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Welcome to the twenty-sixth lecture of graph theory. In the last class, we were 

discussing about perfect graphs, and we did a proof of Lovasz of weak perfect graph 

theorem, which states that if G is a perfect graph, then its complement is also a perfect 

graph. This was the theorem. 
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If G is perfect, then its complement is also perfect. The theorem is obvious from strong 

perfect graph theorem, which was proved much later, but then again, we decided to do a 

proof of weak perfect graph theorem because it gives good idea about the perfect graphs 

and good insides. So, in this class, we will consider another proof of weak perfect graph 

theorem by (( )) which uses some linear algebra in the proof. In fact, instead of proving 

directly the statement that if G is perfect then its complement is also perfect, what we are 

going to do is to prove a different statement, which was also proved by Lovasz earlier. 
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This is the statement: a graph is perfect if and only if for every induced sub graph H of 

G, the cardinality of H is less than equal to omega into alpha. If you multiply the clique 

number and the independence number of any induced sub graph, then there should be 

greater than the cardinality of the number of vertices in the induced sub graph we are 

considering. 

If it happens for a induced sub graph, it is a perfect graph and for a perfect graph, it will 

happen. So, it is if and only if statement. Why are we proving this in order to prove the 

weak perfect graph theorem, which states that if G is perfect, then G complement is also 

perfect, because it is obvious that if this theorem is true, that means, any graph which 

satisfies the condition, that every induced sub graph H satisfies inequality cardinality 

number of vertices H is less than equal to alpha and omega, should satisfy that statement 

also, that if G is perfect, G complement is also perfect. 

It says, because this statement is symmetric with respect to the complement on the graph, 

because any induced sub graph if you take in the complement that the corresponding 

induced sub graph will again have the same number of vertices that will be less than this 

product because this omega will become alpha of H bar and this will become omega of H 

bar because in the complement the independence number of the original will become the 

clique number and the clique number of the original will become the independence 

number. 

 This product is not going to change. Just the meaning of this alpha and omega changes. 

The numbers remain same. The total product remains same and this left side L H Salso 

remain same. Therefore, inequality will be true for every induced sub graph for the 

complement also. 

 Therefore, the complement will be perfect because any graph it satisfies this inequality 

for every induced sub graph is perfect. So, the complement is also perfect. It is enough to 

show that this inequality characterizes the perfect graphs. It is an if and only if statement 

for the perfect graph. Then, we have already proved the weak perfect graph theorem. 
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Therefore, we will try to prove this statement. One side of this statement is very easy, 

that means if it is perfect graph, then for every induced sub graph, this inequality should 

be true because you taken induced sub graph H and its cardinality has to be less that 

equal to its omega into its clique number alpha into omega of it because it is a perfect 

graph, this induced sub graph is also a perfect graph and then the chromatic number of 

this H is equal to the clique number. That means we have a coloring of H using omega 

colors but each color class is an independent set. So, it can contain only at most omega of 

H vertices because omega of H is the biggest cardinality of an independent set in alpha 

of H is the biggest cardinality of an independent set in H.alpha of H is the maximum 

possible number of vertices in any color class and we can cover all the vertices of H 

using omega colors. So, omega into alpha will be an upper bound for the cardinality of 

H. It is very straight forward for a perfect graph. 

 The more non trivial part is to show the other way, that means if a graph satisfies this 

inequality for all of its induced sub graph, then it has to be perfect. How will we prove 

this thing? 
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 The first observation is to see that, suppose, you have taken an independent set. 

Suppose, G is the given graph satisfying the property and you identified any independent 

set U in it U of G. 

 If you take the independent set U of G and remove U from G, let say G minus U is the 

graph which we get, what can I tell about the chromatic number of G minus U? What can 

you tell about the chromatic number of G minus U? You have just removed an 

independent set. You know G is a perfect graph. So, G minus U is also a perfect graph 

because you have just removed some vertices from that. An induced sub graph of G is 

going to be a perfect graph also. 

So, chi of G minus U has to be equal to omega of G minus U. Can you tell anything 

more than this? Can we tell what is the actual value of this thing? We can see that it has 

to be omega. So, is it trivial? 

Because, you started from G, you removed some vertices. The clique number can only 

reduce. It can remain the same. But, we are saying that it has reduced. Suppose, it has 

reduced. It has become omega minus 1 or less. Suppose, omega of H became, so if G 

minus H omega minus 1 or less, then what will be happen? 
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Then, we can put back U to the graph. U is an independent set. We need only one more 

color to color the entire graph. If this omega of G was equal to omega G minus U was 

omega minus 1 or less we have colored using omega minus 1 colors and one more color 

for U, then we will be able to color G with omega colors because omega minus 1 was 

enough for G minus U. G minus U can be colored using omega minus 1 or less colors. 

 G can be colored with omega, because U is an independent set. we can get all the 

vertices when you color and then G is colored with omega colors. So, G becomes a 

perfect graph. To repeat, we are trying to prove that if G satisfies the inequality omega 

and alpha. For every induced sub graph H, the cardinality of H less than equal to omega 

of H into alpha of H, then we want to show that G is perfect. 

 We will do it by induction. For small graphs, it is true, for one known graph, two known 

graph, it is very easy to check. We are assuming that for all the graphs with smaller 

number of vertices, it is true. 

 When we took an independent set and removed from G, G minus U will definitely 

satisfy this inequality for all the sub graphs. So, by induction, G minus U was perfect. 

That is why, we could say that chromatic number and clique number for G minus U is 

same. Not only that, this clique number and chromatic number of G minus U has to be 

equal to omega itself, the original clique number of G irrespective of which independent 

set we remove. 



The reason is that suppose it reduced, then we could have used one more color to color U 

because U is an independent set and then G is colored with omega colors and the clique 

number of G is omega and then G is also perfect because every induced sub graph of G 

is perfect by induction assumption and then G is perfect now like this. 

 Therefore, we know that we cannot do that. Color chromatic number of G has to be 

greater than omega. Then only there is anything to prove. Otherwise, it is already proved. 

So, we can say that G minus U for any induced independent, whichever independent set, 

we try G minus U requires omega colors to color. That is why probably G may require 

more colors. We have to come up with contraction from that/ 

If G minus U requires any colors, interestingly, U can be anything. It can be one vertex, 

it can be the biggest independent set size itself, whatever it is G minus U requires omega 

colors to color. 
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Now, you select a maximum independent set, some alpha. Let say S is a maximum 

independent set. The cardinality of S is equal to alpha. Now, let’s say S equal to U 1, U 

2, U alpha. This is the set of elements in S. 

Now, what we are going to do is to consider G minus S first. When you remove that 

independent set S, the remaining graph as we mentioned already can be colored using 

omega colors. The main thing is its clique number has not reduced. it still has an omega 



size clique on it. That means, this independent set size cannot intersect with every clique 

in the graph. Otherwise, if it intersects with every maximum clique in the graph, the 

clique number would have reduced. That does not happen. That is why the clique 

number remains omega and the chromatic number is also equal to omega because it is a 

perfect graph by induction hypothesis smaller graph. 

Now, you consider an omega coloring of this G minus S and then what will happen is it 

has infact omega colors and any omega size clique inside G minus S has to have a 

representative color in it. 

But, when we consider this coloring, we would rather do see like this. You take U 1 and 

consider G minus U 1. This can be because U 1 is an independent set by itself. You 

know the clique number would not reduce. So, the omega of G minus U 1 is equal to 

omega only. The clique number will remain same.Now, because by induction hypothesis, 

if this G minus U 1 also can be colored with omega colors, consider that omega coloring 

and this omega coloring correspond to omega color classes. we can call it A 1, A 2, A 

omega. These are the color classes. 
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Now, what will happen if I consider U 2 from S and remove U 2 from G, G minus U 2. 

Again, the same thing applies for G minus U 2 because its chromatic number is equal to 

its clique number because it is a perfect graph induction and also it is equal to omega. As 



you have seen that its clique number cannot reduce by removing this thing, because if it 

reduce, then U can get new color and G also becomes perfect as we want. 

 We can consider an omega coloring of G minus U 2 and let say omega A omega plus 1, 

2 A omega 2 omega are the color classes. 
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Now U 3 also we can do the same thing. For instance, because chi of G minus U 3 will 

be again equal to omega of G minus U 3 and that will also be equal to omega as we 

know and then omega coloring of this G minus U 3, if we consider, we can come up with 

another set of omega color classes. These are all independent sets. Each color classes in 

independent set that will be A 2 omega plus 1, A 2 omega plus 2 into A 3 omega like. 

that for when you remove U I, you will get, i minus 1 omega plus 1 2 A i omega. 

So, total how many independent sets do you collect like this, each color class from what 

we are doing is, you remove a vertex of S because S is U 1, U 2, U 3, U alpha. 
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A vertex U i is removed from the graph and the remaining graph has a coloring using 

omega colors, not less and we collect all the color classes and these color classes are 

listed. So, for it may be even more convenient to see this color classes S when U 1 is 

removed, the color classes we got can be written as S 11, S 12, S 13, S 1 omega and then 

when U 2 is removed, the color classes obtained can be seen S 21, S 22, S 23 and S 2 

omega and then S when U alpha is removed, you got U alpha minus U alpha one comma 

S alpha 2 S alpha omega.  

So how many sets are produced because you are there omega of them, another omega 

total of alpha omega sets are produced and add to this the original set, S itself because 

this itself was a independent set. This is S. So, this also is added. 

 Together, this entire collection is alpha omega plus 1 independent set and this alpha 

omega plus 1 independent set have some interesting properties. 
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 The most interesting properties, if you take any clique of the graph so one thing is for 

instance if I had listed this alpha omega this S is the first independent set, second is a S 

11 to S 12 up to S 1 omega and then finally end of with S alpha 1, S alpha 2 

S.Corresponding to each of this independent set, we know that even if you remove S 

from that, there is a clique of cardinality omega in G because the clique number cannot 

reduce by removing an independent set. If you remove an independent set and if the 

clique number reduces, then the remaining graph has a coloring with less number of 

colors than omega of the original. Then, you can add one more color to the independent 

set and then we will get omega coloring of G which would make it perfect. 

Therefore, at least one clique corresponding to, I will say K of cardinality omega remains 

in G minus S. Similarly, we will get a K S 11 in G minus S 11 and so on. This is also an 

omega size clique. Similarly, here also. K S alpha omega in G minus S alpha omega. 

This is what will happen. 

Now, not only that, if you take any of this clique, for instance, you can take some 

cliquehere, we know that this clique does not intersect with this because this outside in G 

minus S 11 is an omega clique in G minus S 11. 

But then, that will intersect with all of the remaining things here, means the only 

independent set in this collection which it is not intersecting is exactly its partner to 

which it is paired. All others it will intersect. Why is it so? 
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Because, you can take any clique, you can say that from this collection, any clique of 

omega cardinality can intersect with only one of these things and have to intersect with 

all of these things except one. So, we know which one for the clique listed there, which 

one it is not intersecting from that. Therefore, with all others, it has to intersect. For 

instance, you can take a clique K. 
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 Let’s say the K is of cardinality omega. Now, there are two possibilities K intersects 

with S, our original independent set has no intersection with that means K is in G minus 

S. 

Then, we know that if you remove any U i from that graph because U i belong to S that 

will not affect this K. Any ways, K was not intersecting. We are removing vertices U 1, 

U 2, U 3, U alpha where from S 

So, when you removed a U , that would not reduce K. That will leave K in the graph G 

minus U. That is a maximum clique. In the G minus U i graph, after removing U i is 

color with omega colors and then omega clique should all the representative colors. That 

means, it is part of all of S i 1, S i 2, S i omega all the sets it is available. This is true for 

every I, therefore, it will be intersecting with all the color classes that we generate. 

 That means, all of this S i j kind of sets, it will intersect. Now, on the other hand, 

suppose that clique was intersecting with S, but if it is intersecting with S, that is the 

intersection can only be of cardinality 1, because this is 1. Why is it so? K is a clique and 

S is an independent set, it can intersect with only one vertex in S. Intersection can be 

exactly 1. It cannot be 2 or more because how can the clique intersect with more than 

one vertices in an independent set. 

Now, that is some U j, say this intersection correspond to some U j, if they are not 

removing, already S is intersecting and if it is intersecting with U j, then whenever any 

other U i is removed, this clique is not affected. It will remain in the graph. When you 

remove some U i other than this U j, the particular vertex to which it is intersecting in S. 

 Whichever other vertex you remove from the graph, this clique will be intact. This will 

remain as such because we are coloring the remaining graph with omega colors, each 

color class has to have a representative from the clique. The clique has omega vertices in 

it. All of them has to get different colors. 

 The clique has to intersect with each of this independence set except some independent 

set in S j 1 to S j omega. Every other color classes of this form S i 1 to S i omega S so i 

not equal j will have an intersection with K and among the sets S j 1 to S j omega. Only 

one independent set will be non intersecting with K because K even after removing this 



U j, it will reduce to a clique of cardinality omega minus 1. So, it has to cut omega minus 

1 color classes except one color class because only one can escape intersecting with it. 

So, except one set, it has to intersect with all others. This is true for every clique. What 

we have told is, you take any clique of maximum cardinality in G, it has to intersect with 

all the independent sets that we have created that is S and S i j’s, the total omega alpha 

plus 1 independent sets. From that all of them it has to intersect except one. Depending 

on the cases we have analyzed that sometimes it can be S or sometimes it can be some of 

the S i j’s. 

But, exactly one independent set we can find to which it is not intersecting and all the 

others in this collection, it has to intersect. This is the key point and in particular that this 

is true for any clique of cardinality omega. We have already seen that when you consider 

this each of the independent set in S and S i j’s ,total alpha omega plus 1 independent set, 

each of them has an associated clique which is in G minus S i j or G minus that 

independent set. That means, there is a clique which does not intersect with it is not just 

that every clique has to intersect with exactly one of them, there exists one clique which 

for each of them which does not intersect and naturally if it does not intersect with this 

one, it will intersect with all others. 

Because it has the possibility of not intersecting with only one set in this collection, with 

all others it has to intersect. We have created a collection of independent sets namely 

omega alpha plus 1 independent sets namely S, S 11 to S 1 omega S 21 to S 2 omega and 

finally S alpha 1 to S alpha omega. 

And corresponding to each of this thing, we have also associated a clique which does not 

intersect with it and with among these sets, that is the only independent set with which it 

does not intersect. All others it will intersect. 
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This is enough to prove our statement. We are going to construct a metrics where the 

rows are here. We will put it as 1 2 3 4 5. This column numbers are the vertex numbers 

and these rows will correspond to the independent sets, this is S, this is S 11, this is S 12 

and this is S alpha omega. The number of rows will be alpha omega plus 1 and this is an 

alpha omega plus 1 cross n metrics. Let’s say this is A and what will be in a row, we will 

actually take the support vector of S, means in a vertex belongs to S, then, we will put 1 

there otherwise we will put a 0 there. 

So, whichever vertex belongs to S, you will put 1 in the corresponding this thing, 

otherwise we will put 0. Similarly, here also this is what we keep doing. 

So we can put 1 or 0 namely whether this particular vertex corresponding in this column 

belongs to that independent set. 

 We will also create a metrics which is an n by alpha omega plus 1 metrics namely by 

this. Here, the row numbers will be the vertex numbers 1 2 3 4 obtained and here this 

columns will correspond to the cliques K and K 11, K 12. Like that, you can say the 

clique corresponding to S i j will be in the corresponding column. 

 If it is the row, this is tth row, the corresponding clique for this independent set will be 

put here in the tth column. 



 When you multiply these two things, what will happen, you will definitely get alpha 

omega plus 1 cross alpha omega plus 1 metrics. Now, what will be the entries of this 

metrics. some thought will reveal that because what will happen, suppose, if I take ith 

row and ith column, if I multiply that corresponding independent set and a corresponding 

clique, they will not have any intersection if no vertex is common to them. 

 Now, you can see that, whenever there is a 1 here, there will be a 0 here, whenever there 

is a 1 here, there will be a 0 here corresponding because, they do not intersect. 

 When you multiply, you will get only zeros. But on the other hand, if you take any other 

rows i and j, if it is i and j, there are i not equal to j, then you say that it correspond to 

different independent set and clique different from the clique associated to it, a different 

clique which was not its clique. 

Then, what will happen? There is an intersection they have to intersect and if they have 

to intersect and intersection is only one because, a clique andan independent set can 

intersect at only one place. So, when you multiply, we will get exactly 1 because all 

other places it will be 0 into 1 or 1 into 0 or 0 into 0. In in one place you will get 1 into 1. 

 Therefore, when you multiply will get 1. Through the diagonal, we will get 0 but all 

other places we will get 1 because ith and ith column multiplies to 0. All other places we 

will get 1 1 1 and we know that such a matrices rank, rank is full rank. 
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 Therefore, the rank has to be alpha omega plus 1. This is alpha omega plus 1 into alpha 

omega plus 1 and there, if you consider the columns of that matrix, they are clearly 

linearly independent or rows of that matrix are clearly linearly independent. 

 alpha omega plus 1 is the rank of that matrix. But, in that case, we multiplied A and B 

and then we got a matrix of rank alpha omega plus 1. That means, the rows for instance, 

if this A also should have rank alpha omega plus 1, is it possible that the number of 

vertices in so the number of columns in A can be less than the number of columns in 

rows in A because, number of rows here is alpha omega plus 1 the number of columns 

are n. 

 If n was strictly less than alpha omega plus 1, that is n is less than equal to alpha omega, 

then what will happen is the rank of this matrix cannot be more than n because, there are 

only n columns less than equal to alpha omega. How can it have a rank of alpha omega 

plus 1? 

And if the rank of A is less than alpha omega plus 1, how can the product have rank 

alpha omega plus 1? But we know that by assumption, this was correct because, H was 

less than equal to alpha omega for every induced sub graph in particular for G also. 

 This is clearly giving us a contradiction because, this A does not have rank alpha omega 

plus one and a product cannot have rank alpha omega plus 1. But then, we see that here 

rank has to be alpha omega plus 1. This is a contradiction. 

Where is the contraction coming from? The contradiction is coming from the assumption 

that G was not perfect. That is why, we could select all those independent sets with that 

particular property, strange property. 

 If the G was not perfect, that is why we could assume that all and you remove all then 

any independent set the remaining graph can be a colored with omega colors because, the 

clique number does not reduce and all those assumption are based on the non perfectness 

of G. So, that is what is going wrong here. So, G has to be perfect. 

 We infer that G has to be perfect. It follows that, if this particular property for every 

induced sub graph H less than equal to omega of H and alpha H is true, then G has to be 

perfect. Then, of case complement also will satisfies this property immediately and then 



it is also perfect. because this statement H less than equal to alpha H into omega H is 

metric because alpha and omega when you go to the complement, the product remain 

same. alpha becomes omega, omega becomes alpha and the cardinality of does not H 

does not change at all. 

So, we have proved it in a different way. This is the proof of Gasparian and in the next 

class also I plan to cover a few special classes of graphs. We have seen several special 

classes of graph already which are all perfect like chordal, interval graphs and then 

comparability graphs. Several classes we have already seen it is very important aspect of 

graph theory that we studied special classes of graphs with structure which comes from 

some applications with much neatest structure. 

 this is what we would like to do in this class. We will look at various very well known 

special classes of classes in graph theory and of course we would not be getting to very 

detailed analysis of all these things. 

We would rather just casually look at this in some properties and then some interesting 

facts sometimes give a small proof. That is what we were planning because this is only to 

make the students aware of such classes of graphs and the interested student should read 

from other sources. 
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 I would like to introduce the class known as AT free graphs. What is an AT free graph. 

T AT which is called the asteroidal triple is a independent set. In a graph G, suppose G is 

given, this is the graph. You can identify three vertices say x, y and z such that there is a 

path between x and z which does not go through any of the neighbours of y and also 

suppose there should be a path between x and y which avoids neighbourhood of all 

neighbourhood of sets that means no neighbour of set takes path in this part. 

Similarly, there should be a path between z and y which avoids the neighbourhood of x. 

Suppose, you can identify three such vertices independent sets, that means mutually non 

adjacent three vertices with this property, then we say that this is an AT. A graph without 

an AT is called an AT free graph. If you cannot find an AT in a graph, it is called an AT 

free graph. 
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 You can get some examples of AT. For instance, you look at this small graph, Can you 

identify any AT in this graph? If you consider these three vertices, it is an AT because 

between these two, we can find this path. It avoids the neighborhood. These are the two 

neighbours of this so and now between these two vertices, we can identify this path. This 

avoids the neighbourhood of this vertex because this and this are the neighbourhood of 

this and between this and this we can identify this path which definitely avoids 

neighbourhood of this vertex. This and this are the neighbors of this vertex. 
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 This path does not contain any of its neighbours. So, this, this and this is an AT in this 

graph and another AT for instance, we look at this here for instance this is x y z, between 

x and y we can identify this path and then see that avoid the neighborhood of set because 

the neighbor of set is only this. Similarly, between x and z, we can identify this path. It 

avoids the neighbourhood of is y because y’s neighbor is here only. 
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And now between y and z, instead of this path and this path avoids the neighborhood of 

x. So, x, y and z is an AT and so another AT here you can identify see in a tree like 

structure also you can identify ATs here because here is a path, here is path, here is a 

path. These paths avoid the neighborhood of the third vertices. If you consider these 

three vertices, these are ATs. 

 These are the kind of things ATs are. A graph without an AT is called an AT free graph. 

There are several such classes of graph where there are no ATs. 
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 One of the very interesting class of graphs which we have already seen without an AT 

are the interval graphs. Interval graphs are AT free. So, interval graphs as subclasses of 

AT free graphs. Why do we think that there are no ATs in that? For instance, in interval 

graph, if there is an AT, we should be able to identify an independent set of cardinality 3. 

Let’s say these three are the intervals corresponding to that. 

Because see any three vertices should have intervals on the interval representation. Now, 

what will happen, for instance, if I consider this vertex and this vertex, any path between 

them cannot avoid the neighborhood of this vertex. It is very intuitive. Therefore you 

cannot have any AT in an interval graph. It is very straight forward. 
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 AT free graphs are very large class of graphs. It also contains many other classes like 

the permutation graphs which we will discuss in some detail in the next class because 

they are also interesting class and another class is trapezoidal graphs and a more general 

class which contains all these things, even interval graphs are called co-comparability 

graphs. Co-comparability graph means the complements of comparability graphs. These 

are all subsets of AT free graphs. 
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 There are some interesting properties of AT. Among AT free graphs, probably the most 

interesting may be that AT free graphs have always got a pair of dominating vertices, in 

the sense that you can find two vertices such that if you consider the shortest path 

between them, they will be able to dominate all the vertices. It will become a dominating 

set. That means, every other vertex will be associated to at least one of the vertices. So, 

structure can be like this, 
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 at least one of the vertices here and moreover one can tell there are connections inside 

this. There can be connections from here to here. We can also say that no AT free graph 

contains an induced 6 cycle or more 6 cycle or a greater than equal to 6 cycle. Why is it 

so? Suppose, you have an induces 6 cycle or bigger cycle. then you can find out an AT 

here very easily because for instance, here is a path, here is a path, here is a path. This is 

an AT because these paths between these two vertices avoid the neighborhood of this 

path. These two vertices avoid the neighborhood of this and so on. 
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 You can always say that you can select a dominating pair x y, such that the shortest path 

between them is the diameter of the graph. That is also known. 

 I do not prove all these things. I am just referring to a paper of (( )) about the AT free 

graphs so that this kind of structural properties are described which are very useful in 

studying the AT free structure. we should try to prove that there is no edge from a vertex. 

Here, to say a vertex to here, the edges across cannot go to for away because this is the 

shortest path between these two vertices. We have to try to make use of that. 

 We will also try to make use of the fact that there is no induced 6 cycle. You can try to 

see how for an edge can go and essentially we can also go out to here. I leave it as an 

exercise. 

 Interesting thing you can see is there is a certain kind of linear structure here. The graph 

can be seen as an expanding or progressing or growing starting from x towards y or with 

some little bit of growth in the as it moves toward the side. But otherwise, it is 

approximately linear. This a very weak statement. You should read the paper of (( )) and 

what AT free graphs. Our intention is not to describe lots of things is about AT free 

graphs alone. So, we would like to also see some of these special classes. What is the 

subclasses of AT graphs? 
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What is a trapezoidal graph? You consider two parallel lines. If you can associate with 

each vertex of the graph, a trapezoid can be like this such that two end points are the 

trapezoids. We can draw like this .Two end points of the trapezoids are here and say it 

can be. 

 TEach trapezoid correspond to a vertex and whenever the trapezoids intersect, then there 

is an edge between them. If we can get a trapezoid model of a given graph, then it is a 

trapezoid graph. 

 Most important thing is that you are not allowed to use arbitrary trapezoid. You have to 

make sure that out of the four end points, two are on these upper line and then two are on 

the (( )). 

And it is very easy to see that if you do not allow arbitrary trapezoid, you just allow this 

kind of straight lines. Then it corresponds to interval graph because this will become 

intervals. Though we are drawing rectangles, they can be drawn one line itself interval 

graphs. 

 I will leave it to the student to verify that is trapezoidal graphs are AT free graphs.It is 

very easy. Just I consider an independent set here, there would not be touching three non 

intersecting trapezoids and try to argue that there cannot be an AT in it or you have to 



also try to prove that may be the trapezoidal graphs are co comparability graphs. So (( )) 

this interval graphs are considered. They are also co comparability graphs. 
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 The permutation graphs which I will describe in much more detail in the next class can 

also be seen as a special kind of trapezoidal graphs. What we do is, 1 2 3 4 Suppose, you 

only allow a line for instance, this can considered as very special trapezoid. 

So then, it is called permutation graph. If it is a line, you are just connecting a point here 

to a point here. 1 2 3 4 5 it will correspond to a permutation. I will describe in the next 

class and these are the some of the special classes of AT free graph. We can see this as a 

class which generalizes interval graph because interval graph probably the most popular 

classes both because of its usefulness and theoretically, it is interesting. 

 We have also seen that chordal graphs are generalization of interval graphs because it 

would not have cordless for cycles interval graphs are also chordal graphs. T Chordal 

graphs and all are perfect graphs but AT free graphs are not perfect because they can 

have 5 cycles induced 5 cycles in them 5 holds are allowed but of case 6 are more is not 

allowed 6 7 as we have seen why 5 cycles are allowed. 
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 AT free graphs need not be perfect. So, that is about AT free graphs. Another class of 

graphs I would like to introduce, this again a generalization of interval graphs is the 

circular arc graphs. 

What are the circular arc graphs? In interval graph, we consider intervals on the real line. 

In a circular arc graph, we consider intervals or arcs on the circumference of a circle. 

 The intersection graphs of such arcs is called a circular graph. In other words, a graph is 

a circular arc graph if I can associate with each vertex an arc on the circumference of 

circle in such a way that whenever two vertices are adjacent, the arcs intersect, 

otherwise, they do not intersect. The same definition intersection graph of arcs on this 

circumferences of a circle is called circle arc graphswhy are there generalization of the 

interval graphs? If in this circular arc model, if there is a point which is not covered by 

any arc, we can break the circlethere and then it will turn out to be a interval graph 

because we can draw it on the real line also. It is the generalization also. But when no 

point is unexposed. When exposed, that means every points has at least one arc going. 

Then, it need not be an interval graph. Circular arc graph can be very different from 

interval graph. Are they perfect graphs? They are not because you can take any cycle and 

draw a circular arc presentation for that. It is very easy to see that any cycle can be. 

Therefore, odd cycles are not perfect. 



So the circular arc graphs need not be perfect. To some extent they are similar. But they 

are actually structurally very different. Like we define for interval graphs, if no interval 

is completely contained in another interval, then the corresponding order model is a 

proper interval model and if a graph interval graph has a proper interval model, then is an 

proper interval graph. 

Similarly, we can define the proper circular arc graph means if a graph has a circular arc 

graph model, no arc is completely contained inside another arc, then it is proper circular 

arc graph model. 

Similarly, we can define unit circular arc graphs where each arc has to be of same length. 

In interval graph case it is same. 

But, there are some differences between the unit interval graphs and proper interval 

graphs are same but proper unit circular, proper circular graph and unit circular graph 

need not be same. We do not have much time to spend on special graph classes. 

Interested reader should read it from (( )) text book algorithmic graph theory or from 

papers. In the next class, we will consider some other permutation graphs and some other 

intersection graph classes. Thank you! 


