High Performance Computing
Prof. Matthew Jacob
Department of Computer Science and Automation
Indian Institute of Science, Bangalore

Lecture No. #14

Welcome to lecture 14 of the course on, High Performance Computing. You will
remember that, in lecture 13, we looked in some detail at what happens behind the scenes
in a paged virtual memory system. We call that, this is the part of the operating system
responsibility, which takes care of the sharing of main memory among many programs
which might be on in execution on a computer system at a time. So, the summary slide,

which totally showed you what is happening behind the scenes, we will go back to the
slide right now.

(Refer Slide Time: 00:49)

What's !'I.'li‘l]_l-l.'ll1l_.!:._:.-.-. § 'ii-artl Disk
Page Tables:, .
r,.1.1m rﬂqn1qry 'F:‘f 010 |
=1 I_. g-- - P_I IEEI Prl 5|
aRiNasZy o)
0| - Il
1 - {5 .. I I
2 [P2 s F,
[\ 2|3 “Contents of
T\LE J 3 - . virtual pages
Question: Whatif | o 2 e,
ProcessPinow Pn 4 . ﬁ'
accesses a 2 1 e
vanable thatison |\ 3 . . |
48 virtual page 32 | .~ 0 .

So, in this slide what we had seen was a situation where there are four processes P 1 the |
am sorry number of processes P 1 through P n. All actually, in some state of execution in
that all are in memory, in some form or the other. At this particular point in time, since,
obviously, all the pages, all the virtual pages of all the processes cannot be in main

memory, which in this example was quite small. Main memory in the small example can

hold only four pages and the sum total of the pages of all these processes is many times
of that.

So, what page virtual memory does is, it remembers all the page virtual pages of all the
processes, which should be a memory on hard disk, which has a very large capacity and
at any given point in time, sum of the those pages would be present in the main memory.
And the mapping between the pages that are present in main memory and the virtual
addresses that they correspond to, is maintained in the page tables of the processes, as

this example showed.

So, we were looking in more detail at one particular problematic situation that could
arise and that is the situation where particular processes say P 1 is running and makes a
reference to a particular memory page that is not currently present in main memory. For
example, if process P 1 was to refer to its page three, if you look at the page table entry
for process P 1, you notice that virtual page three is not present in main memory. Among
all the virtual pages of process is 0, only its virtual page O is present in main memory. In
fact, at main memory physical page 0, this particular situation is what is known as a Page
Fault, and it is detected when the attempt to translate the address is made.

(Refer Slide Time: 02:28)

Page Fault
« Situation where virtual address generated by

processor is not available in main memory

. Detected on attempt to translate address
a Page Table entry is invalid

So, the page table entry would then be referred to, it would be notice that there is no

meaningful mapping and hence the page fault would be identified.

(Refer Slide Time: 02:45)

keeping Track: Page Table Entry
_ . 4 :
&
PPN Disk Addr (47

I

And in order to do this, it is useful to have a particular bit in the page table entry called
the Valid bit, which would have a value of one for those pages which have a meaningful
mapping. In other words, the PPN entry for that page is the correct translation
information and a value of 0 for which the page table entry does not contain meaningful
information and therefore, the copy of the page on disk is the meaningful piece of

information regarding that particular page.

So, we have included a valid bit, which is more frequently referred abbreviated as the V-
bit. The notation which I am using is to put a question mark to indicate that it is a bit, in

any of these table notations.

(Refer Slide Time: 03:29)

Page Fault

= Situation where virtual address generated
by processor is not available in main
memaory
« Detected on atternpi to translate address
2 Page Table entry is invalid
« Must be "handled’ by operating system
.1 ldentify slot in main memory to be used
Get page contents from disk
Update page table entry el
=« Data can then be provided to the I""'*l"' “R0r

r .LJ‘..A... 1

So, the page fault is a situation that must be handled and we understood that the handling
is done by a part of the operating system, which we would call the page fault handler.
And what the Page Fault handler would have to do is to find or make space in main
memory for the particular page. In this case, page one of process P 1 to be copied from
the disk into main memory. So, the first step is to identify place in main memory to be
used for this purpose. Subsequently, copy the page from it from disk to main memory

and subsequently update the page table entry.

So, these are the tasks of the page fault handler and the problematic situation which
could arise in this case is that they may be no free slot in the main memory to be used at
this point in time.

(Refer Slide Time: 04:15)

Page Fault Handler

Identify slot in main memory to be used

= It must keep track of the available, unused
physical pages, maybe in a free list
« What if the free list is empty?

2 e, all main memory physical pages are already
mapped to virtual pages

2 The page fault handler must then identi\"‘?page
to be replaced (evicted) from mainm L

il |I-'J.‘d_ L

And if that is the case then the page fault handler would have to actually replace one of
the pages which are currently in use, in order to make space for this newly requested
page to be copied from disk to the memory. And this is the task of the page fault handler
known as page replacement and the task may involve evicting a page from main

memory.

(Refer Slide Time: 04:42)

Page Replacement Policies
= Question: How does the page fault handler
decide which main memory page to replace
when there is a page fault?

£ How important is this decision? >
a In the worst case, the policy could always replace

the page that is going to be accessed by the
processor next

k| Each of these would require copying the virtual
| | page from hard disk to main memaory

' |

o, i,

L J.‘du .

So, we were looking at you are about to look into what kinds of criteria could be used by

the operating system page fault handler, in deciding which particular page to eliminate

from main memory, in the event of a page fault. And this particular decision making part
of the page fault handler would be an implementation of what is called as Page

Replacement Policy.

By Policy, you can think of a policy as being a strategy or in this particular case an
algorithm that is used in order to make the page replacement decision and so we are
going to address this question, how does the page fault handler decide which main
memory page to replace, when there is a page fault and there are no free main memory

pages, in other words the free list of free memory page s is empty?

Now, before we actually look at possible policies and get a feel for what the operating
system where our program is running might be doing behind the scenes, might be useful
to understand how important this decision is. The way that it will understand how
important this decision is by thinking of what the worst case policy might do, in other

words, if the operating system did the worst job possible what would it do?

One way to think about this is, in the worst case, the operating systems page replacement
policy could be so bad that it always replaces a page that is going to be the next page
access by the processor, and this were of course, be little difficult to implement precisely,
because in order to implement this particular policy, one would have to know the
operating system page fault handler would have to know what is going to happen in the
future. But this is hypothetically the worst way the things could go. Now, why do |

consider this to be the worst possible scenario?

The scenario where every time a page is replaced from memory and it just happens to be
the page that would have been needed next. If you think about this a little bit, you will
realize that if every time a page has to be remove from main memory that page, which is
going to be needed next, is the one that is replaced and this would mean that in the near
future when that particular page that was replaced, is requested by the processor, that
would generate another page fault, and every one of this page faults as we know,

involves copying a page from the hard disk to main memory.

So, in order to get an idea of how important the page replacement decision is, we have to
know little bit more about how much of a penalty it is to copy a page from hard disk to

the main memory.

(Refer Slide Time: 07:11)

\stde: Disk Access Speed
» We saw that there is a speed disparity of about
| 2 orders of magnitude between Processor
| (nsec) and Main Memory (~100 ns)
a Recall: nano 10-#
« Hard disk
1 Remembers things by the state of magnetic material

+[isk is a mechanical device: motors rotating a firm plate
coated with magnetic material

a Asile: Computer noises

; Reading a page from hard disk could take -m=2¢cs
{milli:10-%) if not longer -

2 i.e., 104 times slower than main memaory! ﬁ.

&

gpﬂ_i_:

So, let us just step aside little bit and try to get a feel for how slow or how fast the hard
disks are. Now, when we were talking about processors and main memory, we were
concerned about the speed disparity between the processor and the main memory. and |
had given you an idea about approximately how big the speed disparity is today, by
suggesting that the time scale on which the processor operates is a nanosecond time
scale, whereas, the current main memories operate time scale of about hundred

nanoseconds.

In other words, one event of interest may take about one hundred nanoseconds, which is
what | would describe by this speed disparity of about two orders of magnitude, one
nanosecond compared to 100 or 10 to the power of 2 nanoseconds, and that was of major
concern to us. There was a two order of magnitudes speed disparity. So, what is the
situation and | will remind you that nanosecond is 10 to the power minus 9; nano stands
for 10 to the power of minus 9. So, what is the situation as far as hard disks is

concerned?

Let me tell you a little bit about hard disks. I will be telling you a lot more about hard
disks later, when we talk a little bit about the input and the output management task of
the operating system. But, from what we have seen already, you will recall that on the

current magnetic hard disks, such as those used in personal computers, laptops, mini

laptops, as well as lot of servers, the remembering of instructions or data is done by the

current state of certain magnetic material.

So, these are magnetic storage devices and one thing which is important to know to
know here is that the disk is a mechanical device. In the sense that the mechanical
material is on surface and that surface is actually rotated, in order to access the different

parts or the different pieces of data stored on the hard disk and this is done by motors.

The rotation of this plate or disk is done using motors and the motors that the plate itself
has a coating of a magnetic material. So, in some sense, one could view the disk as being
a mechanical device, unlike many of the other components of the computer system that
we have talked about; we talked about processor, we talked about main memory, which
were purely electrical or electronic devices. They contain circuits. In some cases, the
circuits could have been of quite different kinds, as we can see, from the fact that the
speed disparity between processors and memory are fairly large, but in many events they

were all circuits.

Here we have something quite different. This is actually what | would call a mechanical
device and again on the smaller side, let me just mention that many of you would notice
that your computer, your laptop, or your desktop does make a lot of noise and noise is
not something that we typically associate. The kind of noise which you get from a laptop
or desktop is not something that you would normally associate with electronic circuits,
because in electronic circuits there is some flow of current, some charge accumulation,
things of that kind, things happens in very high speed and there is no particular reason to

think that noise might be generated.

Whereas, we know that our computers are quite noisy and these noises are generated by
some of the mechanical devices inside the computer. One of those mechanical devices,
which generates a good part of the noise that your computer is guilty of are the disks.
There is a disk to rotate, the magnetic coated surface, there are other motors for other
purposes within the disk drive. Now, some of the other noises that you hear from your
computer since we are just on smaller side talking about the noises are actually due to
fans. Fans once again, a mechanical devices and they too have motors, but you may have
wonder why are the fans inside your computer and the answer to that question comes

from the electronic, electrical circuits in the computer.

Now, when the electrical circuits are operating they consume energy. They from You
know that the electric bill at home is probably higher than it used to be years ago, before
you had a computer, and this is largely because the computer does consume electricity
and good percentage of the electricity is consumed by the electronics, by the processor.
If the processor is doing things it needs energy to do things. But as a result, as you know
even current passes through a wire, heat is generated. In other words, some of the energy

is dissipated in the form of heat.

So, as this heat for a high speed processor, the amount of heat generated could be
substantial and therefore, there is a need for cooling, hence the fans and therefore, the
noise. So, at the movement we are not too concerned about power. In this course, we
would not talk about problems of heat, but very clearly there are mechanical devices

inside the computer and currently were worrying about one of them the disk.

So, the disk is the mechanical device, which means that its rotation is going to be done
by a motor and hence the speed of the disk is to some extent going to depend on how fast
the motor is rotating the disk, and you may heard about disks which rotate at 7200
revolutions per minute or RPM. Faster disks, which rotated at 10000 RPM, and the faster
the disk, conceivably, the faster the rate at which data can be transferred from the disk to
the memory. But, how fast is the disk access, if one assumes and makes reasonable

assumptions what might see in a current laptop or desktop.

Now, the answer is that reading a page from a hard disk would take not nanoseconds, but
on the order of milliseconds, and the millisecond is 10 to the power of minus 3 and in
fact, the amount of time to read a page from the disk could be substantially larger than
milliseconds, it could even run into seconds or more depending on the current state of the
disk and again, 1 will go into the more about disks later. So, when we talk about reading
page from a disk, at the very best way talking about milliseconds, we could be talking
about seconds, compare to the 100 nanoseconds that we were concerned about with

memory.

So, disk accesses are, let us say 4 orders of magnitude, I will just use that as a ball park
figure for the moment. If | assume that disk access takes millisecond and that main
memory is on the scale of 10 to the power of 2 nanoseconds and you do the calculation

here, you will find that the disks are at are several orders of magnitude slower than main
memory; main memory, itself is of two orders of magnitude, slower than the processor.

(Refer Slide Time: 14:01)

Page Replacement Policies

1 50, the OS page fault handler code must be
written based on a realistic mode) of how
programs behave with respect to memorny

So, going back to the question which raise this aside about disk access speed, the
question of how important is decision, the decision of which page to replace from
memory, in the event of a page fault. We realize that this is a very important decision,
because with the bad decision many more page faults will be generated, and the more
page faults there are, the more disk accesses have to take place, and each disk access is
four, may be more order of at least four orders of magnitude, slower than a main memory

access. So, this is a very important decision.

So, the bottom line that we learnt from this, Page replacement policies are important,
they have a very big impact on the execution time of our programs. We do need to know
something about how the page replacement part of the operating system works. In case
that will give us some insight into how we should modify the way that we write our
programs. But, its stands to reason from this big speed disparity between main memory
and disk that the OS page fault handler, must be written in some intelligent way, and one
strategy, which is often used is to have some kind of a model or some kind of an
understanding about how programs behave with respect to memory.

So, if the person writing the page fault handler has some way of reasoning about how
programs behave, then he can use that knowledge, he or she can use that knowledge to
decide how to write the page fault handler. In other words, how to decide which page

could be replaced from memory if the need arises during the handling of a page fault.

So, what we need now is some knowledge about what are considered being realistic
models of how programs behave with respect to memory. A model is some kind of an
abstract understanding of a physical phenomenon. In fact, abstract description of a

physical phenomenon.

(Refer Slide Time: 15:47)

Page Replacement]"ulii_‘il;;c Sl
Ll 1, FEPS --.-,-._ FEAY -
“Principle of Locality of Heferen*e A A
a2 A commonly beimvecﬂseen pmgram pmpem_,-
2 If memory address A is referenced at time 3’ ﬂ'ten
[itandfs neighbouring memory locations EII:'E-' 1|kEE;.r
be reierenced inthe near future -

i

Temporal Locality

Now, today one of the most widely respected, most widely believed models for how
programs behave with respect to memory access is something known as the Principle of
Locality of Reference. It is referred to, it is a principle, and it is not called a law. A law is
something which holds now, always held, will always hold anywhere. This is just a
principle, which means something which we believe holds a lot of the time to some
extent. Its technically what principle is use for here.

The word reference is here referring to a memory access or a memory reference. So,
instead of reference, you could think that the word memory accesses. So, here principle
is being stated as principle as some kind of a generalization about how programs behave

in terms of their memory access behavior, and the key word here is something called

locality and | will state a principle of locality of reference for us to just get a feel for

what....

So, basically this is some kind of a commonly believed or commonly observed program
property, and this is a statement. Now, the statements says, let us suppose that a
particular memory address, which will be called A is referenced at some particular time
t, think oft as being now. So, as the program is executing some point in time, let us call it

timet, the program accesses memory address A.

Now, what the principle of locality of reference tells us is that it is likely that particular
address, as well as its neighboring memory locations, will be referenced in the near
future. So, this particular principle is giving us some kind of a hint or it is a giving us
some kind of a model about what is going to happen in the near future as far as a typical

program is concerned, and this what we would have like to have.

You will recall that in describing the worst case policy we were, because of our
uncertainty about what was going to happen in the near future, we could have used of a
policy which did the worst possible thing. So, with a principle like this you get some
kind of a hint about what is conceivably going to happen in the near future that could be

used to prevent page replacement policy for making bad decisions.

So, again read this slowly, the principle is suggesting that if you want to get some feel
for what, which, pages or which memory locations are going to be accessed or
referenced in the new future, look at what is happening now, and if particular address is
being accessed now then, it is quite likely that that particular address, as well as its
neighboring memory locations. So, what could neighboring memory locations be? Now,
you will recall that we, whenever, talked about memory, memory was an address space

starting with address 0 and going up to some maximum possible address.

So, if I was talking about particular address A that is basically some unsigned integer
some number. A could be the memory address hex 1 0 0 0, for example, it is a number.
What do | mean by its neighboring memory locations? Quite clearly, looking at the
picture of memory, | must be referring to the memory addresses which are close to A. In

other words, A minus one, as well as A plus one, as well as A minus two, as well as A

plus two and so on. The addresses around including, and around A would constitute the
neighborhood of A.

Now, there are two aspects of the statement that have to be understood. One is the
suggestion that if memory address A, is being referenced now, there is slightly that it
(Refer Slide Time: 19:22), in other words, memory address A itself will be reference
again in the near future. There is a second aspect of this statement, which is that is
memory address A is reference now, then it is likely that its neighbors in other words A
minus one, A plus 1, A minus 2, A plus 2 etcetera are going to be reference again and are
going to be referenced in the near future.

So, there are these two aspects to this statement of the principle and in reading literature
related to memory, you may come across two terms, which are used. One is to talk about
the first part of the principle, in other words, the idea that A itself is likely to be reference
in the near future, as a statement of Temporal Locality of Reference. Temporal is a word
relating to time and another term which is used is to talk about the likelihood that the

neighbors of A.

In other words, A minus 1, A minus 2, A plus 1, A plus 2 etcetera, will be referenced in
the near future from time t, is referred to as the principle of Spatial Locality of
Reference(Refer Slide Time: 20:25), which is referring to space, and you can quiet
clearly understand where the two terms are coming from. So, people may separately talk
about how the programs show good temporal locality of reference or the program show

good Spatial Locality of Reference and this gives us an idea of what they mean.

Now, before going ahead and looking at page replacement policies, we do need to get
some confidence in this principle, the in the leggier I mean that this principal is
legitimate means that the program that we write are likely to show the properties which

are described here.

(Refer Slide Time: 21:00)

Locality of Reference
= Based on your experience, why do you expect
that programs will display locality of reference?

=
k4
(5]

&

i LJ_:

So, once let us do that, let us ask a question based on our experience, why do we expect
that the programs that we write will display locality of reference. Now, the picture that
we have of the programs that we write, let me just remind you is that when | write a
program | write it in C, and subsequently that program is complied into something,
which in the machine language, which deals with memory references. The program that |
write does not directly deal with memory references. | could actually write a program in
C without knowledge that there is a memory at all. Some of you may have started this

course without a clear understanding of why a computers system had main memory.

So, clearly it is possible to write C programs without any knowledge of main memory.
Now, we have a better understanding of main memory. We understood that in the Unix,
Linux, world if I look at exactly how main memory is used, this is a virtual address space
of a process going from some address O the address O up to some address of two the
power n minus one, and | know the some of the address space is used for the instructions

of my program.

Some of the address space is used for the statically allocated variables of my program,
some of the address space is used for the heap allocated variables of my program, the
heap might grow and some of the address space is used for the stack allocated variables

of my program, the local variables of functions parameters of functions and so on. So,

what we need to try to understand is as far as the, remember, the text relates to the

instructions of my program.

So, the memory reference is that my program makes could be instruction references and
the memory references could be data references. When your program executes, it
accesses memory both ways, to fetch instructions as well as to fetch data or to store data.
Therefore, in trying to assess what extent our programs show good locality of reference
we have to look both at the behavior of programs, these are the instructions and the

behavior of our programs vis-a-vis data, which is what we will do next.

(Refer Slide Time: 23:02)

W b q 3 8 T A L
|.oc Ll1H of Reference | I 2
« Based on your expenence why do yuu expect
'f__r,hat prngrams will drsplay !r::calrtg,r DI‘ I‘EI‘EI‘EFIL*ET‘
[
MG Same addres-s Neighl:murs
N ~—{{temporal) “[spatial}-
-_'r'_',:_,_?,.._.:... = —— — — -
_—— " Small loop< Sequential code S3ps
tructi L, : e
fastructions Function Loop.
Local vanable | Stepping through
; Da"'.‘".li - Loop index_— array
al ; F 3 = ‘;_ 3
1 ’. -
rd B, Y|

We will try to come up with examples of things, which are programs commonly do and
try to access whether they are going to be good or bad from the perspective of locality of
reference. So, in doing this, I am going to look separately at instructions and data,
because they may have different properties as far as locality is concerned, for the typical
program. And we looked separately at the same address type of locality, which | call
temporal locality, and the neighbor locality which | called spatial locality. Remember,
the temporal locality was the fact that it is highly likely the A itself will be reference
again in the near future. Spatial locality was the likelihood that A minus one, A plus one,
A minus two, A plus two etcetera, in other words, the neighbors of the address A, which

is the current reference would be accessed in the near future.

So, we are going to come up with the table in which we are going to try to list things,
which happen in the programs that we write that are likely to produce good instruction
temporal locality of reference or good instruction spatial locality of reference and so on.
And if this table is satisfying then we can say that we believe the principal of locality of
reference, as far as, the programs that we write are concerned, so this going to be useful
exercise. This will also give us some insight into what kinds of things we could do in

writing our programs in order to enhance their locality of reference.

So, let us think about instructions first, why would it be or why would it happen that
instruction accesses could show good temporal locality of reference? In other words,
why would it ever be the case that a particular instruction i, is currently being fetched
from memory, it is lightly that the same instruction i will have to be fetched sometime in

the near future. That is essentially what the question of temporal locality would address.

So, if instruction i is being executed now, apparently it is likely that instruction i might
be executed in the near future. Now, what kind of program features might cause this to
happen? You think about this little bit and clearly we are talking here about either some
repetitive behavior, in which case, a small loop would cause instructions to show good

temporal locality of reference.

If I have a program in which there is instructions i, and instruction i plus one, and
instruction i plus two, possibly also instruction i minus one, all forming a loop. In other
words, after executing instruction i plus two, it loops back to i minus one, possibly after
checking some condition. Now, if I do have such a small loop, let suppose that at time t,
instruction i is executed then possibly shortly after that instruction i plus one, shortly
after that instruction i plus two, shortly after that instruction i minus one, and after that in

the very near future instruction i being executed.

So, programs which have small loops, if the loops have a high iteration count, then they
would show excellent temporal locality of reference. Now, what are the kinds of
behavior of, what are the kinds of programs might show good temporal locality of

reference?

The key here is that there are some kinds of repetitive behavior and one way to have

repetitive behavior is to have a loop. Another way to have repetitive behavior is actually

to have a piece of code which is frequently called. In other words, if I have a small
function or a function which is called very often then if I looked it one of the..., | have a
function and | consider one of the instructions in that function, it is instruction, it is if the
function is small, then every call to the function may just involve executing, a small
number of instructions, is soon after that the function is called again, then the instruction
I is going to be executed again.

So, frequently execute small functions once again, | going to show very good temporal
locality of reference. So, if these are features of your programs, the programs that you
did normally write, small loops, functions then you know that your program is going to
show good temporal locality of reference as far as instructions are concerned, and you
could in fact, enhance the temporal locality of your program as far as instructions are

concerned, by using these features, a little bit more you could also try to think about.

Remember, when | talk about small loops, | am talking about while loops, if loops, feet
loops, everything comes under that. You could also think about to what extent other
features of your program enhance the temporal locality of reference, given the definition
of temporal locality. But let us move on, let us next try to think about why it would be
why to what extent the programs that we write shows spatial locality of reference as far

as instructions are concerned?

In other words, if instruction i at address A, | am referring it to as instruction i. Until
now, | was referring to it as the thing at address A, but let suppose instruction i is
instruction currently being executed. The question of spatial locality is that why is it
lightly that instruction i plus one, instruction i plus two, instruction i minus one,
instruction i minus two would be reference again in the near future, and we have seen
from our discussion of temporal locality that why instruction i minus one and i plus one

might be reference again in the near future as far as loops are concerned.

So, in immediate answer in the next square which we are going to fill up, the square
about why instructions might show good spatial locality of reference, is going to be
relating to loops, as we have just seen. But more frequently occurring scenario is the
ordinary code that we write where there is no control transfer, which is sequential code.
After instruction i, if | have a piece of sequential code, in other words, | forget about this

loop, | just have code, which is executing sequentially, then after instruction i is

executed, instruction i plus one is executed and after that instruction i plus two is
executed. In other words, the instructions in the neighborhood of i going forward in

memory, i executed.

So, sequential code shows good spatial locality of reference. We see that loops cause
instruction i itself to be executed again in the near future, particularly if loops are small,
but loops in general are going to cause good behavior as far as spatial locality of

reference is concerned too.

Because after instruction i plus two has been executed instruction i minus one is going to
be executed, in this example, if we have a loop. So loops enhance the spatial and
temporal locality of your program. So, if your programs contained functions, loops,
sequential code, and then you know that your program is going to go, show good
properties as far as the locality of reference is concerned with respective instructions.

And again a little bit of thought about this tells you that if you write your programs under
principles that were taught you in a course on programming, such as modular
programming or object oriented programming, then these things happen automatically.
In other words, the idea of modular programming or object oriented programming by
definition enhances the temporal and spatial locality of reference of your programs and
you do not possibly have to worry about specifically as far as instructions are concerned.
Good programming practices will result in good locality properties for instructions, but
does the same hold for data? Let us fill the table a little bit more to get some
understanding of what kinds of features of data accesses would cause our programs to

show good temporal and spatial locality of reference.

Now, let us think first about temporal locality. So, the issue here is | have a variable x
and currently in a situation x is the variable at address A. So, | am currently in a situation
where my program is just accessed address A. As the program shows good temporal
locality of reference, suggestion is that in the near future it will reference that variable
again. So, you need to ask our self that what kind of scenarios and programs would cause
this to happen. A variable which is currently accessed is accessed again in near feature
and you can think of situations where this happens. For example, if | have a function, we
had the example of our function B from our function called scenario, where they were

two local variables. | think there were called x and y. They may have been called A and
B, but, they were two local variables.

Now, why did | declare those as local variables? | declare them as local variables
because | wanted those two pieces of data to be used while the function was executing.
Therefore, it is very likely that those two variables will be accessed within the body of
the function. So, if one of them is accessed at time t, my reference to memory location A,
then it is very lightly that some time is a near future it will accessed again, because it is
local variable of a function. There was small number of local variables of the function
they were included their specifically, they are lightly to be accessed again and again

within the function. Therefore, local variables are likely to show this property.

Another kind of a variable that you use which may well show temporal locality of
reference, if you think about a bit, is a loop index. What do | mean by loop index?
Consider a for loop. In for loop, you have a variable called i which is initialized to some
value, and then there is some value which is checked. So, i is compared to some value to
identify the termination condition and every time through the loop the variable i is

incremented.

Here that the technical term for the variable i is to refer to it as a loop index. It is the loop
the variable which is used for a for loop to specify how many times a loops should iterate
and the value of i could also be used within the loop. For example, if this is a variable a
loop which is doing something to an array then it often happens that you index the array
in this case, | am calling x, using the loop index or some function of loop index, which is

i plus one.

So, if I am inside a loop, at the beginning of the loop, the loop variable, the loop index is
going to be accessed and very frequently within the loop it happens, often happens that
the loop index is accessed again and again, due to the fact that it is the loop index. So,
loop indices are good example of variables, which will likely to show good temporal

locality of reference and many of you write programs which use such loops.

So, these concepts, the idea that functions or loop, for loops have variables, which are
lightly to be use lot within that function or that loop suggest a program, which use these

features will show reasonable temporal locality of reference. What about spatial locality

of reference as far as data is concerned? In other words, if a particular address A is
accessed or is being accessed, now the idea that it is quite lightly that address A plus one
or address A minus one, would be referenced in the near future. Remember that these are

the addresses of data items.

So, what kind of data objects might cause this property to be seen? Now, immediately
the thought which make come be coming into your mind is about arrays. If you do have,
let say one dimensional array. Remember, an array is up on the top, | am going to draw
an example of an array. This might be the array x (Refer Slide Time: 34:01). So, each
element of the array has an index. This might be an array of size 100, in which case the
index of the last element will be 99, the index of the second last element would be 98 and

SO on.

So, let us suppose at a time t, | was accessing the element x of three. Now, if | have the
reason that I was setting up this array was to let say step through a series of data, then
could well happen that after accessing one particular element I will access the next
element and so on. So, this notion of stepping through an array is very clearly going to
show very good spatial locality of reference.

The same could be said about things like struct or structures. If | do have a collection of
different kinds of data which are associated with each other and defined as a struct
declared as a struct, see struct, then the elements of the struct are going to be stored in
neighboring memory locations, which means they are going to have addresses by which
one could call them neighbors of each other and if | access one field of the struct and
then another field of the struct, and then another filed of the struct, then all of these
references if they happen close to each other in time, would enhance to the spatial

locality of reference of my program.

So, putting all these together, it looks like there are certain principles which may fallout.
As far as instructions are concerned, good practices might be all that we have to worry
about for the moment. As far as data is concerned we may have to be aware that in the
indices, loop indices, local variables are special and that in stepping through an array, it
might be go to try step to the array, let say sequentially, rather than stepping through the

array in some random fashion.

By random fashion, | mean first accessing the 98th element, then the zeroth element,
then the 6th element and so on. Because they would be a benefit from the perspective of
spatial locality of reference as far as the sequential stepping through the, serial stepping
through the array is concerned and therefore, if that is under my control, I could enhance

the spatial locality of reference of my program by doing the stepping through the array.

So, some ideas which come to mind about how it might impact the way that we write
programs. But, all of this discussion about locality of reference came about because we
were trying to understand what considerations an operating system page fault handler
might use in deciding, which page to replace from memory, in the event of a page fault
and recall this locality of reference was a principle about how the typical behavior of

programs as far as memory acCcesses is are concerned.

(Refer Slide Time: 36:34)

Page Replacement Policies

= For a program that displays good locality of
reference what would be a good page
replacement policy?

'S __P:Py| P

e

L)

A page fault occurs on reference to page P,
Which page should be replaced from memory to make
space for page P,? s
= .
Candidates(Py, Ps. (P, B-" all the pages in main memory

r - -
“Pick from théfTthe page that was referenced least recently J

So, stepping back to the page of replacement policy, we now have this question, for a
program to displace good locality of reference, spatial and temporal, what would be a
good page replacement policy? In other words, what would be a good consideration for
the operating system page fault handler to use in deciding, which page to replace from
memory? Now, let us try to understand the principle in a slightly different way. Now let
us look at this line which is a time line. So, the time line starts at some point in the past it
goes to through to the indefinite future and somewhere in the middle is now, which

might be labeled as 0, just sometime in some intermediate time.

Now, what do we know from the principle of locality of reference? We know that let
suppose that | know the memory reference, which is happening now. Let we most
specifically say, let suppose that at the time called now, a page fault has occurred, due to
the reference to a particular page, which I will call P x. I am not going to talk about
particular memory variables or addresses anymore, because we know that from the
perspective of page virtual memory, both the virtual the physical address spaces are
viewed as pages and therefore, and the replacement of entities from memory is not going

to happen on in terms of bytes or words, it is going to happen in chunks of pages.

So, I will refer to the individual references as being page references and the offset within
the pages is of secondary importance at that the moment. So, at now what has happened
is or what is happening now is at page fault has occurred due to a reference to some

variable which is on the page P sub x that could be p p could be page P 3, whatever it is.

Now, what do we know about the consequences from the principle of locality of
reference, about the fact that page P sub X, has been reference. We know that the next
reference is lightly to have the next, if 1 look into the future slightly that I will see
references to memory locations, which are either on page P or the neighbors of page P.
That is one way to look at the principle of the locality of reference, but does not help us
very much in making the page replacement decision. The page replacement decision is
the decision that has to be made is among all the pages which are currently present in
main memory, which one should I replace from main memory, in order to make space

for page P, P sub x.

So, the decision has to be may based not on the identity of page P sub x, but on the
identity of the pages, which are currently present in main memory. So, let us assume that
well. So, this is the question that which page should be replace from memory to make

space for page P sub x.

Now, let me assume that I can look back in time. | know that | cannot look forward in
time, but I do know that I can look back in time, because in order to look back in time, |
really just have to remember, | mean before time now, if I think about time now minus
one, if I remember what happen that time now minus one somewhere, then when time
moves forward, | will be able to look back in time. So, | can look back in time by just

remembering what happened in the past when it happened.

Now, let suppose that I knew something about among all the places, which were in
memory, which once were actually accessed in the near future, | am sorry in the near
past, 1 cannot look into the future, but | can apparently look into the past. Now, let
suppose that currently the pages which are in main memory are the pages P 1, P 2, P 3,
through P n. So, there n pages in main memory and my objective is to identify one of
them as the page to be evicted. Now, let suppose that the page which was referenced just
before and now, in other words the previous memory reference was to page P 1. P 1 is
one of the pages which is currently in main memory. Now, by the principle of locality of
reference, | know that if page P 1 was referenced there at time now minus one, then it is
quite lightly that it will be referenced again in the near future, which means that as far as
now is concerned page P 1 is not a good candidate for replacement. Page P 1 is one of
the pages, which is lightly to be reference sometime in the near future. It was referenced
at now minus one and is therefore, lightly to be referenced at now plus one or now plus

two, sometime in the near future.

Similarly, if 1 know that page P 2, sorry P 5 was reference just before Page P 1 in the
recent past that | know that page P 5 also is not a good candidate for replacement, since it
is lightly to be reference sometime in the near future. This gives me the base for
identifying a page replacement policy and the idea might be, | look back at the recent
references an any page in main memory, which was referenced recently, is not a good
candidate for replacement, by the principle of locality of reference. It would not be good
for me to replace page P 1 or page P 5, since they are lightly to be reference in the near

future.

So, then the question arises among all the pages, which are currently present in main
memory, | have eliminated page P 1, | have eliminated page P 5, as good candidates for
eviction. So, which of these pages would be the best one to evict and the answer as you
can quickly see is, | want to evict that page from main memory that was referenced least
recently. In other words, | continue this looking back in time and | eliminate page P 1
because it was referenced at now minus one. | eliminate page P 5 because it was
reference at time now minus two. Similarly, | eliminate other pages by looking back in
time and | am left to the one page. That is the page which was referenced least recently
and that would in fact, be the page which is best to replace. So, let suppose that the page

which was referenced is recently was page three. The previous reference of page P 3 was

some time in the distance past, which means that it very unlikely the page p 3 is going to
be reference any time in the near future.

Among all the pages which are present in main memory, P 3 is the one, which is least
slightly to be referenced in the near future based on the principle of locality of reference.
So, if my programs show good locality of reference then would make a lot of sense to
use this red statement at the bottom as the basis for defining a page replacement policy.
In other words, pick from all the pages in memory that page that was referenced least
recently. What would you call a page replacement policy that uses this idea? You would
call it the least recently used page replacement policy.

(Refer Slide Time: 42:53)

L oes

|east Recently Used (LRU) Policy
« Keep track of when each page was last used
. a WWith a tirnestarnf::- Fiwe,

a LEL page the one with the smallest tlme'stamp

2 Requires & !arge number of c ::-::rnpans{:rrs
= Or, keep track of the stack of recentI;.r used

~ pages I

2 LEL page: at the bottom of the stau;k

0 Stack must be update::f on every nmr;r ACCesS
= Eu LEL.I might be too expensive m practise ™y

And this is a commonly use term in computers circles and is frequently abbreviated as L
R U. So, the least recently used page replacement policy builds heavily on the model
defined by the principle of locality of reference, as we now understand it. Now, the
question which arises now is, we do need to satisfy ourselves that the operating system
page fault handler can actually use the least recently used policy. In other words that it is
a feasible policy. We have seen that it makes a lot of sense from the perspective of
principles of locality of reference, but if it is not feasible to implement it then we need
not take it into consideration, operating systems would not use it.

So, how do we how do we argue about this.

So, you saw that what we were doing in our timeline was we were looking back in time
and seeing when a page was used last. We look back at now minus one and saw that page
P 1 was used. We look back at time now minus two and saw that page P 5 was used and
so on. So, essentially to implement the least to recently used policy, the operating system
page fault handler would have to keep track of when each page was last used. For
example, for P 1, it would remember that page P 1 last used at time now minus one. For
page P 5, it will remember that P 5 was referenced most recently at time now minus two

and so on.

So, this is a kind of information that the page fault handler would have to keep track of in
order to know which page among the P 1 through P n was least recently used, and you
could do this by associating a timestamp. In other words, the time at which that page was
most recently accessed, along with a page table entry corresponding to that page, then
when the time comes to make a page replacement decision, it could look at the it could
look among all the timestamps in the page table to find the page, which has the smallest
timestamp. What does it meant have the smallest timestamp? By time stamp, | mean

some indication of time at which the reference was made.

So, if now is six’o clock the now minus 1 is six’o clock minus few nanoseconds and so
on, these are times. So, to identify the least recently used page, we look for the page
which has this smallest timestamp, and that will be the page, which was referenced
farthest ago, in the past. That is why the timestamps is the smallest, these timestamps are
monotonically increasing. Now the question arises, is it feasible to actually do both of
these things? In other words, to among all the page table entries to find the one which is
the smallest and also you will notice that we are also talking about updating the page
table entries, in order to keep track of the timestamp. In other words, whenever page P 1
is assessed, it is page table entry will have to be accessed to update the timestamp;

otherwise, it will have a timestamp from the previous reference.

Therefore, there is a fair amount of work involved in updating the timestamps because
for every memory reference page table entry will have to be updated. Timestamp entry
will have to be updated for page P 1 and then potentially a huge number of comparisons
to identify the timestamp which is smallest, when a page replacement decision has to be

made.

Now, is this a big consideration? The fact, that in order to find this smallest timestamp
you will have to compare a lot of timestamps. How do you find this smallest among
hundred numbers? You have to compare them in some fashion and ultimately find out
which of them in these comparisons ends up is the consensus minimum value. How
many comparisons might we be talking about here? If you have only four pages is might
not be a large number of comparisons, but if | have a main memory which is gigabytes in
size, then the number of pages in the main memory could be substantial. It could be
millions and if | have to find the smallest among millions of timestamps that could take a

fair amount of time.

So, the large number of comparisons required to identify the least recently used page,
which will be identified by the page, which has the smallest timestamp of recent
reference in its page table entry, might mean that this becomes infeasible policy, and
unless I could think of some other way to keep track of the least recently used page.
Now, instead of keeping track of the least recently used page using a timestamp, what if |
keep track least recently used page. In fact, of the order in which would be referenced
using a stack, in other words, the stack of recently use pages and how might this work.
You all know what is stack is; the stack of books on a table.

So, when a new book comes, you put it on the top of the stack. Why do | talk about a
stack? Because, if | have a stack of references, every time a page is referenced, | put it on
top of the stack. If it was somewhere in the middle, because it is reference from the
recent past was not too recent, then | take it off in the middle of the stack and put it on to
the top of this stack. Therefore, if | look at the stack at any given point in time, the top of
stack will be the most recently reference page, the second and the stack would be the
second most recently reference page and so on. The Page at the bottom of the stack
would be the least would be the least recently reference page. In other words, candidate

for replacement, so here we are talking about the idea of maintaining a separate stack.

This has nothing to do with a function call and return stack. This would be maintained by
the page fault handler. This is just a stack of page numbers. So, if page 3 was least
recently used, it will be on the bottom of the stack, page 1 was most recently used; it is
on top of the stack. In our example, page 5 was the second most recently used page; it is
on second position of the stack.

So, what will have to be done every time a page is referenced? | will have to make sure
that this stack, this LRU stack, is it might be called, is kept correct. It should always
contain the information of the order in which, if you think about it, this particular stack is

keeping track of the order in which the recent references happened to these pages.

So, let us suppose that right now the page P sub x is being referenced, and it is not
causing a page fault, but it actually happens to be page P 7, which is down here in this
stack. As | mentioned, to update the LRU stack, | will have to take P 7out from here and
put the number 7 on top of the stack. Therefore, to keep track of the stack of least
recently used pages, every time a page is referenced. It will potentially have to be
searched for in this stack, moved from its current location and put on to the top of the
stack, which once again if there are millions of pages in memory, might end up being
extremely expensive, because this will have to be done on every memory access, not on
every page fault. The updating of the time stamp would have to happen on every

memory reference, not on every page fault, these could be very frequent events.

So, neither these seems to be a satisfactory policy for large main memories. They might
be acceptable policies for very small main memories, but we know that main memories
today are large and therefore, we might actually come up with the conclusion. So, the
LRU page would be the one of the bottom of the stack in this description and there is a

problem that the stack must be updated on every memory access.

So, the conclusion that we may come up with, I mean we looked at to what seem to be
very reasonable ways to implement the LRU policy and we have also argue that neither
of them is really a good idea in terms of implementation, because they will slow down
the page fault handlers, substantially. Because for millions of pages, it will take a long
time to do the comparisons and it will take a long time to keep updating the stack
compare to the processor time, which is nanosecond. We do not want to slow things
down too much and the bottom line conclusion might be, LRU might be two expensive
in practice.

We might not find operating systems actually using LRU as a page replacement policy.
This is unfortunate why, because we had come up with we learned about the principle of
locality of reference, we understood that it is seems to make sense for the kinds of

programs that we write, we came up with a page placement policy based on that model

of program behavior, but we find out that there it might not be feasible. It might be too

expensive to implement in practice.

(Refer Slide Time: 50:58)

Alternative Page Replacement Policies

This looks like a dead end, but will move forward to understand that it is conceivable
that operating systems can use the principle of locality of reference and use LRU like

ideas without having to have the full over heads of implementing LRU.

So, they could be alternatives to the LRU as a page replacement policy. So, if there are
going or if there could be efficient mechanisms for building page replacement policies
that are LRU like, in that they allow the principle of locality of reference, to be used as a
consideration in page replacement decisions, and prevent that worst case scenario from
actually happening, then that would satisfied our requirements, and we will continue

from this point in lecture 15.

Thank you.

