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Welcome to the twenty-third lecture of graph theory. So, today we are going to introduce 

a graph class called perfect graphs. The motivation for introducing this graph class is the 

following inequality, which we have already seen. So, we know that for every graph chi 

of G, the chromatic number of the graph is greater than or equal to omega of G, where 

omega of G is the size of the maximum clique number of vertices. And the maximum 

clique in G the inequality is very trivial, because each vertex in a clique has to get a 

different color; so many colors should be present. 

Now, the question is, is it the reason for chromatic number to may high? We had ask this 

question, we have seen that it is not true; we had constructed graphs in which triangle 

free but the chromatic number is arbitrary high and I had mentioned that we can even ask 

the shortest cycle in the graph be greater than some number k, given number k, and still 

the chromatic number can go arbitrarily high. So chromatic number being high has 



nothing to do with the presence of a large clique and the graph, though the presence of a 

large clique, can in fact make the chromatic number higher than the higher than equal to 

that. On the other hand, even if the clique number omega of G, is quite small for the 

graph, the chromatic number can be high. 
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So, naturally this question arises - for what kind of graphs, can we say that this inequality 

is becomes equality? That means, this kind of graphs, does it makes sense to ask, study 

the kind of graphs, where chromatic number is equal to omega - the clique number. As 

such it does not make much sense, because we can take any graph if chromatic number 

of G is equal to, say k, and then what you do is, so this is the graph G, and then you put a 

small clique here - K k here - on k vertices. So then you say that, see, here is a graph, say 

H, where H equal to G union K k. The clique number will be K k and the chromatic 

number will be equal to k. So, we cannot tell anything about the structure of this H, 

because G is an arbitrarily graph; in fact, is as good as asking, what is the structure of the 

graph with chromatic number k, because this structure… just that we have this clique 

here, we cannot tell much about this structure of G, because G is any graph, it can be any 

graph with chromatic number k. 



(Refer Slide Time: 04:07) 

 

So as such this question cannot make sense, so we have to define it the question or ask 

the question in such a way that this kind of bad example does not come. So Claude Berge 

formulated the following question: he asked, so consider the graphs such that not only 

for the graph itself, for every induced sub graph of it, say H is an induced sub graph of 

G. H is... Then suppose it happens that chi of H equal to omega of H, not only for… so 

this also includes this is for all H such that is an induced sub graph of G. Suppose this 

inequality holds not only for; remember that is not only for G it is also for every sub 

graph. In the case he called that this graphs can be called perfect graphs, he told he name 

them perfect graphs. 
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So, a perfect graph is a graph such that every induced sub graph of it has the property 

that its chromatic number is equal to clique number. So if this is the class of perfect 

graph as he defined; so graph G is perfect if chi of H is equal to omega of H, for every 

induced sub graph H of G. Now he asked, can we characterize these things? can we 

understand this kind of graphs? So the first question is, we know that all graphs cannot 

be perfect like we have seen that there are graphs whose chromatic number is much 

higher than its omega. So, and also the definition looks a little bit cooked up because as 

we mentioned, if we had just asked I want omega is equal to clique chromatic number for 

the entire graph it could not have made much sense, therefore we had to introduce this 

extra concept that every induced sub graph also has this property so it looks like a little 

cooked up but still it so happens that there are several… graph classes graphs; in fact 

graph classes themselves which are well studied graph classes which happens to be 

perfect graphs. 
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So we will see some examples. So for instance, let us look at the following: there are 

several examples from the next slide, I will show, I have listed around ten classes were- 

which comes under the class of perfect graphs, may be the most important among them 

can be bipartite graph because that is probably the most well-known and we know it very 

well- bipartite graphs- so two colorable graphs, so what do we need? we want? We will 

check whether it is a perfect graph or not. We have to verify all these things are perfect 

graphs. So why do we say that they are perfect graphs? that is because; so you need this 

property, that chromatic number is equal to omega for every induced sub graph. Now 

you taken induced sub graph, its again a bipartite graph and good thing about bipartite 

graphs is that if you take an induced sub graph its again a bipartite graph. 

Now we can verify whether omega is equal to chi for any bipartite graph, then it would 

show that any bipartite graph is perfect. So the crucial property is that if you take an 

induced sub graph of a bipartite graph its again bipartite. Therefore if you verify that for 

a bipartite graph, chromatic number is equal to omega; that is enough; chromatic number 

is equal to clique number; that is enough. 
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Now for a bipartite graph, the value of chi; so it can be of case 1. If it is 1 then it is just a 

collection of isolated vertices and omega is the definitely 1, there is nothing to worry. So 

let us say chi of G is equal to 2 and we know that in a bipartite graph the biggest clique is 

just an edge, there is no triangle in it; there is an edge in it, otherwise it would not be 2, 

chromatic number would not be 2; so the chromatic omega equal to 2, so it is trivial 

bipartite graph, a trivial example, so perfect graphs. 
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So though it looks like it is cooked up, the entire class of a bipartite graph happen to be 

perfect graphs but is not so bad, but it can capture a lot of graphs. Now let us look at the 

complements of bipartite graph, it is a little one on trivial. So complements of bipartite 

graph, that means, a graph whose complement is a bipartite graph, let us say G is such a 

graph, can I show that chi of H is equal to omega of H for every induced sub graph H of 

such a G? again we do not have to worry about every induced sub graph because we take 

an induced sub graph of the complement of bipartite graph, it is again because if you 

restrict our attention on that vertices on which we took the induce sub graph, the 

corresponding complement will again be a bipartite, therefore it will again be a 

complemented of the bipartite graphs. So induced sub graph retain the property, so we 

need not worry about all the induced sub graphs, so we can just prove that if G is a 

complement of a bipartite graph, then it satisfies the property that the chromatic number 

equal to clique number for that; omega biggest exercise for that. 

Show this thing. We should first understand what is the chromatic number of such a 

graph. Now if I look at the chromatic number of this graph, what will it correspond to 4 

it is complement which happens to be a bipartite graph. See, essentially the chromatic 

number; that is the number of colors required to color the vertices of the graph is the 

number of independent sets to cover all the vertices of the graph, number of independent 

set, because each color class corresponds to the independent set and each vertex of the 

graph belongs to one of the colors classes, that is, what essentially the chromatic number 

is, the minimum number of colors to color the graph, the vertices of the graph, that 

means the minimum number of independent sets required; so that this collection of 

independent set cover all the vertices of the graph. 

So the same question in the complement will be, the minimum number of cliques 

complete graphs, because an independent set graph, set here, will become a clique in the 

complement, an independent set will become a clique; therefore we are asking for the 

minimum number of cliques to cover the entire vertex set of a bipartite graph. This is an 

easy question for bipartite graph because you see in a bipartite graph you do not even 

have a 3 clique, the biggest clique is only 2 edge. so what do we do? 

If you want to minimize the number of cliques to cover the bipartite graph we will of 

case pick up the biggest matching because we want to collect as many edges as possible, 

so that they are independent, that means, they do not touch with each other, might they 



do not share anything; so that will give us the matching number, if you remember alpha 

dash of G. So matching number, biggest independent set, so alpha dash of G, biggest this 

is the… remember alpha was the notation for independent set alpha dash corresponding 

edge version of that, so alpha dash of G. 

Now this, but then this may not cover the entire vertex set, because assume it may not 

have a perfect matching, its maximum matching may not cover all the vertex set. So how 

many more we have to take now, because no more edge can be taken; so we have to take 

vertices- individual singleton vertices. 

So we have to take, therefore one for each remaining vertex that, n minus 2 into alpha 

dash of G, this is essentially n minus alpha dash of G. How much is this, you remember 

the Konig’s theorem, where we showed that alpha dash of G is essentially the vertex 

cover and we see; we called it beta of G, is not it beta of G and this is essentially alpha of 

G and alpha of G happens to be the omega of its complement because we are talking 

about the complement graph, so the complement graphs omega. So we are talking about 

the complement of a bipartite graph. In the bipartite graph its clique number will become 

the independent set number, that we have seen that, in the that corresponds to the clique 

cover number; that means minimum number of cliques required to cover the vertex set of 

the bipartite graph, which happens to be the chromatic number of the complement of the 

bipartite graph. So we got that, for the complement of the bipartite graph chi and omega 

are equal. 

So essentially, we see that this question of whether the chromatic number for the 

complement of a bipartite graph is equal to the clique number, translate to Konig’s 

theorem, namely the vertex cover is equal to the matching. So though through a small 

translation, so we are using it to prove this thing in the corresponding bipartite graph. 
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Now we go to the next one. So we have shown that bipartite graph of perfect; in fact 

their complements are also perfect graphs Now here is a another one, line graphs of 

bipartite graphs. So what do we mean by line graph? so we have seen the line graph 

many times before, so when we study the edge- the connectivity, we have introduce the 

line graphs. Line graph means, this, given a graph we are constructing another graph, 

where the edge set of this given graph will be the vertex set, edge set will become will 

become the vertex set and two vertices will be made adjacent there, if the corresponding 

edges in this original graph are touching each other or incident with each other or 

coinciding on one vertex; so this is called the line graph. 

Now we are saying, if you take the line graph of bipartite line graph of a bipartite graph, 

that is going to be perfect. why is it perfect, again the we do not have to worry about 

every possible induce sub graph because if I take an induce graph, this essentially 

correspond to some edges of the bipartite, some selected edges of the bipartite graph, so 

it is line graph. So again the line graph of another graph, which is line graph of a some 

other bipartite; some smaller bipartite graph. 
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So if we prove that, for any line graph of a bipartite graph or chi is equal to omega; that 

is enough as usual. So our intension would be prove now, that for line graph of a 

bipartite graph the chromatic number and the independent chromatic number and clique 

number is equal. What is the clique number, clique number of the line graph of a 

bipartite graph? of case, the clique in the line graph should correspond to the edges 

incident on the same vertex because this is going to be; if in the original graph, we have 

something like this, this is going to be the clique this vertices corresponding to these 

edges will become the clique in the line graph, so unless we have a triangular structure 

but triangles are not there in bipartite graph. Therefore we can see that these things the; 

in fact which correspond to the maximum degree- delta. So you can select the vertex of 

maximum degree is, delta is the maximum degree that will correspond to the omega of 

the line graph of G because G being a bipartite graph. 

Now we ask, if this is the omega, then what is the chi of L of G; chi of the line graph of 

these things. Chi here is going to be, so the… we want to color the edge set of, so the line 

graph is to be colored, that means the vertex of the line graph correspond to an edge of 

the original bipartite graph. Therefore, the, coloring the vertex set in the line graph, 

correspond to coloring the edge set of the bipartite graph, such that no two adjacent 

edges get the same color, where, in the line graph, if you say to no two vertices which are 

adjacent, get the same color, correspondingly we mean that in the original bipartite 

graph, from where the line graph was constructed, we want the edges to be colored in 



such a way that two adjacent edges get different color, that is essentially we are asking 

for a proper edge ,coloring of the bipartite graph, again another theorem of Konig. 

So we had studied earlier that, the minimum number of colors required to properly edge 

color a bipartite graph is essentially delta, that is a type one graph, delta is equal to the 

chi dash of G and which is essentially chi of L of G. So we have delta for chi of L of G; 

delta for omega of G, so the line graph of a bipartite graph also satisfies the condition for 

perfect graphs; so line graph of bipartite graph is also perfect. 
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Now again we look at the complements of the line graphs of bipartite graph. Are they 

also perfect? as usual we can again argue that the induced sub graph; we need not worry 

because induce graph themselves will be some complement of some line graph of a 

bipartite graph, so we will just show that if a graph is the complement of the line graph 

of a bipartite graph, then it will satisfy the chromatic number is equal to clique number, 

we call it. So what is the chromatic number of the complement of the line graph of a 

bipartite graph? 

Essentially it will be the clique cover number, as we mentioned in the last case and we 

studied the complement of bipartite graph, essentially the number of colors to color the 

vertices is essentially the number of independent sets to cover the vertex set. So when the 

when you go back to the complement, then we took the complement of the line graph; so 

when we go back to that line graph, we see that that correspond to the clique cover 



number, that means the minimum number of cliques require to cover the line graph of 

the bipartite graph. And now, what is the omega here, that means the clique number of 

the complement of the line graph will become the biggest independent set that clique 

number will become, the stability number, namely, the biggest independent set size for 

the line graph. 
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So for the line graph, if you are talking about the biggest independent set, what will be 

that in the corresponding bipartite graph, because of case the vertices edges of this graph, 

so in the independent set will correspond to the biggest matching that will become alpha 

dash of G for the original bipartite graph. See if G is the original bipartite graph, this will 

be the biggest independent set in L of G and that will be omega of L of G bar 

complement, this is what this is what we are interested, so that is essentially this alpha of 

L of G and that is essentially alpha dash of G, the biggest matching in the maximum 

matching in the original bipartite graph. 

Now similarly, what is the chromatic number of L of G bar, essentially that is the clique 

cover number, I can use k for that, k of L of G -clique cover number, as we have seen 

each clique of the line graph of the bipartite graph correspond to a vertex at the incident 

edges on a vertex, the collection of incident edges on a vertex in the original graph. 

So essentially, the vertex set is essentially the edge set of the original bipartite graph. 

Essentially we are seeking some vertices, a collection of vertices from the original graph; 



such that every edge is incident on one of them. So what was that, that was, we are very 

familiar with it, that is essentially the vertex cover which we use to call beta of G- 

minimum vertex cover, so what we are seeking. So the minimum vertex cover of the 

original bipartite graph will be the clique cover number of the line graph of it and that 

will be the chromatic number of the compliment of it, so this one is going to be beta of 

G; and this one alpha- this omega is going to be alpha dash of G. We know there is alpha 

dash of G and beta dash of G are equal, again by Konig’s theorem. So we see that if a 

graph is the complement of the line graph of a bipartite graph, it has to satisfy the quality 

that its chromatic number is equal to its clique number; that is what it is. 
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So therefore they are also perfect graphs. So we have seen bipartite graphs, their 

complements, line graphs of bipartite graph, their complements. Now here is a different 

category the so-called comparability graphs. So what are comparability graphs? The 

comparability graphs are certain graphs defined from partial orders. So we remember 

what is a partial order, there is a base set universe and then we have some relation 

defined on the set. So set is essentially, it can be U and then essentially a relation is a sub 

set of U cross U, so is a Cartesian product. We can draw it by directed edge, whatever 

the relations are, we can draw it by direct edges like this, this can be the relation. What 

do we say partially, when do we say it is a partially ordered set? we need three 

properties; one is this reflexivity, that means a vertex is related to itself, a comma a, 

belong to R, something should be; and the other is anti-symmetric, that means, if a b is 

element of R, then b a should not be an element of R ,unless a and b are equal, so which 

means that if you draw this arrow from this vertex- to- this vertex, we should not draw 

the reverse arrow also, that is what, so if you are trying to represent it using a directed 

graph- the relation as a directed graph. 

Now the third properties more important which is namely the transitivity. Suppose a b 

belongs to the relation and b c belongs to the relation, then we need a c also in the 

relation. So for instance if a b, we put a directed edge here, and b c we put a directed 

edge, then we should have this one, a c, and also this direction should be like this, this is 



what the a c should be in, this is the transitivity. If all the three properties are satisfied it 

is called a partially order. 

Now we can also ask the question; so suppose you are given a partially ordered set or 

may we can construct a graph out of it like this directed graph of it, now we can delete 

the direction from that and also we can get rid of this self looks because they do not 

make much sense for us because then we are interested in simple graphs, we can anyway 

they are trivial, so we get rid of those things and then we take down the underline graph- 

undirected graph deleting the directions and so is… such a graph is the comparability 

graph corresponding to the partial order- the comparability graph partial order. 

In other words, there will be an edge between two vertices if the those corresponding 

elements in the partial order are comparable. They belongs to the relation a b, will have 

an edge, either a b or b a is in the relation, both cannot be one of them. So if one of them 

belongs to the relation, if they are comparable, then we can of case once we define a 

comparability graph of partially ordered set. So in actual question which comes is this. 

So there are certain graphs which arises from a partial order, like this, if first constructed 

a directed graph from the partial order, deleted the self looks, deleted the arrows, that 

means directions are forgotten, then the underlying simple graph is called the 

comparability graph of the partial order. 

Now given an undirected graph that, we can always ask this question given some 

directed graph; do we have a corresponding partial order for that? what does it mean, it 

is… means that, could I have got this graph from some partial order by this procedure, 

sometimes it may be possible, sometimes it may not be possible. For instance, can we 

think of some graph, so for instance, suppose I draw this graph, so is it possible that I can 

get a some partial order, so that this is the graph of that underlying comparability graph 

of that? 
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It is actually, we have to somehow try to recreate those arrows here, so for instance, 

suppose the arrow was like this, then suppose the arrow was like this, now we are lost 

because this cannot be the correct direction, because if this was, see, this is a, this is b, a 

b was in the relation and b c was also in the relation, transitivity says that we should have 

this also, this is not there here, this- and- this an arrow, this is not there. So we have to be 

careful when we try to give the directions, this direction has to be like this because if this 

is this, it has to be like this, that means then we are not bothered a b and c b, but 

transitivity requirement does not trouble us now, so a b, b c, would trouble us, but a b, c 

b, would not trouble us. Now here, naturally, then this has to be directed back outward, 

now similarly this is to be directed inward now. 

So we can add a d and also c d. a d and c d also can be directed outward and inward, that 

is it. So here we could create an orientation for the arrow, such that they are transitive- 

the transitivity property satisfied, of course anti-symmetric property anyway satisfied and 

now if you add all these things, we would recreate the partial order like this. 
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So now if you add all this self looks, also and write down them as pairs, that relation will 

be a partial order because here anti-symmetry reflexivity and transitivity satisfied, but 

need not be always possible. For instance, sometimes we are forced to select the arrows 

in such a way that finally we will end off with the contradiction. For instance, suppose 

you look at the, this graph 1 2 3 4 5, this 5, now suppose I take this direction for this 

arrow; naturally as I mentioned, you cannot give this direction now, because here, look 

here, this look this this edge is not there if you take things, the transitivity will be broken, 

therefore this is not possible. So we can only give a direction like this, now this 

requirement is not there, now once you give this direction, as we know we can only give 

this direction, the other way we will have this problem, again the same problem, this is 

not there, therefore the transitivity will be violated. 

Similarly, now this has to be given this direction and this has to be given this direction, 

but now here we have a problem, see this is looking like this, this is looking like this. So 

now what will you do, so if you reverse it, all the arrows will be reversed, here anyway 

we got into a contradiction, so if you had selected this area, we are forced to select this 

arrow this arrow like this and then we are selecting this thing, then we, this edge has to 

come, this edge with this direction has to come, that is not there, so it is a contradiction. 

As we can see that this will happen for odd induced cycles as long as this edge is not 

there, if it is and if there is an odd induced cycle in the graph, we cannot give arrows 

consistently, transitive orientation, it is called transitive orientation, is not possible. 



So the question now is, which are the graphs which can be given a transitive orientation, 

equivalent to asking that, which are the class of graphs- undirected graphs which could 

have come from some partial order, which could have in the become the comparability 

graph of some partial, we will just say that the class of graphs -undirected graphs, which 

can be transitively oriented, that means ,which can be seen as the comparability graph of 

some partial order is the comparability graph, this class of graphs called comparability 

graphs. 
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Now our question is, are comparability graphs perfect? so as we can see, if you are given 

a comparability graph and if you consider its induced sub graph, if you are given a 

comparability graph and if you consider its induced sub graph, naturally they are also 

comparability graph, why because if you can transitively will orient the entire graph, the 

same transitive orientation will work for an induced sub graph also, if a graph is 

comparability graph and induced sub graph of it is also comparability graph, therefore 

we do not have to worry the complicated condition about the induced sub graph, we just 

have to show that, any comparability graph, the property that chi is equal to omega, that 

means the chromatic number is equal to clique number is valid, that is all we have to 

verify to prove that comparability graphs are perfect. 

Now let us see what does it may, what is chi here, what is chi of chi of G here and what 

is omega of G here. As we can see omega of G is the biggest clique number, so the 



biggest clique size, so essentially, now we just have to show that, see we know that 

omega of G is less than equal to chi of G. Now if you show a coloring which uses only 

omega of G number of colors, then it means that omega of G equal to chi of G, so that is 

what we are going to do now, we will show a coloring such that the number of colors 

used is only omega of G. 

Now, we should also understand what is this omega of G in a comparability graph, it is 

the maximum clique but any clique, because it is transitively oriented on that. If we look 

at the directions given to the edges inside the clique, they would not form any cycles- 

directed cycles because it is transitively oriented. It is not possible to have, so naturally it 

should be acyclic and so they should be an ordering of the vertices, then it corresponds to 

a total ordering; in fact within the partial order, so we get a subset which is totally 

ordered with respect to that relation, any two if you take there is a direction between the 

arrows, between there is an edge and there is a direction between them. 
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So naturally we can do it apological sort on there, then we get from the lowest to the 

highest in that, that is the total order there. So we say that such totally ordered sub sets of 

a partially ordered set, he said as, it is a chain of the partial order, we have seen at when 

we studied the Dilworth’s theorem long time ago and we studied the Gallai-Milgram 

theorem, we have seen how Dilworth’s theorem about partial ordered sets follows from 

the Gallai-Milgram theorem, so we know what is chain, what is anti-chain. 



So chain, essentially the chain of a partial order correspond to the clique, essentially the 

clique of the comparability graph, correspond to the corresponding partial order a chain 

in the corresponding partial order and similarly a chain in the partial order will become a 

clique in the comparability graph. It is very obvious because chain means everything is 

related with each other, every pair is related, which related, is part of the relation 

therefore those edges will be there, so that will become a clique. 

Now, so we can consider this coloring, here is a way to color now, so for every vertex we 

have seen it in the Gallai Roy theorem also this technique, so what we do is, we can we 

can take a vertex and you can look at the, say Gallai Roy theorem, so we can look at the 

biggest chain that is starting from there, I mean the… among the chain which are starting 

here and going from, you can look at the, which is the biggest chain, the number of 

vertices in that can be given as the color of this, this color, this within the number of 

vertices in the biggest chain now everything gets. 

So of course now we are going to claim that this the proper coloring, if this is the proper 

coloring we are done because we have only used with the biggest color, we have used 

only correspond to- or less than equal to the biggest length of a chain in this graph and 

the biggest length of a chain is only the clique number, so it is going to be less than equal 

to clique number, it cannot less than clique number, if it is the proper coloring, because 

we know that clique number is going to low bound for the chromatic number, so it can 

only be greater than or equal to. So if we went somehow demonstrate that this is indeed a 

valid proper coloring, then the number of colors used will be less than equal to the 

biggest chain; that is the clique number, so it has be equal to the clique number that is the 

biggest chain. 

So is it a proper coloring, suppose not then be, should an edge where some edge like this, 

say, some edge like this, where, so the edge, if the edge direction can be like this, so that 

means this also got the same color, this also got the same color that is why our 

contradiction is. Now why did this get the same color as this? here this was the biggest 

chain starting from here here definitely there is a chain staring with green edge and then 

following this, this is one more than this, he should have got a bigger number, so that is a 

contradiction and of course if the direction was the other way, suppose the direction was 

like this, then we would follow, we would consider the biggest chain starting from this 

and this the length of this will be the color of this person and this person’s color will be 



one more than this, at least they cannot be equal therefore we see that it is proper 

coloring and it follows that, since we have only used the length of the maximum chain is 

the biggest color here, so the chromatic number is going to be less than equal to the 

omega but it cannot be strictly less, so it has to be equal, so that is what. 

So we what we have now shown is, any comparability graph also satisfy the property 

that chromatic number is equal to omega and because the induced sub graphs are indeed, 

again comparability graphs, we get that the comparability graphs are perfect. 

(Refer Slide Time: 42:03) 

 

The next one is co comparability graph, namely the complements of comparability 

graphs. So every time we are considering a class, we are also considering its complement 

because this will become useful later, because we every time; we see that for a class, 

when see, there it is perfect, its complement is also happening to be a perfect, the 

complement is also perfect, so there should be a reason for this thing, we will explore it 

later. So there is a general reason for this thing, so later when we prove the general 

theorems, all these will become, will get connected in one general statement. 
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So what about co comparability graphs. The co comparability graphs means essentially 

the complements of this thing, so again we ask what is chi there, so I will say chi of 

omega of G bar, what is that is omega of G bar is alpha of G- the independent set 

number, this is, the essentially, the clique cover number of G, so we can just ask what 

does it mean, so alpha of G in the comparability graph, essentially the independent set, 

so the pair wise non-comparable elements there, what we have seen it before, that is 

called anti-chain in the partial order terminology, it is known, it is essentially 

independent set, that is all, but we use to call it anti-chain when we studied Dilworth’s 

theorem, we had called it biggest anti-chain- maximum anti-chain. 

Now, this one, each clique being a chain the collection of cliques, which cover the entire 

vertices, that is a chain cover in the terminology of the partial orders chain cover, we are 

the minimum number of chains to cover the elements of the partial order, this is exactly 

what Dilworth’s theorem considered. The minimum number of chains to cover the 

elements of the partial order and the biggest anti-chain Dilworth’s theorem had told that 

these two things are equal, essentially, therefore these two things are equal chi of G bar 

is equal to omega of G bar. 
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So, we are back to the Dilworth’s theorem. When it when it consider the complement of 

the comparability graphs, their chi and omega correspond to the two parameters, which 

Dilworth’s theorem told as are equal, so complements of comparability graphs are also 

perfect. And now the next one we will look at, very well-known class of graphs called 

interval graphs. Interval graphs are very well known and also useful in many practical 

situations and essentially they are defined like this, so to define an interval graph, so we 

need the real line. 
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Now an interval in the real line, so we take closed interval for convenience, so can be 

marked like this, now suppose I have several intervals- a family of intervals, in the real 

line, I just take several color for this thing, these are several intervals like this, may be 

there is other one here. 

Now we see that we can get a graph out of edge in the following way: now I am putting 

these vertices, here yellow and now here green, so these are essentially, corresponding to 

the red interval I put a red vertex, corresponding to the green interval I put a green 

vertex, corresponding to the yellow interval I put a yellow vertex. 

Now I connect the vertices together in using the following rule: if two intervals intersect, 

for instance, here for yellow and red are intersecting, therefore I will put a connection 

between them, and, green and red are intersecting, green and blue are intersecting, green 

and this dark green are intersecting, and then this yellow and red are intersecting, yellow 

and blue are intersecting, and this- and- this are intersecting but this yellow and this are 

not intersecting, if I not this is an interval, no of course this yellow and green is also 

intersecting, this is the interval graph, this is the interval graph corresponding to the 

family of intervals here. 
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So essentially, we say that this is the intersection graph of this family of intervals, which 

I have drawn here, how do I mean by intersection graphs? so you can, so it is a more 

general concept, then interval graphs essentially you can have a universe and let us say 



these are some subsets S 1, S 2, S 3, S 4 etcetera, which I have selected from the 

universe, so you write some subset of  S i is a subset of U, that is all. 

Now we can ask, S 1 and S 2 do they have any element in common sub, is there the 

element here and here, some S here and some here in common element, in that case, see I 

will introduce a vertex corresponding to each of this subsets and then if there is an 

intersection between S 1 and S 2, I will put an edge if there is no intersection, if they are 

disjoint, then I would not put an edge, for instance, S 1, if S 1 intersection S 3 equal to 

phi, then there would not be any edge here, this edge only, but on the other hand if S 1 

intersection S 4 happens to be nonempty, then we will put an edge here, so the graph 

resulting from such intersection pattern is called the intersection graph of this family S 1, 

S 2, S 3 etcetera- family of subsets U. 
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So here in the case of interval graph, here U is the real line, the universe is the real line 

itself and the subsets S 1, S 2, S 3 etcetera, this intervals they are subsets of points and 

now whenever there is an intersection between them we are putting an edge between the 

corresponding vertices that is all. 

So therefore we can say that the interval graph are the intersection graphs of some family 

of intervals on the real line, so now, see we can always, like in the case of comparability 

graph we have defined interval graph using a set of a family of intervals on the interval. 
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Now it is possible that you have given a graph first- an undirected graph, first you can 

ask, is it an interval graph? What is it mean, it means that, can we draw a collection of 

intervals corresponding to the vertex set of the graphs? we can say that for this vertex, 

this is the interval; this vertex, this is the interval, like that we can, we get a mapping 

between the vertex set of the G and to some family of intervals on the real lines, such 

that G happens to be the intersection graph of that family of interval graphs, is it possible 

to construct such a family of intervals corresponding to G? This is what we ask when we 

ask whether G is an interval graph. 

If it can be constructed, then we say the G is an interval graph, otherwise G is not an 

interval graph. So it is a very natural thing to ask, are their graphs which are not interval 

graphs or is it possible that for every graph we can get an interval representation, of 

course every graph we cannot get an interval representation, quickly we can see whether 

this graph… so this is a four cycle, can it get an interval representation? So for instance, 

this vertex, suppose, it has an interval, so I mark it with red green and then violet. 

So this red, suppose I give this interval, so arbitrarily to give this interval, then that blue, 

I give intuitive argument, suppose blue I give, an interval it has to intersect with it, 

suppose like this, now it, you can draw it in this direction or this direction, can it draw it 

completely inside red? no because then orally input violet because if I draw this yellow 

completely inside red, then what will, when I put violet, violet will have to touch yellow 



but then it will automatically touch red also, which is not allowed because there is no 

edge here, so the yellow has to come out of the red, so it is essentially it should be either 

like this or either like this, some other, so will without, let us say like this. 

Now once, I have to draw violet without touching red, so touching red like that, we 

cannot put violet totally inside yellow, as we mentioned before, so we cannot draw violet 

to this direction, violet will have to be drawn in this direction now. 

Now we have stuck for green, what will happen to the green, because a green, it has to 

touch violet, it has to touch red but it should not touch yellow, is it possible to draw like 

that, of course a little non-trigger as argument, so, but you can see that it is not possible, 

so, but I will encourage the students to come up with the very rigorous statement- 

argument for this thing, but, see you, this graph cannot be converted to a family of 

interval graph, such that this becomes the intersection graph of that, therefore you see 

there are graphs which are not interval graphs, so the class of graphs- undirected graphs, 

such that we can map the vertices of it to the intervals on the real line, such that this 

becomes the intersection graph of those family of, that family of intervals is called an 

interval graph. 

Now we will, the… our intension now is to see whether interval graphs are perfect 

graphs or not. So the, to see whether interval graphs are perfect graphs or not, we again 

have to see whether chi of G, what is chi of G, what is omega of G here. 
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Now you see again, like in all the previous cases we discussed, we do not have to worry 

about all the induce sub graph because the induce sub graph themselves will be interval 

graphs because the vertices will correspond to some interval, they delete the other 

intervals, we still get an intersection pattern for that, therefore induce sub graph of an 

interval graph is  again an interval graph, so we just have to show that chi of G is equal 

to omega of G, if G is an interval graph and that will show that they are perfect graphs. 

Now is it true, what is omega of G- it is clique. Now when you say that clique, how will 

they look in interval representation, so each vertex corresponding to the clique has an 

interval and they pair wise intersect. 
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Now in a collection of intervals, if any pair has an intersection, then we can say that there 

is a common intersection also, this is called the Helly property or the interval graphs. So 

we can try it like, so for instance, suppose here, there is an interval, there is another 

interval here, there is another interval here, so there is an another interval here, now the, 

what my condition is, every pair of intervals should intersect, now can you see that there 

is going to be a common intersection point, it is not very difficult because among this, so 

I scan from these, so for instance, I can see that any two of them if you take this 

intersection point of the two. 

Now the third one cannot start, we cannot have interval like this because if I put an 

interval like this, then, because these are, this intervals ends here, so this will not cut way 



this, so it has to start before this, and, but then, can it end? For instance, this any interval, 

can it end before this point, in that case it would not cut it, so everything will have to go 

in to this. 

So we will get a common intersection for all the three of them and then we can refine 

this argument to say that there should be a common intersection part for all the intervals 

we take part in the clique, so there will be a common intersection part and a point from 

this common intersection part is such that they belong to all the intervals, which take part 

in the clique, so that can be taken as a point, which represent the clique, that means any 

clique correspond, to some point we can associate some point to a given clique in the 

interval graph why because property of this point will be there this point, belongs to all 

the intervals corresponding to the vertices clique. 

So essentially, that is the nature of this omega in the interval graphs. Now we have to 

understand what is the nature of chi and then we have to show that both of them are 

equal, that we will do in the next class, so our intension here is to study several such 

classes and then show that, see, this perfect graphs though the definition happens to be a 

little centroid, a little cooked up, but it is not like that, several important special class of 

graph falls in this category, so that we will do in the next class. Thank you. 


