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Welcome to the thirty-ninth lecture of graph theory. In this class, we will look at graph 

minors; of case, we are already familiar with graph minors; I have talked about minors 

earlier also. But in this class, we will look at it in a little more detail, of case we do not 

have much time to go in depth, we will just touch some of the initial material of this 

subject. As the student should be already familiar, these are the three operations involved 

in taking minors. 
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Contract an edge, which means if there is an edge like this, so these are the neighbors of 

it say says some neighbors like this also,  then you decide to contract this edge; what will 

we do? We replaced this with one vertex, new vertex, and all these neighbors will 

become the neighbors. All these neighbors, all these things will become the neighbors of 

this new vertex. So, of case, you may see that like, they are two edges here that may 

become multiple edges, but then we can discard one of them, if multiple edges are not 

relevant. So, the contraction operation is this; any way, we are already familiar with it, so 

do not go into again repeating it. So, delete a vertex is the second operation, delete  an 

edge, so you can do it in any order, and in any number of times and whatever graph 

results is the minor of the original graph, this is what we told. 



(Refer Slide Time: 02:25) 

 

Let us presently slide frame (( )), because so we want to concept called branch set. So, let 

G be a graph. Now, if X is another graph, and corresponding to each vertex of X, X is the 

smaller graph, let say compared to G, X is the smaller graph. Corresponding to each 

vertex of X, we identify a set of vertices of G, so that is what V X. For each X element of 

V of X, we identify V(X), namely some subset of the vertex set of G, and get  this 

collection  be a partition of the total vertex set of G, V of G in two connected subsets. 

The property that we need is each V X should induce some connected graph in G it is a 

connected subset such that and another property we need is any two vertices in X in the 

smaller graph are connected or adjacent you cannot only if there is the corresponding 

edge between V X and V X. So, that V X V Y edge in G that is we say that then we will 

say the G is a M X and write G equal to M X, so then the these V X are called the branch 

sets of M X. 
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So, we can take an example and so let us say so let us say this simple graph, so we can 

right so this graph so let us identify some collection of connected vertex. So this is one 

collection, this is another collection and this is another collection and this is say another 

collection right. So, this so this is some vertex and just marking it of so here, so 

essentially I have partition the vertex set of G so this graph, the red graph is G red graph 

is G and I have partition the vertex set into say this is 1 2 3, so this and then this is 4 5 6 

7 is another group, 8 9 10 11 is another group, 12 13 is another group now you can 

corresponding to this. So, we can mark a graph like this. So there are 1 2 3 4 vertices so 

this is M X 1, see this M X you can see this vertex A correspond to this A, B correspond 

to this B, C correspond to this C and D correspond to this D right.  

So the point is corresponding to each vertex here we have a subset of vertices of G and 

then they are connected each of these subset are connected for instance here there is 

connectivity here there is connectivity, here there is connectivity, here there is 

connectivity and then now whenever there is an edge became these two, if there is an 

edge between these two, there is the edge between the corresponding sets here here 

between C and D, C and D C is this, D is this. So, the vertex are edges between that not 

necessarily one at least one is what we are say right, so this is vertex so then we will say 

G equal to M X, so this and then C of case that are many G which are M X and this G is 

also M X and which other branch sets here? These are the branch sets these these these 

are the branch sets was X correct. 



(Refer Slide Time: 07:07) 

 

And then the point is that G, G can be seem as M X only if X can be obtained from G by 

a series of edge contraction that is that see it you understand for instance, if I contract 

these edges here this will this can become this vertex vertices, and then if I contract these 

edges then this will this vertex will come, if I contract these edges edge this vertex will 

come and contracting this four edges will results in some multiple edges will be there 

what we can discarded. So, then so by a series of edge contraction I can get this thing 

and also it is very easy to say that see that, if from G you can if there is a series of edge 

contraction to get this thing, we can always identify the branch sets there essentially the 

vertices which code contract into one vertex of X they from the connected set right. And 

also the vertices which code contracted into one set will not be part of the set of vertices 

it code contracting than other one; therefore, this M X idea and this contraction idea its 

equivalent right, it is are same.  

Therefore, we can view it the idea of minors this contraction in two different ways: one 

is thinking of the graph minor sorry or or the smaller graph as obtained as the result of 

contraction, the other is we have the identify the branch sets. And then there the part on 

of adjacent set these between the subsets is captured as a smaller graph that that both 

way its same its equivalent. 
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And of case then we have the notion of the illusion of the vertices illusion of edges to 

accommodate that we will say G equal to M X is a sub graph of another graph Y, when X 

is a minor of Y is not that we need to obtain X from Y by a series of contraction along we 

can also delete some vertices. And edges if you want to accommodate that we will say G 

equal to M X if G, such a M X is sub graph of some other y and then X is the minor of Y 

so this what?  

So, now let us look at some examples I am already explain what some some an example 

here, so far instance we can ask in general view we will usually ask what is the biggest 

clique minor that we can obtain from a given graph, why this clique minor is an 

important, because if a clique minor on some k vertex is available in g then every graph 

on at most k vertices is available in G right. So, because the edge illusion, vertex illusion 

will allow as to get the smaller graph in its; therefore, the clique minors are usually 

studied, so and also then see lets that is also easy to understand.  
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Therefore let us ask the simple question suppose it is a tree G is a tree what is the biggest 

clique minor that we can get, so we have probably we have mention it before this biggest 

clique minor that we can get from a graph G is denoted by eta of G, and its sometimes 

called Hadwiger number. So, which will be clear later, because its associated with the 

Hadwigers conjectures, so that is why it is called Hadwiger number that we are going to 

explain a little later. So, let us see from given a tree in a tree, so what will be the 

Hadwiger number of such a tree, so the question that definitely you will immediately see 

that you can get k 2 as a minor clique there are some edges.  

And then so you do not we do not even have to contract we just have to delete other 

edges, and the vertices just to take this thing, but then can we get a k 3. So, the crucial 

thing that we have to see when if you contract any edge here we contract any edge here 

so we what we get is again a tree; therefore, as we contract the that that tree property will 

not be lost it will be tree after contraction it always will be a tree. So therefore, we will 

never generate a cycle from that therefore k 3 will never come, so k 2 is the biggest 

clique that we can get from this thing eta of T is equal to k 2 for in a tree. 
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Now, see one interesting observation that we can make is that the similar kind of thing is 

true for planar graph for instance, if we take one planar graph and what will happen if I 

contract contract an edge here, so far instance this is a planar graph, so I can contract any 

edges you can see the planarity will be suppose will be maintained for instance, if I 

contract this then what will happen? So, I will replaced with one vertex here, so not here, 

so you can I can replaced it here itself, and then this this can be drawn like it without 

without destroying the planarity or for instance. If you are try to contract it what will 

happen, so this so you can place vertex here, so this entire thing will come here, so the 

planarity will not be lost right, so that you can imagine as shrinking the edge slowly and 

everything get closer. So because we are within in a face, so it is not going to effect the 

embedding the planar graph in the plane; therefore the planarity is mentioned if you 

contract edges.  
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So therefore, the what will be the what can I tell about the Hadwiger number of planar 

graph, definitely you can say that the for any planar graph eta of G the biggest clique 

minor has to be less than equal to 4 right. K 4 is the biggest you can get why is it so 

because, if you get a K 5 or more from the planar graph by contracting that means that 

because the contraction operation retains the planarity property if K 5 is obtain by 

contracting edges from a planar graph, K 5 also has to be a planar graph, which is not 

true K 5 or more cannot be a planar graph therefore, the biggest clique minor that you 

can get from a planar graph is at most K 4, biggest is K 4 you cannot get K 5 or more. 
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So from a cycle what we can get is a triangle, and that is very easy right for instance you 

can you just have to keep contracting, and then you will end up with the triangle, then 

right this are some example of taking minus using contraction. Now, let me ask one 

question for instance can we see any relation between the biggest clique minor that we 

can generate from a graph and number of edges in the original graph, so the answer is 

also clear in fact as we contract the edges of the graph. What we see is then number of 

edges can never increase we lose some edges, we never increase the number of edges 

because if you contract what we do not add any edges right, we do not any new edges, 

the old edges only become slightly reposition because two vertices become the same 

vertex by getting merging together right. So the number of edges can only decrease. 
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Suppose, if m was the total number of edges before so then suppose if K t is the biggest 

clique minor you can get, then we know that t into t minus 1 by 2 has to be less than 

equal to m right. Because you cannot generate in m any new edge, so from this thing we 

get t into t minus 1 less than equal to 2 m, and we can get some upper bound 4 t in terms 

of m something like root 2 m will be so little from this thing we can get right. So, the 

therefore if the number of edges is very small, so there is the we cannot expect very large 

minors of case, so it can be much, much smaller than for instance in the tree there can be 

n minus 1 edges, but so we always get maximum K 2 minor right. We can never get 

planar graph can have at most around three n minus six edges, but still we can get only a 

K 4 minor from that maximum, so not more than that. So, therefore of case this is just 



easy upper bound, and another thing is to look at the idea of branch set to demonstrate 

how to see the view the minus as branch sets. 

(Refer Slide Time: 16:54) 

 

Let me take this example so this is what it is called a grid, so this is an n by n grid. So 

essentially n by n grid is the Cartesian product of paths, Cartesian product of P n P n 

cross P n, so then suppose I make a copy of this. So, say something like this right, so 

then so and also connect if this, so that means this is called a double grid. So, essentially 

formally this is the formally this is the Cartesian product of two paths P n into P n into an 

edge K 2, this is what now I am interested to show that we can get a K n minor from it K 

n clique minor in it, so n clique minor in it, so that do this thing, so this is the technique. 

So, we can so I am just marking some branch set, so for instance I will take this and this 

one branch set; that means this one column from the green grid and one row from the red 

grid so the first row, and the first column first row of the green grid and the first column 

of the red grid. So, you see that this this row is connected here, this column is connected 

here, and also because of this edge.  

This entire thing forms a path, so here up to here it can come and then now it can jump 

here and then this is full path this is the connected set. Similarly, we can take the second 

row of the red grid and the second column of the green grid, and because of this 

connection the entire this is this two are connected in that that forms a connected. Then 

we take the third row, and third row of the red grid, third column of the green grid and 



that forms a connected set then like that we can get n branch sets there all connected and 

they are disjoint also it pair vice disjoint. Now, if I contract them what will I get that is 

the question, now to see this thing, so we can what probably we can we can make to it in 

a smaller step. So one there is, so let us let us define the branch sets slightly differently 

so it takes correspondingly each red row, we have the branch set its send definitely 

connected corresponding to each green column we have a branch set.  
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So, that means we will get a graph where is these are all red column n n of them, and 

similarly, here we have green, this is red rows corresponding to each correspond to a red 

row, and this each correspond to a green column. And then of case we know red row 

intersect with each green column; therefore, intersects means that there is an edge 

between them. So for instance, if you have a red row like this so the green columns are 

green like this right. So, then we have the connection, so another will be going like this, 

so you have this connection, so another will be going like this you have this connection.  

So therefore, smaller connected so we will get this graph of case there are other 

connection between them between them, but then let us discarded for the (( )). Now, we 

can merge dimension before we can merge these two vertices together that means, so 

originally we are seeing. So, this is what this is complete bipartite graph k n n, and then 

if we merge this this this this together that means is correspond to the first row this the 

first column, this is the first row here, the first sorry second row here, second column 



here, is the third row here, and the red and the third column in the green, if we merge it 

what will we get?  

We will get a k n right, because if the complete bipartite graph there so this is connected 

all these sides and this is connected all these sides. Now, in the all become 1 1 one of 

them so they will they will have connections between every pair, so we get a k n n. So, 

here we see the concept of branch sets more clearly here, we can see what is become k n 

the each vertex of k n can be interrupted as a column, and row a red column and a red 

row and green column, and because the branch set, because they connected and when we 

contract them we will get this get this k n. 
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Now, so this is just we let us try to some of the this thing and another concept you have 

to look at is the topological minor, suppose you are given a graph X with and then we 

replace each edge of X it independent path between ends. So, we call the graph G 

obtained a subdivision of X, we have seen this before also like which has to take an edge 

and replaced with some paths which are the number of edges in the path is depending on 

how many times it divide, and this is such a graph is called T of X. T X, so if t s is a sub 

graph of Y then X is a topological minor of Y, T X is a sub graph of Y then X is a 

topological minor of Y.  
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So for example, we can we can see that, see for instance, so this is of case this is a cycle 

and that triangle is a X and this is G. So we can (( )) three vertices to this, so this edge 

can be seen as subdivided here and this edge can be seen as subdivided like this and this 

edge can be seen as subdivided like this. Of case we can have other edges here, but 

because we only want that is T X of big cycle was T X, and then T X should be a subset 

of this, then we say that X is the minor of these entire graph sorry topological minor of 

these entire graph.  

So of case if X is a topological minor of y x is definitely minor of y minor of y also y 

because topological minor means we can of case take the some, and we see that 

definitely we can contract the edges of the path and get X right. Therefore, if X is a 

topological minor of Y then X is definitely a minor of Y also the other way need not to 

be true for example, we see that these vertices are called the corresponding vertices right. 

We have any corresponding to each we have to fix a vertex here sorry, this this three 

vertices we had fixed. These vertices which correspond to the vertices of this thing right 

before subdividing the path, so those are called the branch vertices equivalent to the 

branch sets.  

So these branch vertices, because if the degree here in x is 2. So, two path should be 

going lot of here for in general if the degree of the branch branch vertex is k n x, but we 

should see k path at least going out of this thing, so the degree of this thing should be at 



least as much as that. So, it is not possible to get for instance for if G is a k regular graph 

it not possible to get k, k plus 1 regular graph as a topological minor of G because, we 

see this a requirement but on the other hand the minor is different it is possible that we 

can get the denser graph like this some minor. So, even if for instance we are getting 

complete graphs big complete graphs, we can get as the minor even if the original graph 

as path as long as there were number of edges were enough. Then the contraction 

allowed us to accommodate edges in the same vertices degree can increase by 

contraction while here subdivision operation cannot increase increase the degree right; 

therefore, that is clear. 
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But on (( )) we can see that in some very special situation the reverse is also; that means 

if we have a minor that means if we can identify branch set corresponding to given X, 

then we can also have a topological minor. So, its happens when delta the maximum 

degree of X is at most three, so how do you do this. 
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So to see this thing suppose you have we had identify this branch sets, some branch sets 

for X so these are the vertices of see x 1, x 2, x 3 correspond to these branch sets you 

know we need connectivity here, we can discard all other edges, just keep a tree here, 

because you know we can discard other edges, once we retain connectivity it can each 

branch set right. So, let us say this is minimal number of minimal edges we need from G, 

so that connectivity is there and also suppose, because whenever there is a connection 

between the two vertices here, edge between the two vertices they should be 

corresponding edge between this.  

For instance, we can see this this may have at most three connections outside, so let say 

we include this vertex take this vertex also and say take this vertex also, and then now 

look at this tree, this again a tree this thing now, because it is a tree. If we see that 

between this, and this we have a path unique path, and then this will joint it somewhere 

somewhere right. So, if you take so it is easy to see now that will be one vertex such that 

you can see paths going out of this, and this and this right. 

 Now, everywhere if you replaced like this then you can see discarding other edges 

unnecessary edges which not taking path this thing, we can see topological minor we can 

see it, T X its next contain the T X that is what, but that this happen only even delta is at 

most three it is it not happen a when delta is greater than three. So, now the the next, so 



before went to the next topic, so we can illustrate the idea of topological minor by taking 

one example from.  
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So far instance, which one example for from what we have studied earlier, so far instance 

look at this graph H d h t which hyper cube - d dimensional hyper cube, essentially 

remember that this is the graph whose vertex set is 2 H d vectors, d length vector like the 

vectors are like 0 1 0 1 like the 0 1 vectors. So, the width d components in it, in the 2 H d 

of the other, and when other connected 2 vertices are connected with an edge adjacent 

with an edge when the hamming distance is 1; that means when they the corresponding 

vectors differ in exactly one component position.  

So we have familiar with hyper cube, so then what is the the biggest topological clique 

minor that we can get in which what is the biggest n such that K n is the topological 

minor of H d, so this question. So, immediately we can say that n has to be less than 

equal to d right sorry n minus 1 has to be less than equal to d, because here H d the 

degree of each vertex is d right. Now, k n means they are n vertices right so degree is at 

most d, so the if if you take K n then we have a n vertices in it, the degree of each 

vertices n minus 1 so the n minus 1 cannot be more than d as we have already mention, 

because from every branch vertex. We should we will see at least n minus 1 path path 

going only d path can go, so we we can they only at most n minus 1 path.  



Now, let us also see a topological minor here, so take this vector so far instance one as 0 

0 0 0 this vector, and the other is 1 0 0 this vector, the second is 0 1 0 0 0 - this vector 

and finally, we have the dth vector namely sorry d plus 1th right d plus 1 th vector is this 

1. So, here this is 0 0 1 this is corresponding to each bit position we just keep 1 all of the 

0 so and greater than 1 vectors, and then now I want to show that this vertices formally 

topological minor. Of case this this central vertex, this vertex, 0 0 vertex is a connected 

to all other vertices all other d vertices that we have, because the hamming distance is 

just 1 for all of them, and then how do show that between any pair of these two vertices. 
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For instance the 1, so let us take one vector a 0 0 0 i th position, we have 1 and all others 

are 0 here, and take another vector where jth position we have all these place, we have a 

1 and then all others are 0. So of case so what we can do is we can identify vector here, it 

is adjacent to both namely it has in the ith position and jth position we have 1, all other 

position we have 0 right this is definitely adjacent to this vector because the hamming 

distance is just 1. Similarly, this is also adjacent, and then clearly there is an path 

between this and this, and this intermediate node will not be path for any other i j, 

because this ones appear in the ith position. And the jth position for any other pairs two 

position will be different; therefore, we see that there is a d plus 1 K d plus 1 topological 

minor here, and then that is the best that is maximum possible you cannot get anything 

greater than this, so this is clear. 
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The now we will come to of case this was just introduce this concept, the minus the 

topological minor we just worked out some examples to understand how this what this 

topological minors are and what the clique minor sorry, usual minor are and we also 

looks into the clique minor which are of case easier to understand, because between 

every pair we need an edge every branch set we need a edge. So, this Hadwiger 

conjecture can be easily understood now, so this is one of the most important conjectures 

in graph theory, and its try to extend the four color theorem, the this question this this 

conjecture say for every integer r greater than 0 every graph G. If the chromatic number 

is greater than equal to r then it should have k r minor, the graph should have a K r minor 

if the chromatic number is at least r. So, the in other words if it does not have a K r minor 

then we can color vertices of the graph properly using at most r minus 1 colors. So it is 

why easy to verify for small cases for instance. 
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Let us look at r equal to 1k, that means if the chromatic number is 1; that means it is 

isolated vertices it do have a K 1 minor then r equal to 2 k’s that means the of case we 

are saying that if we denote have a K 2 minor, so that means if you denote have a K 2 

minor we should be able to color using one color definitely true, because if there is no 

edge we can color using. So, of case so r equal to three k’s means, so this is not for so 

this is r equal to 3 k’s means if there it denote have a K3 minor if it denote have a K 3 

minor. Then we can color using two colors 2 colors, so if you denote have a K 3 minor 

we can color using three colors so this is very clear because, if you denote have a K 3 

minor, but we do not even have a cycle in the graph for the trees we can colored using 

two colors. So what about the next if you denote have a K 4 minor, then r equal to 4 k, K 

4 minor then we can color using three colors, so sorry we color using three colors r equal 

to 4 k’s right. 
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So, this can be so this needs a little more effort, so this this we need to understand the 

structure of the graph without a K 4 minor, then if we denote have a K 4 minor we need 

to show that it can be color using three colors. So to do this thing we have to understand 

this structure of the graph without K 4 minor, so this helps here is (( )) a graph with at 

least three vertices is edge maximal without a K 4 minor if and only if, it can be 

constructed recursively from triangles by pasting along K 2 s K 2 s the K 2 means edges. 

So, just K 2 s why we will look at it edge maximal graph, so we are interested in coloring 

graphs without K 4 minor, we want to show that a graph without K 4 minor can be 

colored using at most three colors. So, instead of generally looking at any graph with K 

without K 4 minor we are same that we will look at edge maximal graph without k 4 

minor with the property, there are no K 4 minor, what do I mean by that, I mean that I 

keep adding edges in such a way that still in K 4 minor.  

So, we come to a situation saturated situation namely any more edge in adding one more 

edge will introduce a K 4 minor will introduce the k 4 minor in such a case, we will have 

to… So, we will say that it is an edge maximal graph with the property, but there is no K 

4 minor. So, it is enough to show that this kind of graph can be colored using three colors 

right, because if this kind of graph can be colored using three colors any graph without a 

K 4 minor can also be colored using three color, because give me a graph without a K 4 

minor than I can always add edges to it. And make it edge maximal with respect to this 

property of not having K 4 minor, and definitely I have only added edges after adding a 



few more edges, I can color the graph with three color the original graph also can be 

colored using three colors, so that is why we are looking at the edge maximal graph 

along. Now, so this (( )) gives a structural description of that this type of graph edge 

maximal K 4 minor free graphs, it sense that if they exactly added graph which can be 

constructed move from triangles by pasting triangles recursively along K 2 s something 

like this.  
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So we can, so we start this is one triangle, of case this is a edge maximal K 2 minor free 

so we can add a triangle so we can identify this edge we can paste one of the triangle 

along this edge. So, now this a new graph so we can of case we can another triangle and 

then say identify an edge may be as this one, this one, in then I can paste one here this 

triangle for I can paste another one here like identifying this was the edge to paste or we 

can identify this edge once again. And then paste one triangle here, so I can paste one 

here, now we can paste one here, so this way so I can paste one here is identify this edge, 

this this kind of graph are called so that graph which are obtain by pasting triangles 

recursively (( )) so, we are we are not along to paste like this right because, that is like 

identify a vertex alone.  

So, what identify edge it paste, now why do we thing that this graphs which are edge 

maximal without K 4 minor, of case they cannot be a K 4 minor here, so if there is a K 4 



minor and suppose up to here up to some stage, we do not have a K 4 minor, and then we 

suppose decided this edge, and then we pasted it triangle here.  

Now (( )) sudden a K 4 minor appeared, so how will the minor look if k 4 minor appear 

because, a K 4 minor has maximum degree of K 4 is less than equal to three right is three 

only. In fact therefore, then they should be a K 4 topological minor also right, so is it 

possible to have this is a branch vertex here, if this is a branch vertex the new one, then 

the other one has to be the other three has to be somewhere here right inside 1 2 3 

somewhere here in this portion, but then there is only the two edges going out of this 

thing it is not possible to half this branch vertex. Now it should be all the branch vertices 

should be here, but then what is the use of having this, we have we can instead of going 

why are this we could of always use this edge.  

And then we will get that K 4 topological minor in the part itself. So therefore, that 

would be a contradiction that inductively, we assume that earlier they was no K 4. 

Suddenly K 4, minor cannot exist in the new graph, and also its edge maximal because, 

here it is was edge maximal. Now, if this is not edge maximal the edge that we can add 

without introducing a K 4 it has to be something like this.  

Now, clearly you see there is already a triangle here there is already at triangle here, and 

this edge if you contract this entire remaining part will give us the the new K 4 right, so 

because they should be some connection between this, and this here right. And then also 

there is a some connection here. So therefore, I so we can we can prove that we can we 

can get a if such a if it is not, if we can add an edge without introducing, so we we cannot 

add any edge without an introducing a K 4 minor. So therefore, this is edge maximal K 4 

minor graph definitely that is not the key issue, the issue here is essentially, so these 

graphs are indeed edge maximal with the property that there are no K 4 minor in it is, but 

any edge max what we want to say that any edge maximal graph without K 4 minor will 

have this structure namely the obtainable by pasting triangles on K 2 s right recursively. 

And how do I proves that so to to show that so we just need required easy, but I will just 

start it of but will not do it completely, because we do not how much time now so to see 

this things, if we can see that suppose we are given an edge maximal graph without a K 4 

minor.  



Now, can it be a complete graph know if its complete graph it has to be K 3 only, 

because only three vertices should be there, but if it is a three vertices then definitely it 

does not have a K 4 minor. So therefore, at least four vertices then it cannot be a 

complete graph, of case if it is just a triangle, we are through, because it is one triangles 

like we say it is it is pasting of triangles. And what show whatever as we as we required 

it is it is one triangle, but if it is more than a triangle that means four vertices are more, 

then we cannot have it a complete graph, because then K 4 minor is anyway there, so it is 

not complete graph; therefore there is a separator.  
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And then this separator cannot be too big, if it is three or more. So let us take two 

components right now some vertex this components, and some vertex in this component 

say v 1 and v 2, so they will three paths disjoined path between them right. Internally 

because, of the connectivity, because of the minimum separator we consider so with 

connectivity is three or more they should be three length path. Now, suppose if I had 

removed these two vertices still the graph will remain connected, because the minimum 

separator size is three by removing just two vertices, we cannot disconnect the graph. 

 So, we can assume that there is one more edge say between one more path between this, 

and this so between any two of them. So, one pair we will still get some connection let 

take this thing, now taking this this and this vertex right, so we already get a K 4 minor 

and this, this vertex so we have a K 4 minor here. So right is the triangle, and so this 



vertex is connected to this, this and this so we have a K 4 topological minor here. So 

therefore, we can see that that is not possible to have now we can assume that the 

connectivity of this graph is K 2 or 1, so and then we can analyze again based on the 

edge maximality and K 4 minor and then show that it is it will it will lead to the 

contradiction, so I will leave it to the student for working that out. So, we will the point 

is anyway we need not worry too much about the proof of that it, because easy so of case 

some technical details that is all.  
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So, we we will go to the next statement, what we will what this means is that one of the 

implication is that see then any edge maximal graph without a K 4 minor has at most 2 

into number of vertices minus three edges, why is it? So, this is also a simple induction. 
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Because you know it start with a triangle, only three edges for three vertices that is three 

n minus three put n equal to 3, we get three right, so that is correct. Now, if paste another 

triangle, so what do you you are introducing in one more vertex, but only two edges 

right, so that is like here we are introducing; of case so 3 into n plus 1 minus 3 equal to 

three n minus 3 n, 3 n edges is what we are expected have by the statement, of case we 

are only increasing two edges here, so we are not increasing three. So, right for instance 

the four vertices is what how much we have so four vertices three into four sorry (( )) the 

number is wrong. So 2 n minus 3 edges what we need, so this is wrong.  
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So, the what again we want to show that 2 n minus 3 edges right, first let us first let us let 

us for the triangle, put n equal to 3 so 2 into 3 minus 3, so that is 6 minus 3 equal to three 

that is correct. Now when I am when I am pasting a new triangle so we introduce two 

edges that is becomes 2 into n plus 1, and and this minus 3 that is for for every new 

vertex here only introducing two edges, so this will be true; so this by simple induction it 

is its verified. Now, so that was just some consequents and immediate consequents if 

there is no K 4 minor in the graph then the maximum number of edges, you can get in 

such a graph is 2 n minus 3 where n is the number of vertices. 
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So the point now is Hadwiger conjecture will holds for the r equal to 4 k why it, so 

because you know the K 4 minor of graph is a K 4 minor of graph I want to show that it 

can be colored using three colors. So, what we do is we add edges, and make edge 

maximal, because if the edge maximal maximal graph will be colored of case the original 

graph can be also colored. 
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But this edge maximal graph can be constructed by pasting together the triangle, so this 

is like a just pasting together the triangle now this is colored using three colors, now 

when you add one more vertex, one more triangle, so definitely so this color, if we gives 

to the two vertices. And then the third color given to that which very easy to see that 

always this edge maximal graph can be colored using three colors, so the Hadwiger’s 

conjecture is to for is 4 K; that means when 4 K minor is not there it can always color 

using three colors. 
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Now then next case is when K 5 minor is not there the sit, we want to show that 

Hadwiger’s conjecture in this case, we want to show that any graph without K 5 minor 

can be colored using four colors. See of case, so this is requires as structural theorem like 

this we need to understand this structure of the graph without K 5 minor, it is provided 

by Wagner in 1937. Again we only on to consider the edge maximal graph without K 5 

minor and he told it characterized the graphs without K 5 minor, and edge maximal with 

respect to the property. So, he says let G be an edge maximal graph without a K 5 minor 

if G is greater than equal to 4 then G can be constructed recursively by pasting along K 3 

triangles and edges k 2 s from plane triangulations and copies of the graph W, what is the 

graph W?  
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So, this graph W is a special graph which is eight vertex graph 1 2 3 4, 1 2 3 4, 1 2 3 4 5 

6 7 8 so and then there is connection between these two and there is connection between 

these two, and there is connection between these two, and there is connection between 

these two, this graph is called W, say eight vertices on it. It can be drawn in several 

different ways, but let just because we do not have a that much time we will just take this 

drawing, so this is a special graph so he says take this. This is non planar graph, but this 

is only non planar graph had to bother about, when we are considering the edge maximal 

graph this non planar graph. And other than that any edge maximal planar graph that 

means the plane triangulations, edge maximal planar graphs are essential the plane 

triangulations, why because when keep keep adding when when you add an edge.  



And if you lose planarity then K 5 yeah, so the that is not direct need the proof of that, 

but because on K 3 3 the K 5 minor make them, but so we he proves that so in that case 

including this thing. 
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We can make sure that that is only we need bother about only plane triangulations and 

this particular graph, so these are the edge maximal cases we can what we can do is we 

can paste them along like in the earlier case, we had pasted along K 2 s that edges now 

we have to place along paste not only on K 2, but also on K3 if necessary, if two kind of 

pasting are allowed on triangles we can identify a triangle in this graph, and then in the 

graph. And then and merge them together by putting the vertices of the identifying the 

vertices that triangle in both the graphs, so are like we did in the earlier case, this is the 

only way we get edge maximal graph without a K 5 minor.  

And from this thing you can immediately conclude two things: One is how many edges 

will be there a graph with n vertices is no K 5 minor has at most 3 n minus 6 edges the 

same kind of induction, we did here it little more complicated calculations are required, 

but this is by induction we easily to this thing. And the other thing we conclude is that 

Hadwiger’s conjecture Hadwiger’s conjecture holds for r equal to 5 K; that means if K 

minor is not there we can always color with four colors, why because each other 

components. That means we are constructing this graph edge maximal graph without K5 



minor graph will plane triangulations which are obviously colorable using four colors by 

four color theorem. 

 We have already studied that and this particular graph this this graph this graph 

definitely can be colored using four colors, and now we are pasting only on the triangles 

or an edges. So, when we pasting we can rename the color in such a way that the both the 

both sides are consistent. So, this technique is very easy I leave this student, leave it the 

student to verify; therefore, in this case also it shown that the Hadwiger’s conjecture 

prove it. 
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Now, the next case proved by Robertson Seymour and Thomas in 1993; that means if K 

6 is not there you can color it with five colors base by extending the four color theorem. 

We uses the four color theorem for the purpose of this thing they uses, so but it is 

considerably more difficult. 
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So that is all about Hadwiger’s conjecture, so there are some other special cases also like 

(( )) proofs is result. So, we will continue in the next class.  


