecture, how they are used, but we can now think a little bit about 

how the cache hardware actually accesses these different bits now that we have some 

numbers to play around with. 
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Now, the first question we could tackle is for example, I mean we need to understand 

how many bits are used for the block offset and how many bits are used for the index and 

apparently, these can be computed using the facts that are the upper part of the screen. 

Now, the first thing that we can readily compute is the number of cache blocks; in other 

words, the size of the cache in terms of cache blocks. We know the size of the cache in 

terms of bytes, we know the size of a block in terms of bytes, we can therefore, calculate 

the number of cache blocks by dividing 16 kilobytes by 32 bytes and you will quickly be 

able to see that this is equal to 512. What does this mean? This means that there are 512 

cache blocks. 

This cache block 0 up to cache block 512 and the diagram that we had used, remember, 

we have talked about cache block 0 up to cache block 7 because we were talking about a 

cache of size 8 blocks. We now have a cache of size 512 blocks, which means that the 

cache blocks are numbered from 0 through 511. From this, we can immediately calculate 

the number of bits that are required to index into the cache directory. If the cache blocks 

are numbered from 0 through 511, then we know that they must be 512 entries in the 

cache directory and therefore, to index into the cache directory we need as many number 

of bits as necessary to distinguish between values that could be between 0 and 512 and 

that is going to be computable as the log base 2 of the number of blocks. 



So, log base 2 of 512 is 9 bits, which tells us that the number of bits that are needed for 

the index are 9 bits. Just to make sure we understand this. If I think about the fact that 

there are 512 blocks and the blocks are numbered between 0 and 511 therefore, the 

blocks are numbered between 0 and 511. Just ask yourself the question in binary, how 

many bits does it take to represent 511 and if you run through the binary representation 

of 511, you will realize that it is 256 plus 128 plus 64 plus 32 plus 16 plus 8 plus 4 plus 2 

plus 1. 

You add up those numbers and you see, that is equal to 511 and if you count the number 

of bits, you will realize that there are 9 bits. This is a just quick way of doing the same 

calculation. So, we realize now that the number of bits, which will be needed for 

indexing into the cache, is 9 bits and this could be calculated from the facts that we had 

been provided with. The next question, how many bits are going to be used for the block 

offset and again, we are trying to understand how the address is used by the cache. So, 

we do need to know how many bits are used as a block offset. 

Now, once again, we know that if the size of the cache block is 32 bytes that means that 

the different bytes within the block would be numbered from 0 through 31. There is byte 

0 Within any particular block, there would be byte 0 through byte 31 and therefore, to 

identify any particular byte within the block, I need to use as many bits as are needed to 

represent 31 in this sense and you will quickly be able to figure out that the number of 

bits is going to be given by log base 2 31, which is 5 bits. 

So, from just these two pieces of information and the fact that the cache is direct 

mapped, we are able to view the address in terms of a 9 bit offset and a 9 bit index and a 

5 bit offset, which leaves, given that the size of the address is 32 bits, 18 bits for the tag. 

So, we end up with the remaining 18 bits are being used for the tag. Now, the next 

question which will immediately arise is how is this used by the cache hardware and so, 

we will pictorially understand how this works. 
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So, here for the first time, I am adding some notation. I have not included part of this. To 

the right, you will recognize our cache. This is a cache, which has 8 blocks. Each of the 

horizontal things is one cache block. So, that is very clearly a cache RAM, but in 

addition to the cache RAM, remember that the cache contains a cache directory and what 

I am showing you to the left is the cache directory. So, the cache directory contains one 

entry corresponding to each block in the cache and therefore, the cache directory in this 

case contains 8 entries. 

So, each entry in the cache directory has a corresponding entry in the cache RAM. Now, 

within each cache directory entry, I am showing you several fields. For the moment, we 

will try to understand We understand that there may be a need to have a valid field form 

our discussion of virtual memory and this may largely arise out of the need to have a 

meaningful interpretation of the state of a cache. For example, when a machine starts 

executing, before any data has been fetched into the cache, the cache hardware may have 

all zeros and therefore, it is important to have an explicit bit which can be set to 1, when 

meaningful data is brought into the cache. Hence, there is a need for a valid bit which as 

in the case of the page table, I will label as V. We will come to the dirty bit later. 

But you already know what that means from your exposure to virtual memory. However, 

many of the fields inside each cache table entry or labeled as the tag field. Now, the way 

that the accessing of the block will happen in the direct map caches, you will remember 



that in the previous slide, we have worked out that the 32 bit address is viewed by the 

cache hardware as the least significant 5 bits are the block offset, intermediate 9 bits are 

to be used to index into the cache directory and the most significant 18 bits are what are 

called a tag. 

So, what the cache hardware will do is it will use the intermediate 9 bits to index into the 

cache directory. So, if the value of those 9 bits is three, then it indexes into the 

corresponding element of the cache directory. In other words, since it is a direct mapped 

cache, it has determined that among all the main memory blocks, which could be present 

in this particular cache block, this is one of them; that is what this information reveals. 

Now, in order to determine whether the particular main memory block which is currently 

present in this cache block is the same as that represented by this address, the tag from 

the address is compared with a tag, which is present in the directory entry. 

So, a piece of hardware called a comparator compares It is capable of determining by the 

two things are identical to each other or not - 2 bit patterns. It compares these two fields 

the 18 bit tag field from the cache directory with the 18 bit tag field from the address 

which the processor has sent to the cache and if they are the same then this is an 

indication and in addition if the valid bit is set, then this is an indication that this is a 

cache hit; that the data which is required by the processor is present in the cache. 

In other words, the data that is present in the processor is present somewhere in that 

particular part of the cache RAM. Which particular piece of data is required by the 

processor? That is determined by the offset bits. Remember that the offsets bits identify 

one particular byte or one particular word within the block. So, the cache hardware then 

uses the offset bits to pull the relevant piece of information out of the cache block and 

that is what is provided to the processor. 
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So, this in a sense gives us a complete picture of what happens from the perspective of 

the processor sending an address to the direct mapped cache and I will stop here for 

today, reminding you that we are looking in detail that how cache memory operates. We 

have understood that cache plays in important part in the overall memory structure of a 

computer system. In some sense, it plays a part in what is called the memory hierarchy of 

a computer system. It forms an important part of the memory hierarchy of a computer 

system which also includes other components such as main memory and disk. We have 

seen that the operation of the cache can be understood in the light of 4 questions, which I 

call the 4 Q's of cache organization. 

We are currently looking at the first of those question, which is called the block 

placement question, which basically gives you an idea of how for a particular cache how 

the cache has been designed to determine for each main memory block where in the 

cache that main memory block could conceivably be present and we have looked at the 

first example of a block placement strategy which is called the direct mapped strategy. 

We will continue with the discussion of the 4 Q's of cache organization. We will 

continue from the block placement question and proceed to the other 3 Q's - the 

remaining 3 Q's of cache organization in the lectures to come. Thank you. 


