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Vertex Coloring: Brooks Theorem 

Welcome to lecture number thirteen of graph theory. Today, we will consider a new 

topic namely graph colouring. There are two types of colourings that we will consider - 

the vertex colouring and edge colouring. First, we will deal with vertex colouring and 

then go to edge colouring. 
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To introduce the problem, let us consider this following question. Suppose, there are 

some committees and we will say the members of the committee that is a set. So, we can 

say first, number 1, 2, 3 belongs to a committee and say 2, 4, 5 belongs to a another 

committee, say 4 and 6 form another committee, 8, 9, 10 forms another committee and 2, 

8, 10 forms another committee like this. 

Now these committees meet. When a committee meets, it takes about one day to finish -

full day meeting. We have to schedule the meetings of all these committees, but the 



problem is that some committees contain the same person. For instance, committee 1, 2, 

3 and 2, 8, 10 have 2 in common. 

Therefore, the day this first committee meets, These two committees cannot meet on the 

same day. This committee and this committee cannot meet on the same day. So they 

have to meet on different days. So, the question is how many days are required. How will 

you solve this problem? 

First, we would like to convert to a graph theory problem. The question is, for instance, 

why cannot two committees meet on the same day? It is because there is a common 

person. Therefore, we will consider each of this committee as a vertex of a graph and 

then if there is any common member in the committee, we will put an edge between the 

corresponding. So, this is the vertex now; this is a vertex now. We put an edge between 

them. So, between this and this, there is an edge, between this and this, there is an edge, 

between this and this, there is an edge, between this and this, there is an edge and see 4, 

6. Now, there is nothing common here. Therefore, these are the edges. It means that 

whenever there is an edge between two vertices, the committees corresponding to those 

two vertices cannot meet on the same day. 

Now, we will find out the committees, which can meet on the same day. For instance, 

this committee and this committee can meet on the same day because there is no edge 

between them and is there any other committee, which can meet on the same day. This 

and this can meet on the same day because they do not share anybody common. 

Now, this cannot meet on the same day, this also not. Of course, now, we have to use 

another day. So, this red corresponds to the first day and another day to schedule this 

meeting. Then same day, this cannot happen. So, we need a third day for this meeting. 

Here I used some colours to find The red colour indicates the first day, the green colour 

indicates the second day and this violet colour indicates the third day. 

These three colours correspond to three days. So, we need three days to finish all these 

meetings, to schedule all the meetings. So, this corresponds to a graph colouring 

problem. Here, we were looking for the minimum number of colours, which correspond 

to the number of days required. 



The colours are given to the vertices of the graph such that whenever there is an edge 

between the two vertices, they should not get the same colour. This is the kind of thing. 

So, here the graph colouring graph We could have drawn the graph more neatly like this. 

This is our graph. 

So, this is the graph. The vertices correspond to the committees and the colours will 

correspond to the vertices. This is the colouring problem. The red colours is given If you 

look at the red colour vertices, they form an independent set. That means there is no edge 

between them. So, here, this is the colouring and then here, we have a violet colour. 
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Therefore, let us formally define graph colouring problem. A vertex colouring of a graph 

G equal to V comma E is a map is a function c from V into S, S being the available 

colours such that c of v not equal to c of w, whenever v and w are adjacent. So, let 

elements of the set S are called be called the available colours. The smallest integer k 

such that G can have a k colouring, that is a vertex colouring from V to 1 to k is called 

the chromatic number, khi of G of the graph. This is the formal definition of this. In 

other words, we are supposed to colour the vertices of the graph in such a way that 

whenever there is an edge, they should get different colours and the number of colours 

should be minimized. 
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We can look at some examples and try to understand the colouring problem again. So, 

for instance, let us take our favourite example, the complete graph K n. So, the minimum 

number of colours that we will use will be called the chromatic number. The notation is 

khi. So, we are interested in khi of K n. What will be minimum number of colours? 

It is very easy to see that it has to be n because you cannot share any colour because any 

two vertices if you consider, they should get different colours in the complete graph 

because there is always an edge between them. Therefore, they should get n colors. 

Now, what about a complete bipartite graph K n, n. This also has lot of edges, but still it 

happens that it requires only two colours. Why is it so? Why it require only two colours? 

So, this complete bipartite graph is like this. n vertices and then you have all the 

connections between them; so, all the connections between the two sides. So, this side 

can be given say, white colour and this can be white colour and this can be given black 

colour. 
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So, this is the complete bipartite graph. So, two colours are enough and now we can look 

at some other cases. What about trees? For instance, let us look at this tree. How many 

colours are required to colour the tree? Some thought will reveal that only two colours 

are required because you can colour it red and you can colour it green here, then you can 

colour it red, layer by layer then you can colour it green here, like that. 
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So, this requires only two colours and what about a cycle. This is the cycle. So, 

whenever we say a cycle, even and odd cycle matters. This is an even cycle. How many 



colours are required? Say, a little consideration will reveal that only two colours are 

required. So, we can give this colour black and the other colour say, we can give red, we 

can give. Using two colours, we can colour this one and what about an odd cycle? 
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Odd cycle may be like this. So, you can try to colour like this, like I did in the last case - 

this one, this one and this one, this one. So, here I have a conflict because I have green 

here, then black here, green here, black here, green here, black here. Here, what will I 

do? Here, I cannot give green; I cannot give black. So, I will have to use a new colour. 

So, you can see, it requires three colours - khi of C n equal to 3, when n is an odd 

number. 

If it is an odd length cycle, then we need three colours. So, between the odd cycles and 

even cycles there is a difference; odd cycle requires three colours and the even cycles 

required only two colours. So, when you consider The couple of examples, we 

considered - the even cycle and trees, both of them required only two colours. They are, 

if you remember, what the definition of the bipartite graph, both of them are bipartite 

graphs. 
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So, why are both of them bipartite graphs? It is because the tree is like this. So, we can 

consider the first route of the tree here, the immediate neighbours on the other side and 

then the immediate neighbours of that on this side, like that. So, tree is a bipartite graph. 

Similarly, even cycle is a bipartite graph because we can always draw this cycle like this. 

The even cycle can be considered like this. 
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So, both of them are bipartite graphs. So, it is not surprising that they require only two 

colours. Why is it so? Because if you take any bipartite graph, it will look like this - two 



parts and the edges always going from one side to the other. Here, it is like, you can use 

one colour for this side and the other colour for this side because edges are always from 

one side to the other. It so happens that all bipartite graphs are two coloured – 

essentially, two parts. So, it is not very surprising because if you look at the colouring 

question carefully, it so happens that when you look at a colour class - a colour class 

means the vertices which got same colour, they should form an independent set in the 

graph and it is because there is no edge between two vertices of the same colour. 

So, it is like, we are trying to cover the graph with independent sets. Each colour 

corresponds to an independent set; another colour corresponds to another independent 

set, like that. We just have to put every vertex in one of the classes so that we are 

covering all the vertices with independent sets. What is the minimum number of 

independent sets required to cover the vertex set? That is what we are interested in. In a 

bipartite case, there is clear that we have two independent sets and then it covers the 

entire graph. 
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So, in a clique, we have only independent sets of size one. Therefore, you need n of 

them. So, this will give raise to this thing. If n is the number of vertices, khi of G has to 

be greater than or equal to n by alpha of G. khi of G has to be greater than or equal to n 

by alpha of G. Why because each colour class can contain only a maximum of alpha of 

G vertices. 



So, one colour class contains only alpha of G, but there are n vertices. So, we should get 

at least so many colours; there should be at least so many colours. That is what we can 

tell about the relation between independent set and the chromatic number and number of 

vertices in the graph. 
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Now, of course, you can take some little more complicated examples. For instance, if 

there is a wheel, how many colours are required? Of course, it depends on how many 

colours are required. This will always require a new colour. For instance, here this was 

green; say, we may use this one and we may use this colour and then we may use this 

colour and we may use this colour here. This is and Then we will have to give a new 

colour. So, this colour is not possible or neither red colour is possible. So, you may have 

to use a different colour for the middle vertex. 
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So like that we can consider several examples. Another example you may want to 

consider is the Peterson graph. how many What is the chromatic number of Peterson 

graph? This is the graph. How many colours are required to colour this thing? I leave it 

you to figure out how many colours are required for this graph. 
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Now, let us look at Suppose, we want to come up with an algorithm to colour the graphs; 

not necessarily optimum, some colouring is required. So, we want some method to come 

up with the colouring. What should be the easy and very straight forward strategy to 



come up with colouring for a given graph? So, this is like this. Before that, let us 

consider another question. What about the number of edges? For instance, can I say that 

if the chromatic number of a graph is k, khi of G equal to k, then can I somehow say that 

the number of edges m in the so number of edges m in the graph is greater than or equal 

to some function of k. Is it possible? 
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What we can show is that m will always be greater than or equal to k into k minus 1 by 

2. If k is chromatic number, there should be at least k into k minus 1 by This k choose to 

edges in the graph. Why is it so? Because if we consider the colour classes, these are 

independent sets, the colour classes. There are k colour classes; there are k colour; the 

first colour class, second colour class. So, there are k colour classes. 

Between any two colour class i and j, there should be at least one edge. Why is it so? 

Suppose, this edge was not there, there should be at least one edge between any two 

colour classes - at least one edge, may be more. Suppose, it is possible that there is no 

edge between these things, then I would say, you merge these two colour classes and you 

can make it a new colour class together because anyway there is no edge between them. 

Why do you want to give two different colours to the vertices of this and this. 
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Therefore, what we infer is between any two colour classes, there is an edge. There are k 

colour classes. Therefore, k choose two edges should be there; k choose two because 

there are k choose two pairs of colours; that is k into k minus 1 by 2. So, this will be the 

lower bound for the number of edges. This is what I am saying - k into k minus 1 by 2. 
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Next question, I am considering is how do we come up with a colouring for the graph? 

What should be an easy way to colour the graph? Suppose, let us take this graph, maybe 

we were looking at the Peterson graph or maybe this graph. I am just drawing a graph. 



So, I want to colour this graph. One strategy I may want to adopt is to give a colour for 

an arbitrary vertex and then I take another vertex. Say, I took this vertex and I see that 

this is already coloured, then I can give a different colour to this. 

Now, I take this vertex, I see that these two colours are already used. I may want to use a 

new colour for this. When I go here, I see that this black colour and blue colour is used, 

but green colour is available. So, I can use the green colour? Whenever I see a new 

vertex, what I do is I look at its neighbours which are already coloured and I try to reuse 

a colour, if there is anything available. If all the colours which are up to now used is 

there in the neighbourhood, then we cannot re-use in a colour. We have to use a new 

colour; this way, we keep going. 

Here, we can use the black colour; here, we can use the green colour; here we can use the 

blue colour; Again, here we can use the green colour once again. So, this is the strategy 

of colouring. So, one question that comes to your mind is why is this an optimum 

colouring? In this case, it looks like that is an optimum colouring. The three colours are 

required here. Why because if you take a clique triangle here, this requires all the three 

colours because you cannot repeat the colours here anyway. Therefore, in this case, it is 

an optimum colouring, but in all cases, it need not be an optimum colouring. 

(Refer Slide Time: 22:58) 

 

In some cases, it may so happen that we end up using too much, therefore, but still we 

can try to come up with in it with some kind of an upper bound like saying that whatever 



it is, it may not be optimum, but we have only used these many colours. So, what kind of 

upper bound is possible? 

So, the easiest way to get an upper bound is to note that whenever I consider one new 

vertex for colouring, what it does is it looks at its neighbours, which are already 

coloured, but how many neighbours can it have maximum. We can have only maximum 

of delta neighbours, delta being the maximum degree; delta neighbours only, it can have. 

Therefore, in whatever way, we can see only at most delta colours on its neighbours. 

Now, it will use a new colour It is possible that you may use an new colour. So, delta 

plus 1 colours, it will use any time. 

In another case, if you see delta neighbours, this delta plus 1 colour is already there in the 

graph, it is already given to some vertex in the graph, we can reuse that colour; there 

would not be any conflict. Therefore, it is so happens that you can colour the graph with 

at most delta plus 1 colours. It will not be possible. I mean there will not be any situation 

where you will have to use more than delta plus 1 colours. 

But again if you carefully look at it, it may come to your mind that maybe, it is a little 

too much. So, you may not use delta plus 1 colours in many situations. Is there any 

particular situation when you really use delta plus 1 colours? A tight situation, a tight 

example like we have to use delta plus 1 colours. 
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So, one such example is the complete graph. For instance, if you consider a K n complete 

graph on n vertices, what is delta? delta equal to n minus 1. Now, how many colours are 

required? delta plus 1 colours are required which is equal to n colours are required. 

You cannot avoid this situation here because if I start doing, however you try, you will 

end up using delta plus 1 colours. So, there are situations where you need delta plus 1 

colours. Can you quickly think of another example where delta plus 1 colours are 

required? 
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One such example is this, say, an odd cycle - cycle with odd number of vertices 3 plus 3 

plus say 7 cycles - odd cycle, odd number of cycles. How many colours are required? 

delta equal to 2 here - maximum degree is 2. The numbers of colours required is delta 

plus 1 equal to 3. So, this is also one such situation where delta plus 1 colours are 

required. So, the odd cycle and complete graphs are some cases, some examples, where 

we will need delta plus 1 colours 
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Some other situations of course, you can think of some situations, where there is a graph 

with several connected components and one complete graph - one K n in it. In that case, 

for instance, if this happens to be the component with the largest chromatic number 

among its components. So, we can independently colour these things and reuse the 

colour among these things. 

But suppose, here is where I take the maximum number of colours to colour, then it will 

happen that here maximum degree also is here. Suppose, then it may so In fact, I want to 

say that if the maximum degree comes from this component, then that is delta equal to n 

minus one. Then here, because of this clique here, we have to give delta plus 1 colour. 

So this as some Similarly, one of the components can be an odd cycle. Let us forget this 

kind of situation. Let us say that we are only interested in connected graph because if 

there are several connected components, each connected component can be coloured 

separately without worrying about the other part. Therefore, we will say that the odd 

cycles and complete graphs are examples, where you need delta plus 1 colours, when we 

consider only connected components. 

Now, we are going to study an interesting theorem. where This theorem states that the 

number of colours required is in fact, at most delta for all other cases, that is interesting. 

So, the only connected graph which requires delta plus 1 colour is the complete graph 

and the odd cycles. 
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So, this is the statement, we are going to look at next. Let G be a connected graph and if 

G is neither complete nor an odd cycle, then khi of G less than or equal to delta of G. So, 

we will look at the proof of this thing. This theorem is called Brooks theorem and we 

will study that. 

Now to come to the proof of Brooks’ theorem, let us do an induction. We will assume 

that for all small graphs, the statement is true. So, when I say small graphs, for 1 vertex 

graph, it is definitely true; for 2 vertex graphs, you can always check; to 3 vertex graph 

also you can check. Let us assume that for smaller graphs it is true; smaller graph means 

smaller number of vertices, the theorem is true. Now, we will assume that we are 

considering a graph on n vertices. 
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Now, we consider some vertex and now you look at the graph after removing that. So, it 

has its neighbours; these are its neighbours. So, of course, this graph having only n 

vertices can be coloured with delta colours. Now, one thing we should first notice is that 

the degree of this vertex is delta because if it is not delta, suppose, it has only delta minus 

1 neighbours. How many colours, it will see here? This is already coloured by induction 

hypothesis; it can be coloured using delta colours; delta colours or delta plus 1 colours 

depending on whether it is complete graph or odd cycle this may be. Whatever it is, as 

far as the original graph is concerned, if this was not a delta degree vertex, it will see 

only delta minus 1 colours here and so, it can be coloured using so many delta colours. 
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We can in fact, argue that any graph which violates this statement, that means, which 

requires delta plus 1 colours should have to be a regular graph on with delta vertices. 

Why is it so? Because the earlier strategy we considered, we were in fact finding a 

certain kind of ordering. We just found out a vertex and then we found out another vertex 

and we gave a colour to these things and we found out another vertex and then we looked 

at the neighbours of this and decided to colour this based on whatever colours were 

already given to the neighbours. 

So, when we do this procedure, we notice that all the time when I pick up a new vertex, I 

will be seeing only at most delta neighbours. Therefore, the delta plus one the colour is 

available for this vertex, but then if I was doing it carefully, what I would do is I would 

try to order the vertices in such a way that every time I select a new vertex, I will pick up 

the vertices in that order and in such a way that the number of coloured vertices, which 

means so already considered vertices that neighbours it has already considered 

neighbours it has, is minimized. 

So, of course, I will be trying to pick up an ordering in such a way that every time I 

consider say vertex V i, the i th vertex, the number of neighbours of V i which is a 

number lesser than i is as small as possible. For instance, if there was a vertex of degree 

delta minus 1 in the graph, I can always keep that vertex as the nth vertex because 



anyway, it is going to see only delta minus 1 neighbours in its neighbourhood. Therefore, 

its neighbours with lower number will be at most delta minus 1. 

Now, once you remove this vertex, there will be at least one vertex touching it. 

Therefore, its degree will reduce. So, we can pick up that vertex because it is another 

delta minus 1 degree vertex in the induced sub graph after removing V n; that we can 

consider as V n minus 1. and after that So, I can remove that vertex. Now, I can get a 

vertex with a lower degree. So, of course So, that degree is delta minus 1, I can pick up. 

So, everywhere, I will be seeing only delta minus, you can see in this order, the reverse 

order is this thing. V n, V n minus 1, V n minus two - I can write down the things. 

Now, if you start eliminating vertices starting from V 1 onwards, it is very clear that 

every vertex V i will be seeing only at most delta minus 1 neighbours in the 

neighbourhood of it. Delta minus 1 neighbours in the neighbourhood of V i. Therefore, 

we need only delta minus 1 plus 1 colour. It is equal to delta colour. So, this was possible 

because we assumed that they was a vertex of degree delta minus 1 or less in the graph; 

that is why we could do that. 
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Now, coming back to the proof of Brooks theorem, we can assume that if over a graph G 

needs delta colours somehow. so by contradict For contradiction, it seems that the n node 

graph G requires delta colours. In that case, it will be a regular graph; otherwise, it will 

need delta plus delta colours because if you need delta plus 1 colours, it has to be a 



regular graph. Now, we removed a vertex and so, this vertex V has delta neighbours here 

and of course, there is a colouring of this here. 

Now, is it possible that this is a complete graph? Here, this is a complete graph. Now, if 

this is a complete graph, now you can see that the degree of all these vertices here will 

have same degree in the complete graph. Now, we have delta plus 1 colouring for this 

Now, you can say this also has essentially because this vertex is connected to this, this 

degree will have to go one more. So, essentially, it is the delta colouring for this thing. 

This is the delta colouring for The original graph will have degree delta and the 

maximum degree of this complete graph will be one less. Otherwise there will not be So, 

this itself will be a complete graph and we do not have to prove anything. 

So, it will so happen that So, we can assume that this sub graph has a delta colouring. 

Now, we look at the colours on this and if the colours are all distinct, then only we have 

problem. because if any colour is repeating, then There are only delta neighbours. If one 

colour is missing, only delta at most delta minus 1 colours I used on the neighbours. So, 

we can use the next colour delta th colour for V. 
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Therefore, we can use the delta th colour for V. It so happens. See one thing we have to 

consider, we have to carefully to consider. Is it possible that this is somehow 

disconnected graph? For instance, when I remove this, we are talking about connected 



graph; when I remove vertex V, its neighbours are going to be disconnected components; 

is it possible? It is possible that vertex V is connecting these parts together. 

In that case, what we can do is these two are disconnected parts. so this colours If at all 

there is a colour here - green colour here, so I can try to change the colour on this thing 

with a green colour. For instance, the only problem as I mentioned is that all the colours 

are different. I can try to get a common colour here, between this and this because within 

this component, I can exchange colours. So, rename the colours; I can make the green 

colour red and red colour green So that because these are totally different colours from 

this. 

These colours are different; these colours are different again. Whatever colour comes 

here, I can rename with the colour, which is available here, which will make a repetition 

of colours on the neighbourhood and therefore, it will so happen that there is a repetition 

of colours and since there are only delta neighbours, we are using only less than delta 

colours, we can use the delta th colour for this vertex.  
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Now the next point so What I have argued now is, if I consider any vertex V, essentially 

this will be one component and there will not be several components and all the 

neighbours are going to this component and again the colours on the neighbours are 

different. So, I can just use some different colours. to show that different colours So, this 

is violet, yellow, green and red. I can show like this. 



Now, what I can do is to consider say, here I have green and red colour. So, I can try to 

study the components involving green and red colours alone. There are many other 

colours - yellow, violet, all these things are there, but then I will look at the sub graph of 

vertices induced on green and red colours alone. See that will form some connected 

components. For instance, it may be like this. Of course, it would not be like this. 

Essentially, I am trying to locate the green and red components. So, that will form some 

connected components. 
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Now, I can look at those green and red connected components and then ask this vertex 

and this vertex; I will draw it like this. so this is be This is its red neighbour and this is its 

green neighbor. Now, I am only interested in the green and red coloured vertices of the 

remaining graph by induction. We could colour these remaining graph and now, there 

will be a connected component of green and red here, which involves here. There will be 

a connected component of green and red, which involves here. There will be red vertices, 

green vertices. yeah This will be just red and green. All these, some connections will be 

there between them. 

Similarly, there will be green and red here also, is it possible that these two connected 

components are different or will they be same? Though at first look, at the look like they 

can be different or same whatever, but then suppose, they are different; if they are 

different then what we can do is in this connected component, I will rename the red and 



green. For instance, I can make all red vertices green here and all green vertices red. It 

will not affect anything; the colouring will be still valid. Why is it so? Because if you 

take any other outside vertices, they may all have some different colours only. 

So they whether it seeing neighbour For instance, whether it is yellow or violet or 

something, whether in the neighbourhood, they see green or red does not matter to them. 

It has to be different, but then if I change the colour of these red to green, the only vertex 

for which it matters is neighbours, which has already got a green colour, but then that I 

am making it to red. So, I am consistently doing it in the entire component. Therefore, 

there would not be a problem. It will be still a proper colouring. So, if this component is 

disjoint from this component, there is no path starting from here to here. Then, here I can 

keep the initial colouring and here, I can convert all the red to green and green to red, 

which will essentially make a green vertex here because red will become green now. 

What is this vertex? See two green vertices on its neighbourhood. If it sees two green 

vertices on its neighbourhood, its meaning is that  

So, it is the maximum The number of colours, it sees on its neighbourhood is at most 

delta minus 1 or less - at most delta minus 1. So, we have one more colour, we can use 

that colour to this and from what, we can conclude is we cannot do these things because 

of some reason. What is the reason? The reason is when you try to exchange the green 

colour to red and red colour to green, that process should go to the entire component. So, 

here everywhere it will get exchanged and this will become, this green will become red 

and while this red becomes green and this green becomes red. So, there would not be 

anything good because there was a green, red, green before. It will become a green, red; 

so, there would not be any difference. It will so happen that the number of colours, the 

vertex sees on its neighbourhood remains the same. The entire set of delta colours are 

seen on that. 
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So, we can assume that this should happen. Otherwise, we will solve the problem here 

itself because it will be a delta colouring. So, that assumption that it could not be 

coloured using that delta colours will be wrong. So, what we can say is that these two 

components are same. In other words, if I take the vertex V and look at its red neighbour 

and green neighbour and the connected component between this is green neighbour, the 

connected component of red and green vertices between them, it should be that  

So, this should be the situation. That means your red and green connect should come 

together; both these neighbours should be contained in the same connected component of 

red and green components. Now, we are interested in how this connected component will 

look like. Now, will it be this complicated, some complicated structure like this. So, if 

you look at this carefully, is it possible to have two green neighbours, as I drew here, is it 

possible to have two green neighbours to this red vertex. 

So, if it has two green neighbours, how many as far as this vertex is concerned, how 

many neighbours in this graph, it has because its maximum degree is delta only. Now, 

one edge is towards this, outside vertex, this V. So, this u can only have at most delta 

minus one neighbours here and if two of them has same colour, only delta minus 2 

colours will be used in its neighbourhood, only delta minus one neighbour are there in 

the sub graph. 



Now, out of that two of them are using the same colour. That means, only delta minus 2 

colours are used. We have two extra colours, one of which is already there - red colour 

one this. We have one more; so, we can use it; may be it is some blue colour. I could 

have re-used that colour for this thing. I will re-use the blue colour on this thing and it 

will help me to use that blue colour for this thing and then red colour will be released 

because red colour will not be there in any of the other things. We have not done 

anything here. 

So, therefore, the red colour can be given to this vertex is and it. in other words are 

release the colour from this vertex and given to this vertex. So, we can do it that way. so 

that is what we can do. So what I conclude is you cannot have this u vertex u cannot 

have more than one green coloured neighbour of it. In other words this is I can clearly 

say that this is not correct, this picture is not correct. So, this edge is not there; this 

cannot be there. So, it can only have one green neighbour and this connected component. 

Now, I will concentrate on this green neighbour and ask how many red neighbours it can 

have. So, look, this is a red neighbor; this is a red neighbour and suppose, it has two 

other red neighbours here. So, this is already a red neighbour and these are two more red 

neighbours. So, out of the delta neighbours this has, 3 of them are red, which means only 

delta minus 2 colours are used. Total - delta neighbours and out of that, 3 are using same 

colour. So, delta 2 colours are used around in its neighbourhood. 

So, that means two colours are free, but out of the two colours, one is already there; the 

one is the green colour because it is already there here. So, there should be one more 

colour. Let us say this is blue. Then we could have given blue here. So, if it is blue, then 

see there is no problem. This gets disconnected from the rest of the red, green thing. So, I 

can safely change this to green. This and this will become green. Now, the red will be 

free for giving this. So, red can be given to this original thing. 
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So therefore, what I can infer is this is red; this is original; this is green. This green 

cannot have two red neighbours, maximum - one red neighbour; other than this earlier 

one, it can have only one red neighbor. What I can say is that this is not there, only one 

red neighbour it has. So, it can only have this. So, this is one red neighbor. 

Now, the next red neighbour. So, this is red; this is green; this is red. It is coming in a 

path and then here if you see this red, how can how many neighbours can it have other 

than this green? Can it have Definitely, it cannot have another red neighbor. It can have 

more than one green neighbours. There is one. How is it possible to have one more green 

neighbour? 

So it is because if you can have one more green Suppose, you have two green 

neighbours. Then the same thing can be told about this. These are delta neighbours of 

totally delta neighbours for this red vertex and out of that, 3 are green. That means, only 

delta minus 2 colours are used. There will be one free colour other than the red. one more 

free colour 

So, delta minus 2 on the neighbourhood, one on itself - delta minus 1 and one more. It 

can be say, it is blue suppose. Then we could give blue to this, instead of red. That will 

cut away this portion from this. Then what will I do? I will change the colours exchange 

the colours of this and this. That means, this will become green and this will become red. 



Essentially, now, you do not have to worry because the next is the green neighbor. There 

is no red or green attached to this. So, we can safely exchange these things. Now, this 

and this has become green; so, red is free. The free red can be given to this outside 

vertex. So, that will allow me to colour the entire graph in delta colour. What do I infer 

from all these things? It means that I cannot have this extra green neighbour here. It is 

only one green neighbor; that is what it means. 
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So, we can conclude like this. That, red green component will be a So, this is V. If we 

consider the red green neighbor, this is the green neighbour and this is the red neighbor. 

Then we will end up with a path rather than any complicated structure. So, this will be 

like this, in fact. This will be green; this will be red and this will be green. So, it will be 

rather, a path and this will be red like this. 

So whatever we did between the arguments that we did for red neighbour and green 

neighbour can be repeated for any two colours, which means that if you pick up two 

colours in the neighbourhood, between those two colours, I will always get red path 

rather at A component of the two colours involving these two vertices has to be always a 

path, rather than any complicated structure. So, the rest of the proof will be considered in 

the next class. 

Thank you. 


