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Welcome to the ninth lecture of graph theory. Today, we will look at the concept of 

connectivity in graphs. There are two kinds of connectivity, we are going to discuss both 

of them. First, it is about vertex connectivity, the second, edge connectivity. So, 

intuitively, connectivity is something about whether the given graph how well the given 

graph is connected. So, we need to understand what it means. Say, the most natural way 

to define it, probably is this. Consider 2 vertices x and y and then, we can say 2 paths 

from x to y, I call it x-y paths, P and Q in G are internally disjoint, if they share only the 

end vertices. 
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For instance, if these are the 2 vertices x and y and suppose, this is one path P between x 

and y; this is P and here is another path Q between the same 2 vertices x and y, say that 

these two x-y paths are internally vertex disjoint, if they share only the beginning and 

then vertices. That means this and this; also, this will not be in this path and any other 

vertices will not be in this path. 

The local connectivity between x and y. So, we can call it P of x comma y is defined as 

the maximum possible number of internally vertex disjoint paths between x and y. For 

instance, here in this graph suppose, I have some more paths; suppose, I have several 

connections here, may be even some connection like this. So, how many internally 

vertex disjoint paths can we see? 

It is possible there are several paths, but then if you are looking about internally vertex 

disjoint paths, I can take this one, then I can take say this one and I can take this one, I 

can take this edge itself; it is a internally vertex it is internally vertex disjoint with other 

paths I have already selected in this one and this is all internally vertex disjoint. I got 1, 

2, 3, 4, 5. I cannot take more than this. 

So, this is the local connectivity between x and y. The graph can be much complicated. 

There can be other vertices, but it may so happen that if you cut all these paths so then if 

you take all these paths, then any other path has to share some vertices with none of 



these paths; that is what it means. So, there would not be If you take one more path then 

it the entire collection together will not be internally with vertex disjoint. 
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Now, what is the connectivity of a graph? You can you have several pairs of vertices x, y 

in the graph and then for every pair, you have a so called local connectivity. The local 

connectivity between x and y is the maximum number of pair wise internally disjoint x - 

y paths. Say among all the pairs, you look for the minimum local connectivity; that is 

going to be the connectivity of the graph; this makes sense. 
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You can take some examples. For instance, let us look at this graph example. Here I can 

take this is 1, 2, 3, 4; between 1 and 2, there is only one internally distributed disjoint 

path, nothing more you can take. Like that 2 and this is 5, 2 and 5, 3 and 5, 4 and 5, 

everything is 1 and between 1 and 3, you can get only one internally vertex disjoint path 

- namely this one. 

(Refer Slide Time: 05:44) 

 

So, any pair, if you consider there is only one internally vertex disjoint path and 

therefore, the minimum overall pairs, if the local connectivity of that x - y pair, if you 

minimize over all pairs x – y, then you will get only one here for this graph. 

Here, the connectivity of this graph is going to be one. Now, let us take a little more 

complicated example, more complicated example than the earlier one. It is still simple, 

but here we can see that if I want between x and y, what is the local connectivity; there is 

one path here, there is another path I can take. Any other path I try to take, for instance, 

if I try to come, use this thing, I will have to go via this and then I have already used this 

one; so, then they will not be internally vertex disjoint. So, I cannot add anything more 

these are the only two things. 

So, like that between this pair also, I have 2 internally vertex disjoint paths, but on the 

other hand, if I take this x and this z, then I have this path I can get one and any other one 

because that one has to go through this middle one or the any other one will have to cut 

through, go through the same vertex. So, it will share an internal vertex. So, it will not be 



internally vertex disjoint. P and z, the local connectivity of P z is going to be one. So, 

when you minimize over all pairs, then the local connectivity has to be less than or equal 

to 1, but then we know that it cannot be 0 because between any two pairs, there is at least 

one vertex. 

So, we use kappa to denote the connectivity of the graph. Not this, this one. This is P, the 

local connectivity; kappa is the connectivity of the graph, when you minimize over all 

pairs. 
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So, this is the most natural notion of this thing. Now, you should understand that when I 

considered 2 vertices x and x, same vertex then you cannot define this thing. So, we do 

not worry about x and y being same. 

So, consider a complete graph K n. Now, what will be the connectivity of K n by our 

definition here? You can take any 2 vertices, x and y, here. You know there is one path 

between them and also you have total n minus two other edges going out of it. These 

edges reach several different vertices. From any of them, I can come back to here with 

this. Is not it? 

So, therefore, the total is 1 here and this n minus 2, total n minus 1. So, this is the thing. 

If you have a trivial vertex, just one vertex, you can take it as 1 connected and 



connectivity as 1. It is by convention in fact there is because anyway here, our definition 

that minimize over all pairs does not make sense. So, there is only one vertex here. 
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So, now, that is one intuitive definition of connectivity, which is like what we will think, 

when we hear the word connectivity. It is trying to capture our intuitive notion of what 

connectivity should mean. 

Now, here is a slightly non intuitive way of doing it. Here, it says let x and y be distinct 

non adjacent vertices of G. So, here in the graph, I pick up 2 vertices with the condition 

that they are non-adjacent; there is no edge between them. Now, you try to disconnect x 

from y in the graph by removing some vertices other than x and y. Outside x and y we 

remove some vertices and try to make sure that in the remaining graph, there is no path 

from x to y anymore. 

So, then I ask what is the minimum number of vertices, you have to remove to do that. 

Such a collection of vertices by removing which, you can make sure there are at that in 

the remaining graph, we have x and one of the components of G minus x, y and y in 

another component. Here xy vertex cut is called such a vertex, say such a subset of V 

minus x, y. So, we are not allowed to take x and y in the subset S. Such a subset x y S is 

called an xy vertex cut. So, an xy vertex cut is a subset S of V minus x, y such that x and 

y belong to different components of G minus S. 
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We can look at some examples. For instance, here, let us take our graph which we clearly 

earlier. Here, suppose, if you want to they take two non adjacent pair that means you 

should not take suppose if I pick up x, I should take say, z here. Now, to disconnect x 

from y, what you can do is remove this set S; then in the resulting graph so, nothing will 

be there. So, the resulting graph after removing S will look like this. x, y and then z, say, 

z dash. So, x is one of the components, z is a different component. You have no path 

starting from x and reaching z in the resulting component. So, this is such a vertex - xy 

vertex cut. 
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I can consider another example here. So, let us see. Consider this graph, where in this 

graph, if I want to disconnect say x from z; this is an x; x and z, take it as x, y and so then 

definitely I have to disconnect this vertex. So, I mark it with green; this vertex is to be 

disconnected and then this is to be disconnected, this is to be disconnected. So, these 3 

vertices have to be disconnected, if I want to disconnect x from y. Therefore, this is a xy 

vertex cut here and its cardinality is three. 

So, this xy vertex cut, the cardinality of the minimum xy vertex cut and over all possible 

x, y will give you the minimum number of vertices that we have to remove so that the 

graph gets disconnected. So, for instance, if the graph gets disconnected, in the 

remaining graph, there should be at least one pair such that x is on one side and y is on 

the other side and naturally, those 2 vertices are non-adjacent in the original graph. 

Now, to find out the minimum number of vertices that we have to remove from the graph 

so that the graph after removal of this vertex is a disconnected graph. What we can do is 

over all pairs x comma y which are non-adjacent, we can find the cardinality of the 

minimum xy cut and this minimum will be the minimum number of vertices required to 

disconnect the graph. 

So, this number is another way of defining connectivity because finally, we are talking 

about removing the minimum number of vertices so that the graph gets disconnected. 

But these two notions look a little different at the first look, but it so happens that they 

are the same. We will later study a theorem called Menger’s theorem, which states that 

both these notions are equivalent. 
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Now, just before moving further, I will mention that there is something called edge 

connectivity also. Here, we were Naturally, it is very parallel. So, we can define edge 

connectivity in two different ways, like we did for vertex connectivity. One is by 

considering any 2 vertices x, y - x and y and consider the number of pair wise edge 

disjoint x, y paths. 

Now, there is nothing like internally edge disjoint here because you know, you are given 

2 vertices, the edge set they should be totally disjoint; in fact, the edge set of the two 

different paths x - y paths should be disjoint. That is, like that we have to get the 

maximum number of pairwise edge disjoint x-y paths and this number is the local edge 

connectivity and this is denoted like P dash x, y. Remember P of x, y denoted the local x, 

y vertex connectivity, but p dash x, y will correspondingly denote the edge connectivity 

between x and y. 

We will say that a non-trivial graph G is k edge connected, if for every pair u, v, the local 

connectivity is greater than or equal to k, which means that you have at least k edge 

disjoint paths between any two pair of vertices. The edge connectivity k dash of G So, 

the kappa of G was used for vertex connectivity; now, edge connectivity is denoted by 

kappa dash of G and kappa dash of G of a graph G is the maximum value of k for which, 

G is k edge connected. 



In other words, in the graph you can consider all pairs x y, we can consider the minimum 

local edge connectivity and that is over all the pairs and that is going to be this value just 

like in the edge vertex version. Similarly, we can have a different notion like how many 

edges are to be removed from the graph so that the graph gets disconnected. This is 

another notion to define the edge connectivity and then, we will show that both these 

notions are equivalent. So, we will come back to these notions later again. 
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Now, we can quickly see one interesting observation. The vertex connectivity is always 

less than equal to edge connectivity and that is going to be less than equal to minimum 

degree because you see the vertex, if you remove if k dash happens to be the minimum 

number of edges that is to be removed so that the graph gets disconnected, you can 

remove one end point from each edge, although those edges will anyway get removed. 

Therefore, the vertex connectivity is going to be at most the edge connectivity. What you 

do is you consider a collection of edges by removing which the graph get disconnected. 

Now, you can remove one end point of each edge; that means one vertex for one edge. 

So, naturally the graph gets disconnected with this thing, this, if you remove these 

vertices because all the edges in the edge cut, that is what it is called; like vertex cut, we 

have edge cut; so, this will disconnect the graph. 

So, naturally that that gave us a vertex cut also and because the kappa being the 

minimum cardinality of a vertex cut, we can infer that kappa is less than equal to kappa 



dash and that is less than equal to minimum degree. Why because if minimum degree is 

the smallest degree of a graph, the number of neighbours of a vertex, smallest number of 

neighbours of a vertex over all vertices. It is because we are talking about simple graph. 

So, they are also equal to the number of edges that is to be removed, that is connecting 

the vertex to the rest of the graph. 

So, if you remove these edges, definitely that vertex gets separated from the remaining 

part of the graph. So, naturally that is an edge cut and therefore, the actual minimum 

edge cut is going to be even less than equal to that. It can even be less than that. So, 

kappa dash is less than equal to delta. So, this is one quick observation that we can make 

about the edge connectivity, vertex connectivity, edge connectivity and minimum degree 

of a graph. 
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Now, before going further and looking at statements like Menger’s theorem, where we 

say that the two equivalent two notions of connectivity that we discussed both for the 

vertex version and the edge version; two different types of connectivity discussed: one 

was based on the number of path between vertices, the other was based on the number of 

vertices to remove from the graph so that the graph gets disconnected. So, later we want 

to prove one theorem called Menger’s theorem, which states that both this notions are 

equivalent, but before that we will just look at the 2 connected graphs and how will they 

look like; this is our aim. 
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Here is one definition. So, you know that in a graph, a maximal connected sub graph is 

going to be a component. So, like that you can take In a connected graph, you can look 

for a maximal connected sub graph without a cut vertex; it is called a block. What is a 

cut vertex? So, in our examples here, you remember, we have this is a cut vertex. This is 

one vertex by removing which the graph gets disconnected. 

So, suppose, you are looking for a maximal and here, suppose, I add this also here. You 

look at this one; this is without a cut vertex because by removing this thing, the graph 

does not get disconnected or removing this thing, the graph does not get disconnected; 

for instance, this alone if I consider. 
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Now, I can add something more. I can take this thing; this is a maximal connected sub 

graph without a cut vertex because there is no cut vertex in this triangle, but now if I take 

a little more, for instance, if I take this much, then naturally, this will be a cut vertex. We 

cannot add anymore vertices there because this cut vertex comes. 
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So, here in this graph, the maximal connected sub graphs without a cut vertex happens to 

be, in this graph, I mark it with this one and then this one and this one; this is also one, 

for instance, this is a edge, if you remove one vertex, this is still connected. Therefore, 

they are not cut vertices. 
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So, this is the way we can decompose the given connected graph into several maximal 

connected sub graphs without cut vertex. So, it may look like little Typically, the 

structure of a connected graph can be like this; some can be like this; sometimes you can 

get some edges, you can get some edges. It can be something like this. So, these are all 

maximal things, these edges I marked because they are important. So, here look in this 

thing; this is a 2 connected sub graph; this connectivity of this thing is two and this is 

also 2 connected because within that there are no cut vertices and within that there is no 

cut vertex. 
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So, these things are one of the blocks and see this will be the picture we will get. For 

instance, if you look at the graph abstract, if you are looking from a distance, this is the 

look. Now, you can see some kind of tree structure here, among the blocks. While this 

you consider some super node and then the edges here is represented by the cut vertex on 

which these two blocks are pasted. 

This idea is expressed in the next statement, which says that the block graph of a 

connected graph is a tree. What do I mean by a block graph? In a block graph Block 

graph is a bipartite graph. What do I do? Each of the blocks will be taken as a vertex. 

This is say b 1 the block 1, this is block 2, this is block 3, this is block 4, this is block 5, 

this is block 6, this is block 7, this is block 8, this is block 9 and each of the blocks will 

become vertices and yes, these are the blocks. 
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Then I can make a bipartite graph like this by putting b 1, b 2 up to b 9 here, the blocks 

and then on this side, I can collect the cut vertices of the graph and put. Which are the cut 

vertices of this graph here? c 1, this is c 2, this is c 3, here this one and here this is c 4, 

this is c 5 and this is c 6; like that, the cut vertices can be taken. Then, this is c 1, c 2, c 3, 

c 4, c 6 and this others and then, now, if b 1 contains c 1, then you put this edge. Here, 

you know c 1 is contained in b 1 and b 2; therefore, both b 1 and b 2 will be connected to 

this. Similarly, let us look at this one; this is c 6, c 6 is contained in b 7, b 8 and b 9. So, b 

7, b 8 and b 9 - all of them will be connected to c 6; this will be in the c 6. This graph is 

called a block graph, you know, the blocks and cut vertices; blocks on one side of the 

bipartite graph, cut vertex on the other graph. and then the cut vertex If a cut vertex c i is 

inside a block b j, then b i, b j is connected. So, we say that this is a tree.  
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It is rather easy to prove, see you can more or less see it from this picture. For instance, if 

I had this cut vertices become the edges and this becomes the nodes, if I can see the tree 

structure here. So tree structure here somehow So, intuitively it is very obvious, but we 

will not prove it, but I will leave it to the students to prove it. (Refer Slide Time: 27:29) 

Now this is the structure of connected graphs. 
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Now, what about 2 connected graphs? For instance, there are no cut vertices in it and 

also it is 2 connected; 2 connected in the sense that between a to disconnect the graph, 



we need to remove at least 2 vertices from the graph. By removing one vertex, you 

cannot disconnect. For instance, this graph is not 2 connected because this vertex, if you 

remove then the graph gets disconnected. While this graph is 2 connected because you 

remove any one vertex from this thing, it will not get disconnected; a path remains here. 

Therefore, it is 2 connected graph. This is 2 connected, but this one is not 2 connected. 
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So, see this graphs have an interesting way to construct There is an interesting way to 

construct a 2 connected graph. What do you do? We can essentially construct by Give 

me any 2 connected graphs, what we can do is we can start from a cycle in it and then 

keep adding something called ears. What do you call ears? You start something from this 

already existing graph and then initially, it will be a cycle. So, this is an ear; that means, 

it can be just an edge starting at a vertex of this thing and reaching another vertex or it 

can be a something like this a path such that only the last 2 vertices are on this thing and 

the rest is just a simple path. Now this is a new graph and on top of this thing, you can 

add an ear like this say, may be like this or it can be like this. So, this new graph can be 

added. 
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Can we see that if I start with a cycle and keep adding ears, sometimes, the ears to an 

already existing graph H. This is an already existing graph and an ear is also called an H 

path, in the sense that it is a path outside H with just the end vertices placed in H. This is 

one suability, the end vertices placed in H. So, this is called an H path. So, we will keep 

saying ears rather than saying H path; H path is also a word, which is commonly used. 
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Now, suppose, I start with a cycle and then keep adding ears, as I mentioned earlier then 

is it possible that all the time I will end with a 2 connected graph or is it possible that I 



may lose my two connectivity in some point. So, it is very easy to verify that it will 

never happen because if I am adding an ear of this sort, then it is became just adding an 

extra edge; it is not going to trouble you, but if you are adding an ear of this sort then 

also, you know that within these any 2 vertices, this cannot be disconnected into two 

components by removing less than 2 vertices; that only one vertices vertex removal of 

one vertex will never disconnect this graph, but then suppose it is getting disconnected 

by removing one vertex, it should be that some of these vertex, this or this, that should 

go out, but then which vertex should disconnect it because see this is a path. Any vertex 

if it is going into one connected component. So, you have two different ways to enter this 

already existing graph H. Therefore, it is not possible to remove just one vertex and 

disconnect any of them from here. Therefore, by adding an ear, you are not going to lose 

two connectivity. 
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So by When we add ears to a 2 connected graph, we again get a 2 connected graph. This 

is very obvious, but what can probably happen is that what can probably happen is see so 

there can be some graph G. So, this is what we are bothered about. Suppose, some 

arbitrary graph G – 2 connected graph, but see by starting from a cycle and adding ears 

to it like that adding ears one after the other, what is the guarantee that we can make this 

thing this way. So, we will prove this thing. 



So, first we will identify a cycle in it because it should have a cycle because it is 2 

connected. For instance, any 2 vertices if you take, there will be a two internally vertex 

disjoint path and there should be a cycle in it; so, we start with a cycle. 

Now, to the cycle we will add ears. For instance, see this graph G. We will look at, 

maybe this cycle comes here like this. Now, from the ear means I cannot arbitrarily add 

an ear, should the ear should be existing in this thing. So, in this graph, if I try to locate 

an ear and then add it to that and then already existing graph, I will add already 

constructed graph, I will add another ear from as long as this path is available in G, I will 

add it as an ear. and then Sometimes the ears can be like this, simple edges, I will keep 

adding. As long as I can add an ear, I will add it and at some point I will have to stop. 

So, there are two reasons to stop either all the vertices and edges in G are already added 

here. So, that means I have already constructed G starting with my original cycle and 

then by adding ears. So, that is a good situation. That means I have shown that G can be 

constructed by this procedure. Starting with a simple cycle in G and by adding ears one 

after the other, we can construct G. 

Another way is that you may just stop and then something may remain outside, some 

vertices and possibly some edges among them, whatever, some graph and some vertices 

and then is it possible that something like this remains. So, this is not, but no, nothing 

like that because if such a thing is not yet added, you can always add because it is an ear 

by itself, you can add. We are saying that if you can add an new ear, you will add it. 

So, that means what we have already constructed is an induced sub graph of G, if not G. 

So, that means there are some vertices outside. Let us say, here is a vertex outside G and 

here is a vertex outside G and this G is definitely because of the 2 connected, there 

should be a path from here to here. There should be a path from here and then of case, it 

is not that all the paths which start from here goes this thing. There should be one more 

path starting from here and because otherwise if I remove this vertex, it will get 

disconnected. So, there should be two paths starting from here to here. So, this vertex to 

this thing and there can be some other vertices here of case, but then there should be 2 

different paths because otherwise what will happen is. 

More rigorously, what I can say is I will consider a vertex outside because it is connected 

there should be something which is directly adjacent and then from this thing, if I have 



only this connection definitely by removing this vertex, I will disconnect it. So, there 

should be one more path; that one more path will come that takes some vertices outside 

and look at the first vertex it touches, the inner vertex it touches; it touches the vertex of 

this already constructed graph. 

So, if it is this itself then again it is a cut vertex. That means if I remove this vertex, all 

these things will get removed. It should come and touch another place. That is going to 

be an ear. We can take it as an ear and add. So, our assumption that the graph, where we 

stopped, induced sub graph with which we stopped was one, where we could not make 

any progress; that is a wrong assumption. So, that is what it says, in other words. 
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If you want to understand the ear decomposition of a Peterson graph, this is a Peterson 

graph like this. So, look at this graph, simple graph. It is a Peterson graph, if you want to 

look at ear decomposition. Now, I can start with a cycle. This cycle, this is a simple cycle 

and then you can add this ear, you can add this ear and then you can add this ear, then 

you can add say, the new ear, you can add this new ear and then the remaining ears are 

this edge, this edge. So, you could do this Peterson graph; construct it; this is the 

decomposition. 

Our proof told that any 2 connected graph can be constructed starting from a simple 

cycle in this way; in this way means by adding ears one after the other. We will not get 

stuck. If you get stuck, there will be one vertex outside and there will be one vertex 



which is adjacent to the already constructed graph outside and from that vertex there 

should be one more path coming back to the already constructed graph because of the 

two connectivity and this tree vertex the other end tree vertex cannot be the same vertex 

again because of the two connectivity and that will provide an ear; that is the idea. 

(Refer Slide Time: 40:51) 

 

(Refer Slide Time: 41:32) 

 

Now, what about 3 connectivity? So, 3 connected graphs also do we have some such 

theorem that starting from a simple graph, we can construct any 3 connected graphs. So, 

this theorem called Tutte’s theorem; it says a graph is 3 connected if only if there exists a 



sequence G 0, G 1, G n of graph such that the following properties hold. G 0 is equal to 

K4 and G n equal to G and G i plus 1 has an edge x, y with both the degrees of x and y 

greater than equal to 3 and from G i plus 1, we can get G i by contracting the edge x, y. 

So, such a sequence exists, but in other words, suppose, we are given the graph G. So, 

we say that it is 3 connected; that means to disconnect this graph, we need to remove at 

least 3 vertices - at least 3 vertices have to be removed, otherwise, it will not be 

disconnect at all. 

Now, in such a graph what we can do is we can find some edge such that it can be 

contracted and then you will get a smaller graph, which is again 3 connected. This is G n, 

this is G n minus 1. By contracting the vertex, number of vertices removed by 1, the 

point is we will be able to pick up a vertex in this edge, in this thing x, y such that by 

contracting x y, we will end up a smaller graph G n minus 1 such that this is also 3 

connected and here again, you will able to find another vertex say x 1, y 1 such that 

when you contract this thing, we will end up with a graph smaller graph G n minus 2, 

which is obtained by G n minus 1 bar x 1, y 1. 

So, this graph will also be 3 connected. You can keep on doing it and finally, because 

every time you are reducing the vertices by 1, you end up with the beginning graph G, 

which is essentially K 4 equal to K 4 because why? To begin with, we have if there is 3 

vertices only, then definitely, it is not 3 connected, it is only 2 connected. So, maximum 

because the triangle is only 2 connected. So, it should have at least 4 vertices and you 

know it has to be when it reaches this stage that it is only 4 vertices and because it is 3 

connected, it has to be K 4 because smaller graphs are not 3 connected. So, also, if you 

remove one edge from K 4, it is not 3 connected. 
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So, in K4 we have to stop this thing. So, this is possible is what we are saying. The 

theorem says that any graph G which is 3 connected can be reduced to K4 and this way 

by contracting an edge here, you will get a smaller graph contracting an edge here we 

will get a smaller graph like that you can reach K 4. 

So, in other words, starting from K 4, any 3 connected graph can be reached in a 

sequence like this. This is essentially what it says. Now, the key lemma we need to prove 

this thing is given here and it says, if G is a 3 connected graph and the number of vertices 



and it has is more than 4, then G has an edge e such that G, the graph obtained by 

contracting a G bar e is again G. 

See after the graph is obtained from G by contracting the edge e is again 3 connected. 

Remember, what is this contracting? So, this contracting essentially means if x, y is an 

edge and these are the neighbours of x and these are the neighbours of y, maybe some 

sharing is also there. 

So, you make this one vertex and all the neighbours of x and y together will become the 

neighbours of this thing. If there is a common neighbour then multiple edges will come; 

that we will discard. So, essentially all the neighbours of x and y together will become 

the neighbour of the new vertex V x y. This is the contracted vertex, the vertex obtained 

after contraction. 
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Now, we are going to say that As you can easily understand, to prove the previous 

statement at least one side, that means, given a 3 connected graph, you can reach K 4 by 

contracting edge. There is one edge here and then another edge here, another edge here. 

It is just to show that in any 3 connected graph, there is an edge that can be contracted so 

that the 3 connectivity is retained because this is a 3 connected graph, you will get such 

an edge if such a statement is true and then this is again 3 connected graph because we 

contracted an edge which will allow us to retain the 3 connectivity and this is again a 3 

connectivity graph, there is another edge in it which when contracted will allow us to 



retain the 3 connectivity. So, we can contract it and what we get after that is again a 3 

connected graph. So, this reduction should happen, reduction of number of vertices 

without losing the 3 connectedness. 
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So finally, when we reach K 4, 4 vertices, it has to be a K 4. That is all. Therefore, we 

only have to prove this that is, in a 3 connected graph, in any 3 connected graph there is 

at least one vertex which can be contracted without losing the property of 3 connectivity. 

How am I going to prove this thing? 
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So, here this is the thing. You take this 3 connected graph G and then you can consider 

this edge x. Suppose, there is an edge x, y here. This edge x, y is if I suppose there is no 

edge x, y with the desired property. That means, any edge x, y if I take, if I contract it 

then what happens is, so with this new this I replace by V x, y, the resulting graph G 1 

that I get from G is such that its 3 connectivity is lost. That means, it gets a two separator 

- that means a vertex cut of cardinality two. 

So, what does it mean? Suppose that means any edge, if I have any edge x, y, I will get 

some separator somewhere, some vertex separator with 2 vertices, just 2 vertices in it. 

This should be on one side; this should be on the other, after contracting this. become 

But is it possible that this contracted vertex here but is not in the separator. It is here. Of 

course not because in that case, if I had done the reverse operation and then put back the 

edge x, y, then what will happen? This 2 separator, 2 length separator would have 

separated the original graph G itself. In the G also, this would work as a separator then 

you understand it because x and y after contracting it. If it so happens that there is this 2 

separator then while before contracting because that is anyway here on one side. this 

separator would have separated that from the remaining part in anyway. 
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Therefore, neither can we have both x and y here. That means V x y here or V x y here 

then where can V x y be? So, it can only be here v x y can be only inside the separator so 

we can for any edge x y when we contract the graph obtained will be such that it will 



have a separator and that is a 2 separator and one of these vertices in the separator will be 

V x y and there will be another one let us say this vertex is called Z. So V x, y comma Z 

is our separator. So, if I put this x and y back here. So, in the original graph we see x y 

and z. These 3 vertices together is a separator for the original graph because if this 

separates, when this and this together can remove only those edges which this removes 

here because they are all adjacent to either this or this. So, if I remove x and y both, then 

the separation will happen even in the original graph. So, if V x y z is a separator for this 

graph, after contraction, then x comma y comma z is a separator, 3 separator for the 

graph before the original graph G, the first graph itself. 

(Refer Slide Time: 50:34) 

 

Now, I will say that given any edge x, y I have z such that x, y comma z is a separator of 

the graph. So, give me an edge x, y then I can find a z for it such that these three together 

is a minimum separator. It is not just separator, minimum separator. Why because it is a 

3 connected graph minimum vertex cut; minimum separator means minimum vertex cut, 

minimum separator of G. 

Now, this is for an edge, z is the partner of it in some sense and let say for each three 

tuple of this sort, let me assign a value. How do you compute the value? Now, I consider 

this separator x, y, z in the graph G and there will be several components. 

So, for instance, there will be this component C also which happens to be the smallest 

component in G minus x, y ,z. If I remove x y z the graph gets disconnected and among 



the components which results I will look for the smallest component. The cardinality, the 

number of vertices in the smallest component will be the value of this one. I will say this 

is the value of this set, this x, y, z; so, like that for each edge and its partner z, not that 

there is a unique z that I can get. So, you can consider the one, which will give you get 

you the minimum value if you want so. 

So, that way for every edge x, y, a partner is available and with respect to this x, y and its 

partner z together, we can evaluate its value by removing these 3 vertices in the graph 

and looking at the components and finding out the minimum cardinality component. The 

cardinality of the minimum component will be the value of that. 
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Now, among all possible edges x, y in the graph, I will look for the one which will 

achieve them minimum value; not that is unique. It may be possible that there are more 

than one edge, but I will pick up one such edge. From now on, when I say x, y, that is an 

edge and together with its partner. So, the value of it is going to be the minimum; that 

means, when I remove x, y and z from the graph, where x is a component C and then the 

cardinality of that component is such that if you remove any other 2 edges any other 

edge x dash y dash and its partner set z dash, any component which is produced will be 

greater than or equal to this in cardinality, in the size, in number of vertices. 
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So, such an x, y Once you get such an x, y. So, I will show a contradiction. Here, we 

have x, y, z and you can look at the minimum component C of it. I should say x, y, z 

Now, one property of a minimum separator is very important. That is, if it is minimum 

separator, this x, y, z is a minimum separator, it should have an edge. This x should have 

an edge to each of the component and z should have an edge to each of the component, y 

should have an edge to each of the component, why is it so? Suppose not. For instance, if 

there is this a, b, c is a minimum separator and there is a component here to which only a 

and b are connected, c is not connected, there are other components also and that is why 



it is a minimum separator. Then naturally, if I remove a and b alone, I can cut away this 

portion from the rest. So, there will be a 2 separator and the assumption that the graph is 

3 connected will be wrong. 
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So, therefore, in any minimum separator, we will have the property that every vertex in 

the minimum separator is connected to every component by an edge like I showed here. 

Now, this property allows as to infer that, so going back here, allows us to infer that 

when I consider x, y, z and my smallest component C; there are other components; this is 



the smallest component and this happens to be the smallest among all possible x, y, z, 

which I select. 
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So, there will be one vertex V here, to which it is adjacent because there should be edge 

going here and that end of this edge be called V. Now z, v is an edge and there is another 

vertex w somewhere, I do not know where, somewhere such that z, v, w, these three set 

is a separator of the given graph. Now, you can consider this z, v, w; this is the separator 

of the given graph. 
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Now, I want to see what will happen to my component C. Of course, the component C 

cannot break, become smaller at all. If it becomes smaller then it is a contradiction 

because C means it may not be as such, the vertices of C. You have already pulled v 

away from this. So, it is already becoming smaller. It is getting smaller. So, if it gets 

disconnected here because I pulled away v then we got even smaller component, but that 

is not allowed because you removed v, something more should be added to that and then 

you should get a component at least as big as the original C, but then the C is connected. 

So, if you go back to the earlier picture, the C is connected only to x and y, other than 

this C component the component C is connected to only to x and y other than say it is not 

possible to connect only to x, not connect to y because once you get x, y will 

automatically come because this is an edge. So, that means it should capture x and y and 

later once you will capture x and y, it can capture more things. 
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So, it is possible that x and y should it is important that x and y should be part of the 

component which contain C. You removed v, but then x and y should balance it, but the 

difficulty is if that happened, where will all the neighbours of v go? So, remember v was 

a vertex in C and then we can now. We will discuss it in the next class. So, we will 

complete the proof in the next class. We will need some time. Thank you. 


