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Welcome to lecture 13, of our course on, “High Performance Computing”. As you will 

recall in the previous two lectures, we have started looking at the software side of the 

system, as far as, what is required for the execution of our programs. And, towards the 

end of the previous lecture, we had looked into the very important piece of software 

known as, the Operating System. 

(Refer Slide Time: 00:39) 

 

So, let just start off, with a brief recap from the previous slide, where we saw that the 

operating system is the critical software on a computer system. It manages the resources 

of a computer system, and so far, the perspective of what happens to your program, when 

it executes. Software System is clearly very important. The software system is managing 

the hardware and software resources. We had seen that we need to understand four 

aspects of what the operating system does: how it manages the CPU, the sharing of the 



capabilities of the CPU among the different programs in execution, how it manages the 

main memory, ensuring that one program cannot access and modify the variables of 

another program for example, how it manages the I/O devices, such as terminals, 

monitors, disks, network, interface, cards etcetera. We will not be looking at all of these 

examples, but one. And finally, how it manages the software resources of a computer 

system, and the key concept here was that when a program is in execution, we have the 

concept of a process. The operating system manages the different processes, which are 

sharing the resources of a computer system. 

(Refer Slide Time: 01:54) 

 

So, our first look into operating systems is in the area of how the operating system 

manages main memory. And we are looking at specific kind of widely used operating 

system mechanism for managing main memory. This is known as Paged virtual memory. 

And I just remind you that it is necessary to have a mechanism to protect one program in 

execution from another. That is typically done through a procedure of address 

translation. 

In other words, the program in execution will address its text, data, stack and heap, using 

may be addresses between 0 and some maximum address, based on the size of an 

address. But these addresses would not really be main memory addresses. They would be 

referred to as virtual addresses. Each process would have its own virtual addresses, and 



these would ultimately be translated when the programs execute into actual main 

memory addresses, which are called physical addresses. 

So, to do this translation, a table of the mappings between virtual addresses and physical 

addresses is necessary, and we understood in the previous lecture that unless we do this 

carefully, the size of the table, size of the address translation table, could itself become 

major problem. 

(Refer Slide Time: 03:06) 

 

We saw for example, that if we were to associate, a piece of address translation 

information, with each byte address, so if the virtual address in the diagram here, we 

have an example of as address translation table. For each, in this example, for each 

virtual byte address, it has the corresponding physical main memory byte address, and 

the size of this table can be calculated. For example, if I assume that the size of an 

address is 32 bits, then I know that the width of the table, in other words the size of each 

physical address could be 32 bits, and I know that the number of entries in the table is 

going to be the number of bytes that can be addressed. That is going to be 2 to the power 

32 and the size of the table would be an enormous 16 gigabytes.  

So, the address translation table itself, the information which is needed to translate a 

virtual address to physical address would be much larger than most main memories. So, 

this is not clearly possible. We therefore, looked at what would happen if you did not 



maintain a piece of address translation information, for each byte address, but rather let 

us say for each 256 byte unit of memory. In other words for the whole first 256 bytes of 

memory, in other words from the byte address 0 to the byte address 255; I might just 

have one address translation information inside the address translation table. And if we 

do this, then the size of the table comes down to a more manageable 64 mega bytes. 

(Refer Slide Time: 04:40) 

 

So, this is generally the kind of idea we are going to look at in the case of Paged virtual 

memory. Since the size of the address translation table is the problem, it looks like a 

possible solution is by not maintaining the address translations on a byte by byte basis 

but rather at some larger granularity, such as the 256 byte granularity, which I had 

suggested. 

Now, technically the word, ‘Page’, is used for this size of granularity. So, it is the fixed 

size unit of memory for which a single piece of address translation is maintained. As I 

said in our example, I had just gone through; I was assuming that the size of each page is 

256 bytes. And as a consequence, 256 contiguous neighboring memory locations will all 

be associated with the same piece of address translation information. And in effect we 

are breaking this memory down into units of size 256, in order to solve the problem of 

huge address translation table size. 



So, you will recall that I talked about paged virtual memory. We now understand where 

the first term is coming from. We already know that we are talking about virtual 

memory, because the addresses which a process uses are not real addresses, but artificial 

or virtual addresses. Hence, the name of paged virtual memory for this mechanism for 

setting things up using fixed size chunks of memory contiguous as a unit for address 

translation. 

(Refer Slide Time: 06:02) 

 

Now, to get some idea about how this works, I am going to do this first to start off with a 

just a pictorial representation. So, we know that when a program is in execution, we refer 

to it as a process, until it does a fork after which it could be more than one process. But 

as far as the single process is concerned, we know that it has many things in memory, 

which must be present in memory for it to execute. This includes, as we know its text, 

which is its instructions, its static data, its stack allocated data, and its dynamically 

allocated data in the heap. 

So, all of this, put together is what we refer to as the ‘virtual address space’ of the 

process for the program in execution. So, until now, when we talked about programs we 

were looking at the virtual address space in this way. We also know that this virtual 

address space can be viewed as the addresses from 0 up to some maximum possible 

address. So, in this notation rather than writing address 0 at the top and address two 

power 32 minus one at the bottom, I am showing you the addresses in hex notation. 



Remember, whenever you see a number, which is prefix by 0 x; that means that it is 

being shown to you as hexadecimal or hex notation; hex is a short form for hexadecimal 

or base sixteen notation ( Refer Slide Time: 07:17). 

So, the address space here, you notice they are eight zeros in hex, which means that this 

is a 32 bit virtual address. So, the minimum possible, the first 32 bit address is all zeros 

and the last 32 bit Address is all Fs. And if I had expanded this into binary, it would have 

been all ones, which is the value 2 power 32 minus one. So, this is the way, that I would 

use a virtual address space in terms of its address space. Now, if I am going to try to 

manage the address translation information in units of 256 bytes, then the first 256 bytes 

would be at the top of the address space, going from byte address 0 up to byte Address 

255. The second chunk of virtual address space of size 256 bytes would follow and so 

on. In fact, the actual addresses associated with each of these chunks, could be 

calculated. For example, I know that in the first chunk of size 256 bytes, I know that the 

first address is 0, which means that the last address is going to be 255. Because all the 

byte between 0 and 255 would constitute 256 bytes of memory, and if I convert 255 into 

binary and then into hexadecimal, I will find out that it is F F, six zeroes followed by F 

F.  

Similarly, the second 256 byte chunk in memory, will start from 1 0 0, which is the 

address after 0 F F. The address in hex after 0 F F, is the address 1 0 0. And the second 

chunk would run from one 0 0 up to 1 F F and so on. So, I could be given this 256 byte 

granularity assumption, I actually can redraw the picture of the virtual address space, 

along these lines, chunks of size 256, with clear knowledge of what the first address in 

the chunk is, and what the last address in the chunk is. Now, I am going to be using the 

word page to refer to this chunks. 

So, technically I could talk about the first chunk of size 256 bytes, which runs from 

address 0 up to address 255, or in hex, from address 0 0 up to address F F, based on the 

information, which I see in this diagram to the left. You know this that I have highlighted 

among the addresses of the bytes which are in that first chunk; I have highlighted what 

they have in common. And you noticed what they have in common is there all of those 

bytes, all of those byte addresses, the first six hex digits are all zeros. In fact, if I look at 

the second chunk of size 256 in the virtual address space, I notice that for it too there is 

commonality. 



 All of its bytes, what they have in common is that there first six hex digits are 0 1 or 1. 

If I was to convert that 0 0 0 0 0 1 into decimal, I would refer to it as one. Similarly, the 

0 0 0 0 0 0 would refer to a zero. So, what that first 256 bytes have in common, is that 

the most significant bits amount to 0 and what the second chunk of 256 bytes have been 

common is that their most significant bytes, have in common is the one.  

And therefore, ensure what I could do is to refer to the first 256 bytes in memory, since I 

am going to refer them as a page, and I know that this is the virtual address space, I can 

refer to those first 256 bytes as the virtual page zero, in other words, a virtual page in 

which all of the bytes have 0 as their common most significant bits. 

Similarly, the virtual page one, as a virtual page in which all of the bytes have in 

common, the most significant address bits being one and so on. Another way to look at it 

is if I number the virtual pages from the first one in memory onwards, the first one would 

be called virtual page 0, the second one would be called virtual page one. But this is an 

additional observation of some value, that within virtual page 0, all the bytes have the 

most significant bits identical, as far as the address is concerned. And the commonality is 

the most significant bits amount to 0, which is the virtual page number. 

In short, we have this picture (Refer Slide Time: 11:25) rather than thinking of the virtual 

address space of the process as text, data, stack, and heap, we can abstract out what is 

being stored at which part of the virtual address space and view the virtual address space 

as this sequence of virtual pages, starting with virtual page 0 and going all the way up to 

in this case virtual page hex F F F F F F, whatever that may be. We need not converted 

into decimal, but we will just leave it in that form.  

Now, let us look at this little bit more critically. This is how we are going to chunk, the 

different bytes in memory, for the purpose of address translation. But, let us consider of 

one of these bytes in particular. The byte which I have highlighted happens to be in 

virtual page one, of the address space of the process that we are looking at. It happens to 

be in virtual page one, which is why the most significant bits of the address amount to 1. 

They are 0 0 0 0 0 1, and if I look at the least significant bits they contain the byte 

address 2 4. 



So, if I was think about it carefully, within that virtual page one, the first byte would 

have had the least significant two bits 0 0, the second byte would have had one and so 

on. So, in some sense, I know that this particular byte that I am referring to (Refer Slide 

Time: 12:39) by address here in somewhere within the page, it is not the first byte, it is 

not the last byte, somewhere in between. And in fact, this 2 4 tells me exactly where it is 

located within the page. It is the byte just after the byte number 2 3, which is the byte just 

after byte number 2 2 and so on. So, I know its exact location within the page. So, by the 

page number, I know which page this byte is associated with, and the page number is 

given to me by the most significant bits of the address of the byte, and I within the page, 

I know exactly which particular byte is being referred to by looking at the least 

significant bits of the address. So, that is the generality idea of how these addresses are 

going to be viewed. Now, how is paged virtual memory going to manage an address 

space? Here, we have this picture of how it is going to view the virtual address space, but 

ultimately the objective is to translate virtual addresses into main memory addresses. So, 

into this picture we must include a picture which includes what main memory looks like. 

So, let me add that over here (Refer Slide Time: 13:41). 

So, as far as main memory is concerned, what do we expect to see? We know that the 

address translation information is going to be managed in a table, and within that table 

that is going to be one entry for each virtual page, which means that they will not be a 

separate entry for each byte, but only one entry for each virtual page, which means that 

any one of these virtual pages can map into one unit in main memory, and the address of 

that unit in main memory, is what will be contained within the address translation table. 

Therefore, it follows immediately that main memory two must be viewed as being just a 

sequence of pages, and that is what we will refer to as the physical address space. 

So, the physical address space is the range of main memory addresses, which actually 

exist. Hence, the name physical, it is a real thing, has supposed to virtual, which is 

artificial or imaginary. And for this particular example, I am going to assume that the 

size of the physical address space is such that the first address in hex is all zeros, and the 

last address in hex is F F F F F F. So, you will notice that this is a six hex digits, which 

means that this is a 24 bit address, which means that in actuality, I am able to unlike the 

virtual address space, which was 32 bit address, and which could therefore, refer to 4 

gigabytes of information. 



The physical address space is significantly smaller. That is the assumption, which is 

being made in this diagram and in fact, the size of the physical address space is only, if 

you do the calculation 16 megabytes. But, if that is all the memory that I have, the 

physical memory, the main memory that I have, then this would be the size of the 

physical address space. All the addresses from 0 up to what is the range of the address 

that are possible in the amount of main memory that I have. 

So, this is clearly not an unreasonable example since you do know that they may be 

machines in which there are only 16 mega bytes of memory. As a consequence, the 

addressed space on that machine, in terms of physical addresses, would be only from hex 

0 up to hex F F F F F F.  

So, from a discussion a few seconds back, we understand that the physical address space 

must be viewed as being a sequence of 256 byte chunks, because there's going to be a 

mapping between a chunk here, and the chunk, a chunk from the virtual address space 

and a chunk on the physical address space. So, we therefore, view main memory to in 

this way. This is the first chunk of 256 bytes, which runs from address 0 up to address F 

F; physical Address F F, and then there is a second chunk and so on. 

And just as we call the first chunk in the virtual address space, virtual page 0, we will 

refer to the first chunk in the physical address space, as physical page 0, and once again 

if I looked at the most significant bits of the addresses of all the bytes, in that first page, I 

would find out that they had the value 0, which is the virtual physical page number. 

So, just like the virtual address space is a sequence of the virtual pages. The physical 

address page is the sequence of physical pages numbered from 0 on upwards and at any 

given point in time, the way things are managed by the virtual memory system is that a 

page in virtual memory will be mapped into a page in physical memory. So, let us 

suppose for example, that virtual page one, which is the page we are currently 

concentrating on, is mapped physical page 0, which is the page that we have in this 

diagram over here ( Refer Slide Time: 17:11). What does this mean, it means that the 

operating system or inside the address translation table, there is a mapping information, 

which tells me that all the bytes which are associated the virtual page 0, or actually 

present in this range of the main memory. 



That's what the address translation table will tell me, and more specifically if I was 

concerned about that yellow byte, the byte with address physical virtual address 0 0 0 0 0 

1 2 4, then its position in main memory would be at the same displacement from the 

beginning of the page, as far as virtual page one was concerned. The same displacement 

from the beginning of physical page 0, and that information is entirely available to me by 

the number 2 4, hex 2 4. Therefore, the address translation table tells me where in main 

memory this particular page is going to be, the fact the virtual page is one is mapped to 

physical page 0, and the 2 4, in other words the byte address within that virtual page tells 

me specifically which byte in main memory this virtual address corresponds to, and that 

is the complete picture as far as the address translation is concerned. 

This is basically what the hardware has to do, whenever there is a load or store 

instruction, in order to translate the address from a virtual address into an actual main 

memory or physical Address. Note that the address that we are talking about to the right 

or the actual addresses of the memory chips inside the computer, the thing which we 

called the main memory. These are the physically occurring memory cells within the 

computer.  

(Refer Slide Time: 18:46) 

 

So, what then is involved in address translation? So, the purpose of address translation is 

to translate a virtual address, as generated by the processor, into a physical address and 

you will remember that the processor generates a virtual address, whenever there is a in 



the case of the MIPS one instruction set, whenever there is a load instruction, or a store 

instruction, or do not forget, whenever an instruction itself has to be fetched from 

memory.  

So for any kind of data access out of memory or for the fetching of the instruction from 

memory, in all these situations, processor generates a virtual address. This virtual address 

must be translated before it can be interpreted or sent to memory for accessing the data 

or the instruction. So, we now look at the virtual address as the most significant bytes 

and those least significant bytes. For example, in the case of the particular byte that we 

were interested in, we have looked at the most significant bits of the address, which were 

0 0 0 0 1, and the less significant which were that 2 4. So, the virtual page number, which 

was 1 for our particular example, I am showing in this red hashed region and the 

remaining bits of the address, I am showing in the un-hashed region. 

So, what has to be done in address translation? We understood that as far as address 

translation is concerned, the net effect is going to be, that the 2 4 is going to survive, as 

the information about where within the physical page the particular byte that is being 

access is located. All that is going to change during address translation is that the most 

significant bits of the address are going to be change from in our particular example, 

from 1 to physical page 0 and that is what the address translation information would have 

contained. 

So, the terminology that we will use is we now understand that when I look at a virtual 

address, I can look specifically at the least significant bits, which are just the offset 

within the virtual page and the most significant bits of the address, which are what we 

will now call the virtual page number; such as virtual page one or virtual page 0, all the 

way up to possibly virtual page in this case F’s. And similarly, the most significant bits 

of the physical address of what we will now call the physical page number, I will 

abbreviate virtual page number as VPN and physical page number as PPN, and in 

passing again just note that the least significant bits of the address will not be affected by 

address translation. The 2 4, hex 2 4, in our example was even after translation was still 

hex 2 4, since it is only information about where within the page the information that is 

being accessed is located. 



In essence, the address translation table contains this mapping from virtual page numbers 

to physical page numbers. this is what it might look like. The virtual page number is the 

pink bits, the most significant bits of the virtual address. The physical page numbers are 

those green bits, the most significant bits of the translated or physical main memory 

address. So, this is what we expect or you might see if you looked into address 

translation table. Now, we can do a little bit better than this, in the sense, that you notice 

that the virtual page numbers; the possible page numbers vary from 0 all the way to the 

maximum possible virtual page number, all F’s. 

If I was to structure the table along the lines of what is shown in this diagram then, in 

order to look into this table for a particular virtual address, I would have to search 

through the whole table. Unless, I maintain the table in order of virtual address virtual 

page number 0 at the top virtual page number one after that, virtual page number two 

after that and so on. In other words, if I structure the tables so that the first piece of 

transfer translation information in the table is the translation information for virtual page 

0 or virtual page number 0 and the second piece of translation information is the 

translation information for virtual page one and so on. 

Then instead of having to search through the whole table, I can just index into the table 

using the virtual page number of interest to me. And if I was to structure the translation 

table in this way then there actually be no need to store the virtual page numbers at all. 

All that I would have to store would be the physical page numbers. I would then index 

into the page table or the address translation table, which contains all the physical page 

numbers using the virtual page number of interest to me. For example, since I am 

currently interested in translating virtual page number one, I would just look at, I would 

not look at the first entry in the physical in the address translation table, but I would look 

at the second entry which corresponds to virtual page one. 

So, along these lines if I re reorganize the table; the table would look like this. So, the 

table contains only physical page numbers, and the way that you look into the table is 

using the virtual page number, which is what I am indicating over here. So, in order to 

translate this particular virtual address, I used the most significant bits of the virtual 

address, which of what we call the virtual page number to index into the page address 

translation table. And what I find there is the translation information, which is the actual 

physical page number, corresponding to this particular virtual page. From henceforth, 



instead of talking of this translation table, referring to this translation table, as an address 

translation table, since we have organized in terms of these pages, I will refer to it as the 

page table. This is of a standard terminology. 

So, the page table is a data structure or address translation table of this kind, which 

contains one piece of address translation information for each page, for each virtual page 

of the address page under translation. And I could therefore, talk about any one of these 

entries in the page table as being a page table entry. So, this happens to be the page table 

entry for virtual page number one.  

(Refer Slide Time: 25:08) 

 

So, as we progress with our discussion of how page virtual memory is going to work, we 

will be adding more and more information into the page table entry. So, in order to keep 

track of this, I will, every now and then, augment this particular slide. So, just remember, 

at this point in time, what we expect is that the page table will contain one entry, for each 

virtual page and that the information contained in that virtual page in the page table entry 

is the physical page number for the page in question, in PPN. At this point, all that seems 

to be necessary, but let us go ahead. 



(Refer Slide Time: 25:49) 

 

At this point we have got an idea that in order to manage the size of the page table; it 

makes sense to maintain one page table entry, for each page rather than for each byte. If 

we had maintained one entry for each byte then we would not have called the page table, 

but address translation table of bytes. But, naturally, this does not really tell us how 

many processes are going to be able to share memory, share the same main memory. 

So, we need to get the better understanding of what is happening. Once again, I will 

introduce the general idea pictorially. We will start looking at details. At this point we 

know that there is main memory. Main memory is a real thing. There are also the 

different virtual address spaces of the different processes, but at this point, I would not 

draw them, since they do not really exist in this diagram. I am not going to draw things 

which do not actually exist on the computer system. We just are going to have things 

which physically exist. 

So, one thing which certainly does exist physically is main memory. Now, one thing 

which does not exist is the virtual address space or the contents of the virtual address 

spaces of all the processes that could be running on the computer system. Now, in this 

particular diagram, I am assuming that there are some n processes. There could be 10 

processes, in which case last one would be p of 10 and numbering the processors from P 

1 to P n. Each of these processes has its text, data, stack, heap, divided over a large 

number of pages, hundreds may be thousands of pages, and the note the terminology that 



we are using is that these are, for example, these are the virtual pages of process one, 

these are the virtual pages of process n and so on. 

Now, these are the contents of these virtual pages do not actually exists, because they 

much, I mean, as we saw, before they can be present in main memory. They have to be 

translated and it is conceivable that the size of main memory is much smaller than the 

sum of the sizes of all these virtual address spaces. Therefore, that is why the word 

virtual or imaginary is important here. These are things, which cannot be really exists in 

main memory for practical reasons. But, then the question would arise where the 

contents of these virtual pages can be stored. 

It is not enough to just say that they cannot be stored n main memory, because there is 

not enough space. But, if I do require, let us say one hundred programs in execution to be 

supported. Let us suppose n is equal to 100. Then, I cannot just say yes, you can have up 

to 100 programs in execution. I must make it possible for the contents of the virtual 

pages of all those 100 programs in execution to be remembered. They have to be 

remember somewhere in the computer system. They cannot just be or one cannot just say 

that they are fictitious they do not exists.  

There must be some places for them to be stored, which raises the question of where can 

they be stored. Clearly, they cannot be stored in main memory. If you do a quick 

calculation, if I have hundred processes and each of them has 4 gigabytes of virtual 

pages, then they comes to 400 gigabytes of virtual address space. Sum total of all these 

virtual address space is might be equal to 400 gigabytes and I might have 4 gigabytes of 

main memory. So, the main memory is not the answer to this question of wherever the 

contents of these virtual address spaces pages be stored. 



(Refer Slide Time: 29:13) 

 

So, we have to look back at the other kinds of memory that are present in a computer 

system. And you will recall that when we talked about memory for the first time, I said, 

“we use term memory to refer to anything they can be use to remember things”, and we 

are currently in a situation where we have to find some form of memory, which can store 

a large amount of information; 400 gigabytes of information contained in all the address 

spaces of all those 100 programs in execution. And very clearly memory, main memory 

is not the answer to that question. We have to be looking at something, which has much 

larger capacities, such as potentially hard disk drive. 

Now, we can rule out the possibility of V C D, D V D. Since, very clearly, we will need 

some kind of memory, which can be modified and V C D, D V D are not that easy to 

modify. You do have rewritable D V D's, rewritable V C D’s. But they cannot be really 

rewritten in a whole a large number of times and may not be that useful in this scenario. 

Magnetic tapes are not that widely available on computer systems today, which leaves us 

with only the option of using the hard disk drive, to store the virtual address spaces of all 

the programs in execution. 



(Refer Slide Time: 30:30) 

 

And therefore, that is what I will do. Will assume that in drawing this diagram, which is 

telling us what is happening behind the scenes. When addresses get translated, I must 

include the hard disk drive. So, I will do that. So, in a sense I am going to include the 

hard disk drive. I am showing the hard disk drive by this cylinder. It is a just as a 

notation. So, this is the hard disk drive and the contents of the virtual pages of all the 

programs in execution, all the processes for the moment, I am going to assume as stored 

in the hard disk. So, they are been remembered and that was our requirement.  

So, a large number of these pages are occupying the hard disk drive. And as I said for 

100 processes, this could be as much as 400 gigabytes of information, which is being 

stored on the hard disk drive. Now, at any given point in time, only some of those pages 

can be present inside the main memory. We have seen that the main memory is much 

smaller. Main memory may only be size 4 gigabytes and therefore, very clearly all those 

400 gigabytes of pages cannot be stored in main memory.  

So, some subset of those virtual pages of all the processes, which are in memory, will be 

actually available in the main memory of the computer system. Just note that I am not 

talking about virtual address, spaces anymore. I am talking about the hard disk, which is 

a real part of the computer system. I am talking about the main memory, which is a real 

part of the computer system.  



So, the fact of the matrix, as I said some subset of these virtual pages which are in 

available in terms of the content on the hard disk. So, some subset of them will be 

present in the main memory. Let us suppose for the moment that for simplicity, I am in 

this diagram. I am showing you a virtual; each of these processes has a virtual address 

space made up of on the 4 pages. 

This is a (( )) simplification, but it will make the diagram a little bit easier. So, there only 

4 pages in process P 1, each of the processes and in a similar simplification, I am 

assuming that there are only 4 physical pages in the main memory. And once we 

understand this example, which has only 4 pages in each virtual address space and only 4 

pages in the physical address space. It will be easy to extend the understanding to more 

realistic scenarios. 

So, the current assumption that I am making is, since main memory has space to 

remember only 4 pages, given the size of main memory, only 4 out of all these virtual 

pages can be present in main memory, at given point in time. And in the current 

situation, it looks like the first page of process P 1 is present in main memory, along with 

two of the pages of process P n and one of the pages of process P 2. So, those are the 4 

selective pages, which are currently present in the main memory. All the other pages are 

not present in main memory right now, but are safely available on the disk. What then 

will the address translation tables or the page tables for each of the processes look like? 

We can actually construct the address translation table for process P 0 quite readily. 

Now, the address translation table for process p 0, I am sorry. I am referring to it is 

process P one. We will have to contain one piece of address translation information for 

each of its four pages If I refer to its 4 pages as 0 1 2 and 3. Here, I am trying to figure 

out what the address translation table or the page table of process P 1 will look like. 

So, what is the address translation information associated with its page 0? I know that its 

page 0, the one which is at the beginning of its address space, is currently present in 

physical page 0. Therefore, if I looked at the page table, I would find that 0 maps to 0. 

What about second page of page one, in other words, the page whose virtual page 

number is one? Remember, the virtual pages of page of this process of virtual page 0, 

virtual page 1, virtual page 2, and virtual page 3, and it has only four virtual pages. 

Virtual page 0 is currently mapped into physical page 0. Virtual page 1, as we can see 



from the left hand side, is not present. And therefore, that would have to be indicated in 

the page table entry. There is no mapping for virtual page one. Similarly, there is no 

mapping for virtual page 2 and there is no mapping for virtual page 3. 

So, this is in fact, what the page table of process one would look like. Similarly, I can 

work out what the tables of process 2 and process n would look like. So, just to confirm, 

as far as process 2 is concerned, its virtual page 0 is not present in main memory. Its 

virtual page 1 is not present in main memory. Its virtual page 2 is present in main 

memory, in the third physical page. Hence, when I look at the page table entry of process 

two, I find out that virtual page 0 not present, virtual page 1 has no mapping; virtual page 

2 is present in physical page 3. There is a mapping from virtual page 2 to physical page 3 

and similarly the page table entries for all of the processes within the computer system. 

So, this is the collection of all page tables for this particular example. I am not showing 

you the remaining processes, but they would have similar entries. As you could imagine 

if they are 100 processes given that the size of main memory of the page table entries for 

all the other processes would have no meaning full mappings. They would just have 

dashes for all their entries. So, this is the address translation information and this also 

tells us that this big step that we took where we said that the contents of all the virtual 

pages of all the processes will be present on hard disk, gives us a clear indication that we 

will have to keep track of the addresses on the hard disk of each of the virtual pages of 

each of the processes. 
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This means that if I go back to my picture of what a page, the information that a page 

table entry must contain, I will clearly have to add to that. Look at this way. If there is a 

virtual page, which is currently mapped to physical page then they will actual be an entry 

inside its physical page number. But, if there is a virtual page, which is not mapped to a 

physical page, then that means it is not present in main memory. But, clearly one must 

keep track of where it is present on the disk, for which reason, we will add one more 

entry into the page table entry; into each of the page Table entries and that is basically 

the disk address of that particular virtual page. Just note, we have been assuming that 

copies of all the virtual pages are present on the disk. Since, they are going to be 

thousands or millions of such virtual pages present on the disk you will have to know the 

address of each of them, in order to read it out of the disk as in when it is needed. 

Which is why, I add an entry, a field into each page table entry, which I will refer to as 

the disk address. And for the moment we do not know what a disk address would look 

like. We just assume that it is some information using which that particular page can be 

read out of the disk and we learn more about disks later. But, for the movement you 

could assume that the disk addresses 30 or 40 bits of the information using which the 

page can be identified located on the disk. 
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So, that is how we end up with this picture over here, and the situation as we have it right 

now is clear for 4 pages, if the address, if the virtual address space of each processes of 

size 4 pages. What if it is much bigger, then this going to be a lot more information 

stored on the disk, the size of each page table entry is going to be larger and hopefully 

the size of main memory will be larger than what we have over here, this simple example 

of four pages. Now, this raises an interesting question.  

So, the question is this. “What if the system is in this particular state?”, and process P 1 

now accesses of variable that is present on its virtual page 3. Now, what is virtual page 3 

of process P 1? Remember, virtual page 0 is present in main memory. Virtual page 1 is 

not, virtual page 2 is not and virtual page 3 also is not. 

So, again just to make sure we understand what is being said. The question is what if 

process P 1 is in execution and it accesses the variable that is in its virtual page 3. What 

could be present in its virtual page 3? Remember that this is the virtual address space of a 

process, so it is possible that if the heap of the process is growing from bottom upwards 

that it could be a dynamically allocated variable that we are referring to over here. 

So, one of the variables of the process is accessed by the program in execution. A load 

word instruction is executed on that address. That is a scenario that is being raised over 

here. Now, the problem as you can see it is the that particular page virtual page of 



process P 1 is not present in main memory, and therefore, cannot be accessed using a 

load instruction, which the load instruction can only be used to actually access 

something, which is in main memory. If it is not in main memory then clearly it is not an 

achievable, it is not accessible unless some more work is done behind the scenes. 
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Now, this situation that I have just been described, one way a process tries to access a 

variable and it is identified that that particular page is not present in main memory. This 

situation is what is referred to as a page fault. So, this is a technical term. This is the 

situation where a virtual address generated by the processor is translated or in attempt is 

made to translate it, and it is found that this particular virtual entity is not currently 

present in the main memory. 

So, the question is what can be done. Clearly, we cannot say the bad luck of the 

programme, so program will have to stop. Very clearly, the program must be allowed to 

continue execution. All of these features about address translation were added. So, that 

many programs could correctly execute sharing the resources of a computer system. A 

page fault is hopefully just a minor tumbling block towards the program is being able to 

continue execution. But, clearly also the page fault must be rectified. Something must be 

done to remedy the situation. As a result of which, the piece of data, which the program 

is looking to access should become available in main memory. 



Now, the page fault would have been detected when an attempt was made to translate the 

address and as you will notice from the previous slide (Refer Slide Time: 41:37) and this 

particular example when process P 1, address or something on page 3, when an attempt 

was made to translate the address, it would have been noticed that there is no mapping, 

which is the clear indication that there is a page fault. The page required, the virtual page 

required. 

(No audio from  41:54 to 45:51)  

the page fault is what we will refer to as the page fault handled shortly. 

Now, what must the page fault handled do now? In order for the processors request, for 

that particular piece of information, to be satisfied the page containing that piece of 

information, must be brought into the main memory, from its location on the disk. In 

order for it to be brought into the main memory, one particular slot of one particular 

physical page, in the main memory must be identified for use, by the page that is now 

going to be brought in from the disk. 

So, that is the first step, as far as handling the page fault is concerned. You must identify 

a slot or a physical page number to be used in main memory for this particular page. 

After this the page could conceivably be read from the disk. Remember that each virtual 

page has is presence in disk as a copy. 

So, the disk read can be used to read the contents of that page from disk into the slot or 

the physical page in main memory. After this, the page table entry can be updated, can be 

updated in setting. It is valid to be one and putting the correct identity of the page 

physical page number into its PPN field. So, that is all that we mean by updating the 

page table entry. 

So, this is essentially what has to be done by the operating systems page fault handler. 

So, the page fault handler is going to be a small piece of code inside the operating system 

to handle this possible scenario, the scenario of the page fault.  

So, once this has been done. the load word instruction can be successfully executed by 

the processor. So, the processor which had executed or try to execute load word 

instruction, as a result of which in address translation was attempted, as result of which 



the page fault was identified, which initiated the execution of the page fault handler, can 

now return back and complete execution of that load word instruction. That is what it 

boils down to. 
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Now, there is one problem, which arises in this context and that is it may not be as easy 

as you would think to identify a slot in main memory, to be used in order to bring in a 

copy of the virtual page, required by the process in question and let us see why. 

Now, from the suggestion that free slot in main memory is to be identified, the 

immediate suggestion is that the operating system must keep track of the available 

unused physical pages. If it keeps track of which pages in main memory are currently not 

used then identifying the slot in main memory is quite easy. It will just take one of those 

pages from among all the physical pages, which are currently not being used for any 

virtual page. We can just pick one and you could maintain all.  

The operating system might maintain all this information in a single linked list. For 

example, this might be called a free list. Therefore, if that is, if the situation is that the 

list contains information about free physical pages, then step one of the page fault 

handled is quite easy. Just take the entry from the front of the free list and use that 

particular page as the slot in main memory where the virtual page can be read from disk. 

But what if the free list is empty, as in the example that we had in our diagram where all 



of the four physical pages in main memory are currently being used and therefore, the 

free list of unused pages in physical memory would be empty. 

What if the free list is empty once again, this cannot be used as an excuse it to terminate 

execution of the program, which cause the page fault. This two must be correctly 

handled. This must I am sorry. This must be covered by the page fault handler. This is 

just another contingency. They have to be taken into account. So, what should be done if 

the free list is empty? In other words, what if all the main memory physical pages are 

already mapped to virtual pages as in our four page example? 

Then what the page fault handler will have to do is to actually make space within the 

main memory, by evicting one of the currently used main memory pages or physical 

pages. So, the page fault handled must then identify a page to be replaced or evicted 

from main memory. Once, one of the currently used pages in main memory is evicted or 

eliminated, and then the required page, which causes the page fault, can be read from this 

into that particular location in the main memory. 

So, this is an additional functionality that would have to be taken up by the page fault 

handler. The task curve identifying a page for replacement or eviction from main 

memory and what I mean by eviction or replacement is actually removing that page from 

main memory, in order to create an empty page in main memory, which can be used for 

some other purpose. And in this particular example, the other purpose is providing space 

for an unused page, which is available only on disk to be stored in main memory, so that 

the process which accessed as variable on that page can successfully continue execution. 

So, we have to reach the point where we need to understand on what principles an 

operating system page fault handled could decide which page it can replace from main 

memory, in order to make space for another virtual page. And as you can see, we are 

coming to a point, in our discussion of main memory where, which may be of interest to 

us, as far as people who write programs are concerned. 

Because with this understanding, we realize that there is a possibility that when our 

program is in execution it may suffer situation where some of the pages which it is using 

in main memory may actually get replaced in favor of the pages of some other process. 

And if this is the case and we do need to know a little bit more about how that decision 

about which page to replace is made by the operating systems page fault handled. 



So, this is a somewhat important consideration, which will have some impact on the 

efficiency with which our programs execute. And since this is such an important break 

point, I will stop here for today. When we continue in our lecture number fourteen, we 

will try to understand the kinds of considerations which are used in the operating system 

page fault handled in order to decide which page can be replaced from memory, from 

among all the pages, which are currently present in the physical memory, which one can 

be replaced or evicted or thrown out of a physical memory to make space for another 

page which is currently required.  

Thank you. 

 


