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And so, in the last class, so we were discussing Brooks theorem, which tells us that if G 

be if G is a connected graph, and not complete and not odd cycle. So, G is a connected 

graph which is not a complete graph or an odd cycle; then the chromatic number is at 

most delta. The background was that the greedy algorithm, the easy algorithm of 

coloring which you discussed namely, color 1 vertex; and pickup another vertex, and 

give it to a color, which is not already used; but among if something is available, among 

them already used colors, then use it right. 

This simple algorithm would definitely color the graph in at most delta plus 1 colors, but 

the brooks theorem says, even delta plus 1 colors may not be required, many most of the 



time delta colors will be required; but then there are two exceptions namely, a complete 

graph, it needs delta plus 1 colors and odd cycle, delta equal 2 there, 3 colors are 

required; then if a connected graph is different from these two cases, then we can always 

manage to color the graph with delta colors, this is what brooks theorem says. 

The proof we had gone through the proof, and then reached almost half way through. So, 

the key ideas for like this initially, we we decided to do an induction for small values of 

number of nodes, it was easy to verify that only delta colors are required, if it is not a 

complete graph or an odd cycle; then we noticed that if suppose an n node graph requires 

delta plus 1 colors, then it should be a regular graph; that means, all the degrees has to be 

delta; if even 1 node is of degree less than delta, then the same greedy algorithm would 

have allowed us to color not the same greedy algorithm, but little carefully if you 

decided the order of picking the vertices, decide a little carefully, we could have colored 

it in delta colors. So, now the claim that you need delta plus 1 colors tells us that, it is a 

regular graph, all the vertices are of equal degree and equal to delta.  
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Now you picked a one vertex and decided to remove it from the graph. So, this is the 

vertex V and look, so the neighbors of this thing, so this or this; and then the another 

observation we made was, so this tail, when you remove this vertex V, with these delta 



edges, the graph will not get disconnected, it is not possible to have some more than 1 

component, because in that case we have a recoloring strategy for the connected 

components, because here we can always, it is possible that if I if I look at these colors, 

and then suppose some red color is used here, and the blue color is used here, I can 

within this thing, I can change blue and red, I have making sure that there is a repetition 

of red color in the neighborhood. So, if there is a repetition of some color in the 

neighborhood; that means, almost delta minus 1 colors are used, one more color is left. 

So, I can extend the coloring of this thing to the this thing. 
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So, essentially the idea was, so if you consider the vertex V, all its delta neighbors so if 

you remove that vertex v, there is only one connected component; and moreover all its 

delta neighbors should get different colors, because if there is any repetition of color, 

then the number of colors used is only 1 less and therefore, we can extend the coloring 

using delta. So, of case we we also argued why this induced sub graph is colorable using 

delta colors, because of induction hypothesis, we had to take care of two cases; what if 

this became a complete graph on an odd cycle that we took care right.  

So, now the the point now is this is delta colorable, so if even a new repetition, even 1 

repetition among the of colors among the neighbors would allow us to use the remaining 



color to the new vertex, this vertex; and that would essentially mean that we can do the 

coloring of the entire graph with just 1, so delta colors right; so that would be 

contradiction. So, we can assume that all these colors are different; so, let us say this is 

red, this is green, this is blue, and then this is black, so like that.  

So now, the next argument we did was, suppose we consider the connected components, 

so if you consider the induced sub graph on the vertices, which I colored either red or 

green right, two colors if you fixed red or green, and then if you consider induced sub 

graph, they will form connected components. So, now the connected component which 

contains this neighbor and this neighbor, the green neighbor and red neighbor, in that 

collection should be the same; it is not possible that they belong to two different 

connected components; suppose it was like if it is so happen that if they have two 

connected two different connected components; for instance, this was this, and this was 

this, for instance, this is the red and green, see the red and green thing, so some red and 

green induced sub graph. So, here we are not interested in other other colors, you only 

look at the red and green, red and green vertices right.  

So, if it so happens that if it is disconnected, then what will you do? In this component, 

this component I will exchange green with red, and red with green; essentially, all these 

red color vertices will become green color vertex, now for instance this will become red 

green, this will become green, and the earlier green ones will become red well, it can do 

that, because this will not affect the validity of the coloring, because if you look at any 

say red vertex, its neighbors will see that see so the change is only from the red to the 

green, if it is a yellow neighbor how does it a matter, because anyway as far as its sees a 

different color, it is okay for it; the red neighbor the green neighbors sees a change, but 

then it has change this color to green. So, therefore, if you exchange the color of red and 

green, the overall coloring of the graph will remain same.  

So now, the effect is that when you did this, so this became green, so this is already 

green right. So, there are two greens on the neighborhood of this vertex v, so two greens 

means there is a repetition; in other words red was released, red is not used by any other 

neighbors of these things, now red can be given to this thing right, so red can be given to 

this thing; So, this is the effect; so therefore, we extended the coloring. So, what what 



can we infer? So, this will not happen, so we can infer that so if you look at the red 

green, some the induce sub graph due to the red green vertices, this our two neighbors 

namely the red neighbor the red neighbor and the green neighbor, they should come in 

the same connected component should be something like this, they should come in the 

same connected component, it is not possible for them to be into two different connected 

components. So, it can be something like this right. So, it is not possible for them to be 

into 2 different connected components.  

Now, we wanted to study that connected… the next step is to study this connected 

component of red and green right. So, when I say red and green, it is any two colors, in 

fact, I am picking red and green for the purpose of explaining, so it can be blue and green 

also, so these they any two color, if we take they connected component with respect to 

that two color, the color classes, if you if you look at the connected form components 

formed by the only those vertices, which are colored blue and green; one of the 

connected components will contain both these vertices, then which are the neighbors of 

this new vertex v, which had colored red and green right. So, so this is the situation. 

So, now let us see how this connected component will look like; now because it is fully 

connected. So, the first question was how many… So, if you look at this red neighbor, 

how many green neighbors can it have? Can it have a red neighbor now? Then the red 

vertex cannot have an any other red neighbor, because it is a proper coloring; now it can 

have green neighbors, but it may have several green neighbors that is the first feeling, we 

get; but then we argue that is not possible to have more than one green neighbor, because 

if you look at its degree, already one edge is going back to our vertex v. 

So, now only delta minus 1 neighbors are there for it, which are already colored in the 

graph; and now two of them are colored green, means there are two extra colors; one of 

which is red, which is already given to this thing, but one more color is there, I could 

have changed into that color right. So, say may be I use, we use this blue to indicate that 

right, the the the one extra color which is available. So, if such a color is available, so I 

give it to that, so what is the good thing? So, the good thing is that you have released that 

red; red is not anywhere else right. So, the red will go to, again red will go to here right.  



Now, we again say that suppose it has only one neighbor, it does not have two neighbors 

right; it is only one neighbor, and then we argued that this one neighbor can have only 

the same kind of argument, this one green neighbor, if you look at its red neighbors, can 

it have several red neighbors? It cannot have any green neighbor, but can it have several 

red neighbors, but we argued that is not possible, because if it has more than I mean, one 

red neighbors, so this one, two, three red neighbor will come, one dark and two new; so 

total three red neighbors means, so out of the delta neighbors, three are same; so, only 

delta minus two colors are used. So, out of which one is definitely green; so, one more is 

there may be blue, so that blue, I can give it here. So, which essentially means that here I 

can do an exchange, because now the red can be made to green without any problem 

right, because it is a single term component in the red and green connected sub graph. 

So, therefore, we could have exchange the color of these two green, and release the red 

right; this is the point.  

Now, so now, coming back to this, so we have, so we have continue this argument to say 

that now this will go to red, and then this will go to a… then this will go to green green, 

and then this will go to a red right, then this will go to a green like that. So, it is not 

possible to have more than one new neighbor any time, so it will form a path only, it will 

not be any complicated graph; and it has to finally reach here right. At any point if you 

see a, see more than one new neighbor a of that same color green, then that means, the 

three neighbors, it will one back and then two forward. So, three of them has the same 

color, and then that means, one free color is available other than the color, which is 

already there on the vertex. So, we can change it. So, that would allow me to consider 

this component which, so that means, it is component is not containing the other vertex, 

these neighbors; if I can do a red green interchange in this component up to here, which 

will make this green here at this point, so green, green will allow me to release the red, 

this was the thing.  
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So finally, so the argument up to now, told us that so if you consider a red, green; for 

instance if I red, if you considered a red and a green neighbor here, so this is green 

neighbor here, so the if you if you explore the red green path, there will be a red green 

path, and then it will come all the way here, and then it will be like this, it will be like a 

like a path you know, it will be like a path like a path, (( )) a path.  

(No audio from 15:00 to 15:17) 

Now, you can see that the argument that we have given for red and green is valid for any 

pair of colors, I could have taken say the black and blue or I could have taken red and 

blue for instance this could have been like right, so it could have been black and blue 

right, in which case you will see a path going from here like this, black like this, and then 

slowly reaching here, so with the blue here right; or it could have been red and black, so 

then it will happen to be like this right red and black, so something like this; so finally, 

so it will come like this; so you can see this kind of paths between any pair of colors in 

the neighborhood right, so two neighbors if you take, you see a string here.  

Now the next question is so you see several path here is can this paths intersect? Of case, 

you say that there intersecting here; this path is intersecting; at the beginning and ending 



they are they are like, they are intersecting actually, they are red black is intersecting 

here, this red black path is intersecting with the red green path in the beginning node 

here; similarly, this red black path is intersecting the red blue path in this node. So, 

naturally there are several intersecting points this, this; so so, but then these are only end 

points right these are only end points right, but is it possible for two such paths to 

intersect on a in say in between point that means, interior point. So that definitely for 

instance, if you consider a red green path, it cannot intersect with say black blue path, 

because the at the vertex suppose it is intersecting at certain vertex, interior vertex, so 

what will be the color of that? So, red blue path will say there it has to be either red or 

blue sorry black blue path will say it has to be either black or blue, well red green path 

path will say that it has to be either red or green. 

So, essentially its not possible to have a interior vertex, which is common to such paths; 

but on other hand what if it is a red black path and a red green path; now they can be a 

common vertex probably, because what if, see because it can intersected a red vertex 

right; for instance its possible for red to say this path, see this red, a green path to come 

come like this, and then at this vertex, it may be a red vertex here. So, what will be the 

previous vertex? Here it will be a green vertex sorry this is this will be black vertex, so 

red, I am telling red black vertex; and the here it will go via black vertex out, and here in 

the other path, we will see this red vertex is in fact, immediate neighbors are green right 

it is green, green. 

Now, the question is here this black vertex is repeated twice, the green vertex is also 

repeated twice, so now, total out of delta neighbors, how many colors are used on the 

delta neighbors; black is used twice; green is used twice. So, total of delta minus 2 colors 

are used, and this red is one of the remaining two colors; and then one more is there, so 

that color we can always you say let us let us say it is yellow, so then what will happen? 

So, it means that this path is broken, for instance if you follow this red green path, here it 

is broken, so this path does not go all the way to here. Now this is a connected 

component of red green by itself, this this one. So, we can exchange this green and red in 

this path, this will become green, this will become red, and this will become green, and 

this will become red, and so on. 



So, if I do that what will happen? Here is a green, here is also a green, so green is 

repeating on the neighborhood of the vertex V, so red is released, and then red can be 

given here right; is it not? So, this is what will happen. So, we can we can assume that 

these two different paths in this collection of and choose to paths right sorry sorry d delta 

choose to paths, any any pair of colors we have a path, so they never intersect, so they 

never intersect; even if they share a common color, it is it is not going to intersect.  
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So, this is one good observation, which they will make use of in the… And to conclude 

the proof, now again, consider this situation now again, so this this vertex, and look at its 

neighbors, so one of them is colored red, say one of them is colored green right. So, now, 

first we have to find two vertices in the neighborhood, such that they are non adjacent 

right. So, is it possible that every pair is adjacent? But if every pair is adjacent, this is 

already a clique, because there are delta neighbors, this is a delta clique, and along with 

this thing this is a delta plus 1 clique. So, the entire graph is going to be a delta plus 1 

clique right. So, so we do not have anything to prove in that case. So, the of if there is 

some other vertex outside this delta plus 1, degree will be more than the delta right that 

will be a contradiction, so to the assumption that the degree was delta. 

Now, so let us say this is the this is the two vertices, which are non adjacent; this is the 



two vertices which are non adjacent; now this is let us assume that this is green color, 

this is red color. So, first we consider the red green path, so this is the red green path red, 

red, so this will come all the way to like this right, this is the red green path. 

So, what we are interested in is now, so this look at this vertex, so this is this is crucial 

vertices, this is the second vertex, this is the green color right. So, this vertex is definitely 

available, because in this path however, short at is it should have at least three vertices 

including these two vertices, there should be one more vertex, this is therefore, these 

vertex exist. Now, we can consider another vertex say this blue vertex here, this blue 

vertex between this red vertex and blue vertex, we have the connected component right, 

so for instance, if you consider the red green connected component, it is going to be a 

path like this right. So, here this is a red, so this is sorry this is blue, this is red. So, there 

will be a path like this. So from here, it will be… And this is we know that this is the this 

is the this is the full connected components involving these two vertices and only red 

blue vertices. So, this there would not be anything going this, we had already argued that 

nothing like this will be there right. So, this is not possible right. 

So, it is just this is a full connected component involved in the tube; now our plan is to 

interchange the colors red and blue, along this path, along this path, so along this path, 

we will interchange the red and blue colors, what will happen? This will become red, this 

will become blue, this will become red, this will become blue and finally, this will 

become blue, this will become red, and this will become blue. See, this will not help us 

much, because here the earlier argument will not work that, we cannot say that there is a 

repetition of colors on the neighborhood, because the earlier it was red blue, this was 

blue, red blue now, in this red is here, blue is here. So, that is not going to help us, but so 

what is going to help us is the fact that the if you consider these vertices, none of these 

vertices are affected, because this path is gone not going to intersect the green red path 

right the original green red path will be intact up to this point, this entire green red path 

will be up to here, it will be safe. So, it would not be changed at all because of the blue 

red interchange. 

So, it so happens in particular that this vertex will still be green, this vertex will still be 

green, because nothing has affected this; but on the other hand, if you consider the blue 



green path now, what will happen? This is blue, so the blue green path has to contain the 

second the nearest vertex which is green in the in it right. So, this will essentially contain 

the… So, it will it will go like this right the blue will come here, and it should go 

somewhere to somehow reach here right its it should. 

 So, essentially what was happened is there is a sharing of a colors sorry sharing vertices 

by the blue green path and the green red path now; blue green path and the red green 

path now, namely this vertex; this was a contradiction; why is it a contradiction? Because 

now if I look from this vertex, it sees a right it so we have this thing that, because now 

they should be one more red going out of it right, because it has a finally, reach the red 

color vertex, somehow it has to be reach here sorry this is the red color vertex now; right 

it has to reach here somehow. So, finally, there should be a red going out of this 

somehow, so it should see two red in its neighborhood like this, and then also two blues 

right. So, totally delta minus 2 colors only are used, and one of them is definitely green.  

Another will be there may be it is a yellow one. So, this yellow one will allow us to 

break this path, this entire path, here I can interchange red and green on this on this path, 

on this path means this path to here this path, I will be able to here, here I will be able to 

interchange the red with green, and in that interchange this green will become red, this 

green will become red, red, this will become green and like that. So, here is a repetition 

of colors green and red and red; in the process we have released the green color, and then 

that green color can be used here right. So, which will which will allows extend to that 

that will be the contradiction. So, finally, this gives us the final contradiction; that means 

we have shown that whatever it is, it has to yellow us to release a color from this thing. 

So that that hence the proof.  

To repeat the main ideas, so the proof we wanted to show that the entire graph with 

maximum degree delta can be colored with delta colors, if it is not a complete graph, one 

delta plus 1 vertices or an odd cycle I mean, for delta greater than or equal to 3. So, odd 

cycle cases not there right. So, the first we observed that it has to be regular, so that 

means, and also then we observed that if you remove any vertex, the remaining has to be 

connected, then more over all the delta neighbors should get different, different colors all 

the delta colors should be used up. 



Then we explored between any pair of colors, we considered the connected components 

form by the in the induced sub graph of those two colors alone, the two vertices of the 

two colors alone, and this connected component which contain these two vertices, which 

are on the neighborhood of v, should be in the same should be same; that means, they 

cannot be part of two different connected components, in which case we would have 

exchanged the colors red and green in that particular, one of the connected component, 

and we would have got a repetition of colors in the neighborhood of v. So, therefore, 

there should be in the same connected component.  

After that we told, we will explore what is the structure of a connected component, 

which contains these two red and green neighbors of V, and we show that it has to be a 

simple path starting at the red neighbor of V and ending at the blue neighbor of v, red 

should be a simple path red, green, red, green, red, green path; and this argument is true 

for any pair of colors, out of the delta colors, we have delta choose to such pairs for any 

pair of colors this is true. So, therefore, then next thing we did is, whether the paths can 

intersect or not? We show that the paths can only intersect at the end points, it can never 

intersected in interior points; and then we did this final trick namely we found out a non 

adjacent pair, say we call it red and green be the let it let red and green be the colors 

given to this non adjacent pair. 

Now, we located this second vertex in the red green path, starting from the red vertex, 

and then after that this color is going to be… So, let say it is some another color, so it is 

it is, so it is color is green, red red green path right and now we located another color say 

blue, and then we interchanged the blue and red in the red blue path right in the red blue 

path, which means that the original red green path was unaffected. So, in particular our 

vertex which we noticed earlier was still green. So, therefore, the that earlier red green 

paths should contain that vertex, and also our new blue green path will also contain that 

vertex, because now blue is the earlier the blue neighbor of V is now the earlier red 

neighbor. So, that is this green neighbor as in the it is adjacent. So, therefore, the path the 

blue green path should contain the vertex. So, the blue green path, and a red green path is 

sorry a green red path is containing the same containing common vertex, so which is the 

contradiction, so by our this is this is how we conclude at the proof. 



So, now this finishes the proof. So, now the question, the next question we will address 

is this; so we can see that the chromatic number is able to affect some parameter; for 

instance here it says that if the chromatic number is high, the maximum degree has to be 

high. So, similarly what other things can be tell about for instance, some what is it that 

causes chromatic number to be high. So, for instance, if we cannot color a graph with 

few number of colors, small number of colors; what can be the reason? So, the initial 

guess for anybody probably would be that so, if there is a clique complete sub graph in 

the graph, original graph, then you cannot color it small number of vertices.  
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For instance, if G is this graph right, and then if there is something here, which is 

complete, so this is the complete sub graph you know, this complete sub graph itself will 

require so many colors, suppose if there are there is k t here, and t colors will be required 

in this itself. So, how can we color that the entire graph with less than this. So, it is very 

natural initial guess to think that probably the complete sub graphs in a given graphs is 

the reason for the number of colors to be high. It is true that if there is a complete sub 

graph, large complete sub graph, the large number of colors are required as if k t is there, 

in fact, t number of colors are required at least; but then is it actually the only reason why 

the chromatic number is high.  



For instance is it possible that we do not have any complete sub graph, for instance see 

any graph there will be a k 2, that means, an edge will be there, if it is not as it collection 

of isolated vertices. So, let us say we do not have a k 3 in the graph, k 3 means the 

triangle, suppose the triangle is not there, is it possible that then the chromatic number 

will be low. So, that is what our initial intuition told the complete sub graphs, the 

presence of complete sub graphs may be causing the chromatic number to be high. Now, 

we are asking this question is it possible that so there is a graph with no k 3’s in it, no 

triangles in it, but still the chromatic number is very high. So, is it possible to construct 

such a graph; it surprisingly turns out that it is possible to construct such graph, so also. 
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 So, let us see the in this example, so this is let us say for 1vertex right it is true. So, then 

let us say this is a… So, this is a 2 colorable k 2 right this is no triangle, but then it needs 

3, 2 colors; now the third one see you can see the this pentagon, so this is the pentagon. 

So, this requires three colors, this is this chromatic number is 3, G is equal to 3 here, but 

it does not have a triangle right. So, triangle free graph without… So, which requires 

three colors right, so this is the first example; now how do I get a triangle free graph 

which requires four colors. So, I am looking for a graph with chi of G equal to 4 and 

triangle free, and triangle free. So, this is the way we constructed. 
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So, we take the pentagon, so this is 1, 2, 3, 4, 5, so this is 1 dash, 2 dash, this is 3 dash, 

this is 4 dash, and this is 5 dash; now this I will connect 1 dash to all the neighbors of 1; 

that means, here and here; and then 2 will be connected to all the neighbors of 2, that 

means, here and here; and then 3 will be connected to all the neighbors of 3 like this; and 

4 will be connected to all the neighbors of 4, 2 and 5; 5 will be connected to all the 

neighbors of 3. So, this is and then we will introduce a new node here, and everything 

will be connected to this, so how many nodes here, so here 5 plus 5 plus 1 - 11 11 nodes. 

So, the it is easy to see that here we do not have any triangle, and also we can show that 

it requires 4 colors. 
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 So, in general suppose we get a graph with chi of G equal to k and triangle free; if we 

know that if we know that G is of chromatic number k, and that is triangle free; then how 

do you find a G dash such that chi of G dash is equal to k plus 1, and G dash is triangle 

free, to this is the we are repeating the pentagon kind of a examples  
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What we do is we just take G here to construct G dash; what we do is we take a G and 

then let say this is 1, 2, 3 up to n these are the number of vertices, and we just introduced 

1 dash 2 dash independence set 3 dash up to n dash. So, these are copy of these vertices 

in some sense, but then no edges here in this set right. So, now, this 1 will be connected 

to all the neighbors of this neighborhood will be n of 1 right, the neighbors of 1 dash will 

be essentially the neighbors of one here, so here so here it is a same neighbors of 

whichever the neighbors 1 is connected, the same thing it will be connected; for instance 

2 is connected to this, 2 dash will be connected; between 1 and 1 dash, there is no edge; 

between 2 and 2 dash, there is no edge; but the for instance if x is a neighbor of 1 x 

would be a neighbor of 1 dash also here right this is the way it is constructed. 

Now, you will introduce after this connections, you will introduce a new vertex and 

connect it to that; clearly this is not going to be a triangle sorry this graph is not going to 

have any triangle; first of all there is no triangle involving this vertex, because this is an 

independent set; and then if at all there is a triangle, which involves say 1 dash, then you 

can see there is this neighborhood, there is an edge, and then this instead of 1 dash, if we 

use 1 right here; then here itself there should be a triangle right. So, which will be a 

contradiction to the graph that G was originally a triangle a free graph; G was a triangle 

free graph right. So, whatever triangle we get in G dash involving someone dash, so the 

it should be a triangle in G involving 1, so therefore, it will be a contradiction. So, this is 

the reason why it is triangle free. 

Now, the next question is why why is it key chromatic; why is it chromatic number k 

plus 1; I have ensured that the chromatic number has increased. First it is easy to see that 

it is it can be colored with k plus 1 colors, because here we have only k colors right; now 

what will be the color of 1 dash, same color as one; because one its neighbors one’s 

neighbor is a same as 1 dash neighbors and therefore, if 1 has no conflict with this 

neighbors, 1 dash can share the same color, because 1 and within 1 and 1 and 1 dash we 

do not have any edge, we can 1 dash can share the color of 1; similarly 2 dash can share 

the color of 2, same color; then 3 3 dash can share take the color of 3 and so on, because 

their neighborhood is same, so they want to be any conflict them, and between then, 

there is no edge. Now, you see that you can always use a new color for this last vertex 

and that we will make it k plus 1.  
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k plus 1 colorable, but then how do I show that it cannot be colored in less colors; 

suppose it can be colored, suppose G can be colored in less number of colors right. So, 

this is 1 dash, 2 dash, 3 dash etcetera; then so, see suppose its k, color colorable using k 

colors; definitely it cannot be colored in less number of color; now you see if you take 

the coloring in this part alone there, this is G right, this is G, this part alone the coloring 

is essentially a k coloring of G, but this k is its chromatic number, we cannot color with 

less number of colors. So, you can consider any color class; for instance you can 

consider the blue color class here. So, these are the blue color class here; blue color 

vertices here.  

Now what can I tell about the neighborhood of these vertices of case, their neighborhood 

no other blue vertex will come in the neighborhood; now I can say that at least one 

among them should be such that it is neighborhood contains all the other colors, other 

than blue all the other colors, say if you using red, green, yellow, violet all the possible, 

all the k colors, k minus 1 other colors we used here should appear in the neighborhood; 

and with this blue it is all the k colors right at least one one vertex should, I am not 

saying that every blue vertex should be like that, at least one vertex should be like that. 

Why is it so?  



Otherwise what we can do is, suppose some color is missing here in this thing, suppose 

say we have black color missing here; I could have simply made it black right made 

black, no conflict, and this here, for everything if it, if something is missing, I could have 

in the neighborhood some color is missing, I could have converted that vertex to that 

color, moved that that vertex to that color, and because these are independent right they 

want this change of colors will not affect them each other. So, that would have been a 

valid coloring.  

So, with one less color, because we are replacing each blue colored vertex with some 

other color right. So, therefore, from the remaining set of colors, so it is so happens that 

the the the that it is not… It is it should be … Because it is not possible to color with k 

minus 1 colors, it should be the k is there, at least 1 vertex should resist this attempt to 

reduce a number of colors used; that means, there should be at least 1 vertex, blue vertex 

such that in its neighborhood, all the remaining k minus 1 colors are appeared.  

Now if this is true for blue color, it is true for say yellow color also, it is true for red 

color also, whichever colors is used in the k coloring, this is true; for instance they 

should be at least 1 vertex of that color, such that in its neighborhood all the all the 

vertices are colored with the remaining; suppose this is colored, this is such a black 

vertex, so definitely this is 1 dash. So, it is of case, 1 dash no connections here; but then 

this, its corresponding vertex here we so, we also its connected its neighborhood, all the 

k minus 1 remaining colors are used up, all the k minus 1 remaining colors are used up in 

its neighborhood. So, it has to reuse the same color as this one, namely the black right. 

So, of case no on this connection is not there. 

So, similarly the blue color what has special vertex (( )) the neighborhood is using all the 

remaining colors, its partner in the this side should definitely have have to use the same 

color as it, because in the neighborhood, because its neighborhood is same and all the 

other colors are appeared in the neighborhood, it will have to use the same color. So, it is 

so happens that all the k colors will appear in this place, in this set, in this in this group 

also; and now this k has to get the new the new vertex, the final vertex has to get a new 

color, because all the available k colors are appeared in its neighborhood. So, it is should 

get k plus 1, there is no other way. So, it requires k plus 1 colors. So, that is what we can 



infer.  

So, so this is interesting constructions called my Seals Kane construction, so which tells 

us that there are triangle free graphs, which requires arbitrarily large number of colors. 

So, in other words you give me any any number k, then I can construct a triangle free 

graph with whose chromatic number is at least k, this is what it says. Now there are other 

graph construction is also which will, which can show the same thing; but there is an 

interesting result that for instance, so so what about say one direction is seen triangle 

free, suppose if we do not even allow a 4 cycle, 5 cycle, suppose the girth of the graph 

means, girth means the shortest cycle of the graph has to be greater than k; will it 

probably allow us to infer that the chromatic number will not be arbitrarily large; for 

because for instance if you look from one node, if the girth is large, so it will look like a 

tree in the neighborhood; is it not? At least up to girth by two distances, it will grow like 

a tree. 

So, is it possible that so because the trees are two colorable; it locally it looks like is it its 

only very small number of colors are enough to color such a graph, but then, but is it 

possible that such graph can also be of arbitrarily high chromatic number. So, this result 

from interesting, for every integer k, there exist a graph G with the girth greater than k, 

and chromatic number greater than k; you can you can get both this parameters girth and 

chromatic number, which intuitively looks contradictory, but both can go high, 

arbitrarily high; any value of k if you put, you can get a graph may be it is big graph, but 

you can get a graph with both the value, both the parameters having value greater than k. 

So now, so the final final thing today is something about k constructible graphs, so what 

is a k constructible graph? So, this like in the connectivity k; as we told, so all 3 

connected graphs can be constructed in this way; so like that is it possible that for all k 

chromatic graphs, the graphs which there is some such constructions of case, so we 

cannot hope for a construction for all k chromatic simple construction, but what we will 

say is that if you if you look at a k chromatic graph, a graph which requires at least k 

colors to color, then they should not be some structure in it, some sub structure in it, 

which will require so many colors sorry which which can be produced in certain ways 

that is that is this essential idea of k constructible graphs. 
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So, what is the k constructible graph? So, a class of the class of k-constructible graphs 

are defined like this; so the complete graph K k is k constructible, so completely graph K 

k is k constructible; and then if G is k constructible, and x, y is element of V (G), x, y 

two vertices in V (G) are non adjacent; then this non adjacent vertex vertices can be kind 

of identified together, they can be contracted. So, what it is says is G plus xy contract, 

then contract that x, so so we can we can look look at it like this. 
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Suppose if this is a graph. So, you have and this is a k-constructible graph, and then 

suppose you find out x and y, so that is there is no edge between them right, those are the 

some neighbors, so now we can just pull them together. So, the thinking you put this 

edge and contract or otherwise we just collapse them together right. So, that is what it 

says; so then what will happen? So, you will get a vertex, so together here, with all the 

neighbors some common neighbors may be there, but you can always drop the multiple 

edges, if you do not like. So, if you want a simple graph right, so then if you do this 

operation, then it will still be k-constructible.  

And suppose you have given 2 k-constructible graph G 1 and G 2; and there are there is a 

common vertex for them, x just one common vertex, and one common vertex x, and y y 

1 and y 2 are such that x y 1 is an edge of the first graph, and x y 2 is an edge of the other 

graph; then G 1 union G 2 minus x y 1 minus x y 2 plus y 1 y 2 is k constructible. So, it 

looks like this.  
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So, suppose you get; so, if this is a graph G 1 you say k-constructible graph and there is 

this vertex x, and this is another graph this is the only vertex, which is common, so this is 

x, let us say x; and this is G 2, this is also a k-constructible graph; now we have a y 1 

here, this is this edge is present here, and then there is a y 2 here, this edge is present here 

and in G 2; now and of case, this edge is not present right, because this is y 1 and y 2 are 

not part of the same, this edge is not present. So, when what what we say is we put this 

edge and remove these edges, so this graph is also k-constructible together; so, it is also 

k-constructible. So, so this the graph class of graph, which can be constructed by these 

operations by repeated application of these operations are the k-constructible graphs.  

Now we can easily see that so any k constructible graph is k colorable right, so which is 

chromatic number is k, which requires k colors the color; so, the reason it is by an 

induction, because the first complete graph K k requires k colors, and now suppose any 

smaller so the so if you are doing it by an operations - sequence of operations, at earlier 

step we just assume that it is k chromatic. So so now, if you consider the second 

operation, namely this operation, so you can… So here this operation, you can easily see 

that is it possible that the chromatic number decreases? So, if the chromatic number 

decreases by this kind of contraction operations, when the non-adjacent vertices are 

contracted; then why you can always go back, and use the whatever color is there for that 



contradicted vertex, you can use it for both vertices, any way they are non-adjacent; so, 

then the same color will work both of for both of them in the original one, because the 

neighborhood any way is different, the colors on the neighborhood is different; is it not? 

So, therefore, we can we can infer that by the second operation is not possible to 

decrease the chromatic number, if you do that; if you decrease it, then the original also 

has. Similarly, you can consider the other operation G 1, G 2, the here also, if you say 

suppose you decrease this operation here also, so when you here it is only k colorable, 

for instance you drop these edges remember this two edges are dropped, and this was put 

right. 

Now, you know, because of this edge, this color and this color is different right; one of 

them should get a color different from that of x, for this entire graph right. So, this color 

and this color is different, then you can put for this edgem, suppose with (( )); and now 

look at this graph alone, with so so this entire graph as a k less than k coloring, now x got 

a color with respect to that, y 1 got a color with respect to that, and y 2 got a color with 

respect to that, it is possible that y 1 and x have the same color, but if not then it is not 

possible to have y 2 and x 2 have the same color, because y 1 and y 2 have different 

colors only one of them can be the same as x.  

Now, in that case it is a clearly x and y 2 suppose they have suppose they have different 

colors; then even if you put this edge, then we do not have any problem right, because 

they have different colors already; and other colors whatever was there with respect to. 

So, we have only using k colors for these things it is a contradiction, because we told that 

these requires G 2 and G 1 required more than k color. So, we can infer that so by this 

operational also, it is not possible for the number of colors required to reduce right. So, 

this k constructible graph are definitely k chromatic, I mean they need the chromatic 

number is greater than equal to k, but now we will say that any graph, whose chromatic 

number is greater than k is considered, they should be some sub graph in it, such that its 

its it contains a K k constructible sub graph; so to we will we will do the proof in the 

next class, so this class we will conclude this class with this much. Thank you. 

 


