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Welcome to the lecture on code generation. We covered a little bit of this material in the 

last class. 
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We looked at the main issues involved in code generation - for example, transformation, 

what exactly is code generation, which instructions to generate, what are the 

consequences of that, in which order should we generate the code, which registers to use, 

should we optimize for memory time or power, is the code generator retargetable to other 

machines etcetera; these are some of the issues that we looked at. 
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We also saw some samples of generated code. For example, for the assignment B equal 

to A i, X j equal to Y, X equal to star p, star q equal to Y, then branch instruction, etcetera. 

(Refer Slide Time: 01:17) 

 

We will continue that discussion today. Let us look at the generated code for function 

calls etcetera - first of all, in the case where we have static allocation and then we look at 

the case where there is dynamic allocation. 



Even with static allocation, let us assume that there is no jump subroutine instruction, to 

begin with and then we will see the minor modification needed, when there is a jump 

subroutine instruction available. 

The 3 address code for the function F1 and function F2 will probably look like this. Let 

us assume that function F1 is the main program itself and function F2 is the subroutine. 

There is action code segment 1 and then there is a call to the function F2 and then action 

code segment 2 and then there is halt. These action code segments are some code 

computations within the function F1 to achieve the meaningful line and result. 

In code for function F2 we just have action code segment 3 and then there is a return. Let 

us first look at the activation record for the function F1; its size is 48 bytes. To begin 

with, the activation record will have, for example, the static link, dynamic link 

information, which we already have discussed. So, I am omitting the static link, dynamic 

link information in this particular activation record to make the presentation simpler. 

There is a return address field; then there are local parameters. Function F1 does not 

have any parameters within local variable as I said sorry not local parameters. Function 

F1 does not have parameters passed to it whereas function F2 has a parameter passed to 

it. 

There are local variables, for example, data array A, then there is a variable x, another 

variable y. The total size of this activation record is 48 bytes and since this is static 

allocation, the activation record is allocated just once and there is no recursion possible. 

Activation record for the function F2 is 76 bytes in size. To begin with, there is return 

address then there is space for parameter 1, then there is an array B and another variable 

m. 
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What would be the code that is generated for such a set of functions? Here is a code for 

function F1; then we have code for function F2; and finally, we have the activation 

record format for F1 and the activation record format for F2. In the activation record, let 

us look at this first, for F1 it runs from address 600 to address 647; and then the first 

location, as we saw previously, contains the return address. Then the second location 

onwards, there is a space for the local variable A, which is an array, then at 640 we have 

the space for variable x and at 644 we have the variable y. 

The activation record for F2 runs from 648 to 723, at address 648 we have the return 

address stored in it; at 652 we have the parameter 1; and then at 656 onwards, we have 

the array B; and at 720, we have the variable m. So, this is the layout of activation 

records of F1 and F2. 

Codes for function F1 starts at 200 and code for function F2 starts at 400. Action code 

segment 1 starts at 200 and it runs till 240 - some computation which is meaningful. Now 

at the address 240, we have a move instruction - Move hash 264 to address 648. This 

instruction achieves storing the return address onto this particular slot. 

The reason we are doing it is because there is no jump subroutine instruction. We need to 

store the return address explicitly and then jump to it, once the function F2 is over. There 

is a parameter to the call F2. So, at 252 we have Move param 1, 652 which moves some 

parameter - variable, let us say, 1 to 652 - and then at 256 we have Jump 400, which is 



actually a jump to the address 400. Note that this hash 264 is nothing but the address of 

action code segment 2; 264 is the address of this; so, that is the return address, which is 

being stored at 648. At location 400, which corresponds to function F2, we have action 

code segment 3; and then the code is actually till 440; and then jump at 648 is an indirect 

jump instruction, which takes the contents of 648 and treats that as an address and jumps 

to that particular address. 

648 correctly contains 264 and therefore, once the jump is completed the action code 

segment 2 continues and then finally, function F1 halts. So, this is a way the code would 

be for function call with a parameter and no jumps subroutine instruction. 

(Refer Slide Time: 07:47) 

 

Here is the slight change in the activation record format when we have a jump subroutine 

instruction. For simplicity, since we have already studied how to pass parameters, I have 

omitted the parameter here as well. Please observe that there is no return address here 

and here. We do not have that; we had it in the previous activation record format. Rest of 

it remains the same. The size of the activation record has slightly reduced. Let us see 

what happens in the code. 
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The activation record for F1 now runs from 600 to 643. We do not have the return 

address otherwise everything else remains the same. We do not have the parameter either 

in this particular case. So, there is no space for the parameter either. Here we execute the 

action code segment 1 in function F1. Now, there is a jump subroutine instruction. The 

jump subroutine instruction uses a separate hardware stack to store the return address. 

There is no need to store the return address explicitly. JSR 400 automatically stores the 

return address on its stack, hardware stack and jumps to the address 400. Here we 

execute action code segment 3 in function F2 and return instruction automatically takes 

the return address from the hardware stack and returns to the address 248, which is the 

return address; then it continues. So, this is the minor difference we would have when 

there is a jump subroutine instruction. 
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Let us see how the code changes when we have dynamic allocation and again with no 

JSR. In this case again, we have omitted the parameter because there is not too much 

difference when we have parameters; we have seen what happens already, but here the 

allocation is dynamic so, we can have recursion. Function F1 has action code segment 1 

and then a call to the function F2, action code segment 2 and then let us says a return. We 

have called this from the main program. Code for function F2 contains action code 

segment 3, then a recursive call to function F1, see call F2, F2 call to F1 again, action 

code segment 4 and then a recursive call to F2 itself again and action code segment 5, 

finally return. 

Let us see here, there is a return address and then local data and other information, return 

address and local data and information. Please observe that the size of the activation 

record is 68 bytes here and 96 bytes here. There is no jump subroutine instruction. 
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There is some initialization for the stack pointer saying that from 800 onwards the stack 

begins and then let us look at the code for the function F1. There is action code segment 

1 from 200 to 230 and then we have to create the activation record. We are assuming that 

the activation record is created on the stack itself; so, it is a stack managed activation 

record and not a heap managed activation record. 96 - The size of the activation record is 

added to SP, thereby allocating the space for this particular activation record for the call 

to the function - function F2, that is. 

Then we move the return address which is 254 at SP indirectly. The first location of the 

activation record now contains a return address, after this instruction is executed; then 

jump 300; we come here; this is the code for F2. Within this, we execute action code 

segment 3. Now, there is a recursive call to function F1. We add the size of the activation 

record to SP thereby creating another activation record for the function call F1 and then 

the return address is moved to the first location of this particular activation record and 

finally, we jump to 200. (Refer Slide Time: 12:37) So, we come here. This executes 

again and again; it keeps going. Finally, once we return from the function, let us see how 

that is done, we subtract 68 from the stack pointer there by the activation record is 

destroyed. Action code 4 is executed. Now, there is another recursive call. We add 96 to 

SP, return address is stored and jump to 300. This is another recursive call; once that 

recursive call is completed, we come out and we subtract the size of the activation record 

thereby destroying it and execute the action code segment 5. Jump at SP automatically 



returns by taking the return address from the first location of the activation record on the 

stack. 

(Refer Slide Time: 13:33) The same thing happens here. Once we return here, we come 

here. Subtract 96 which is the size of the activation record, execute the action code 

segment 2 and jump at SP takes the return address and returns to the main program. 

(Refer Slide Time: 13:50) 

 

With jump subroutine instruction, the only change is there is no return address here; so, 

activation records are smaller. 
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The code is also much simpler; the initialization remains and the activation record is 

created. There is a parameter which is permitted here along with jump subroutine. We 

move the parameter to that particular location and execute a JSR which stores the return 

address on the hardware stack. Then once it is completed, we come out; deduct the size 

of the activation records. This destroys the activation record; execute the code segment 2 

and return. This is very similar; there is not much change; every time we add the size of 

the activation record and jump subroutine. 

Once we come out of the subroutine, we subtract the size of the activation record, 

thereby we destroy the activation record; this is a fairly straight forward job. 
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You have seen many examples of what type of code is generated for function calls and 

other statements. Now, it is time to discuss how exactly code is generated. What this says 

is, treat each quadruple as a macro; this is the first thing. 

An example is here. Let us say the quadruple is A equal to B plus C. We generate 

extremely simple code. We load this B to R1. (Refer Slide Time: 15:40) This is one 

possible code sequence; this is the other possible code sequence. Load C to the register 

R2, add R2 to R1 and finally, store R1 to A. 

Otherwise, we say load B to R1; and this should have been add C comma R1 and then 

finally, store R1 to A. This is add C comma R1. 

The purpose for such a macro is to make the code generation macros self-contained - 

complete. Observe that the registers which are used for storing B and C here will be 

released at the end of this particular macro. They are not going to contain any meaningful 

values later on, that is the assumption. 

If we do this load - store sequence for every quadruple, automatically the code will be 

very inefficient, but it is very easy to implement. For each type of instruction, we write a 

macro and expand that macro for the sequence of quadruples. That is all. Nothing more 

than that, is needed. 



So, repeated load - store of registers takes place here. For example, we are storing R1 in 

A and we are not using the value of A, which is in R1 later on. We load A into R1 all over 

again, even if the next instruction is like x equal to A plus y. This is very simple to 

implement, but definitely there is a lot more chance to improve it. 
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Scheme B: Scheme B is slightly more complicated. It tries to track values which are 

available in registers and then it tries to reuse them. If any operand is already in a register 

then take advantage of it. 

That is the basic idea, but how to take advantage of it. It is done using 2 data structures 

called register descriptors and address descriptors - two of them. The register descriptor 

tracks register variable name pairs.  

In other words, for each register, it tells you which are the variables which correspond to 

that value in the register, but then the question will be how a register can hold the values 

of many names. 

This is possible because a single register can contain multiple names, if they are all 

copies of each other. Let us say we have computed A equal to x plus 5; the value of A is 

now available in some register R1. 

Then we write B equal to A, or C equal to A, or M equal to A and so on. So, B, C and M, 

all these variables, now contain the same value of A, but we do not have to allocate 



different registers for them. We just track that they are all corresponding to the same 

value using this register descriptor. What is an address descriptor? It tracks variable name 

and location pairs. For each variable name, it stores the locations where that value is 

present. For example, a single name may have its value in multiple locations such as 

memory, register and say, if it is stack machine, then on the stack also. In such a case 

depending on the occasion we may actually want to avoid storing rather loading a 

particular value from memory to register, if it is available both in memory and register. 

We will see this a little latter. 
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And then the computed result is left in a register as long as possible. Unless the register 

is useful for some other work, we are not going to vacate the register thereby we 

probably avoid repeated loads. We store only at the end of a basic block unless we are 

compelled to do otherwise or when that register is needed for another computation. 

On exit from a basic block, store only live variables which are not in their memory 

locations already. This as I said can be found out very easily using the address descriptor. 

Live variables are those which will be useful even after the basic block is completed. 

In the next basic block, programmer defined variables are normally live, even after the 

basic block is completed, whereas temporary variables have the scope within the basic 

block. If liveness information is, for example, not available at all what do we do? We 

cannot stop code generation. We assume that all the variables are live at all times thereby, 



at the end of a basic block we need to store every variable into their home memory 

location. 
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Let us look at an example and understand how this scheme B works and then go on to 

the scheme itself. 

Say, the quadruple is A equal to B plus C. If B and C are in registers R1 and R2, then 

generate add R2 comma R1; the cost of this is 1 and the result is in R1, but this is legal 

only if B is not live after the statement because we are destroying B. B is in R1 and after 

this instruction is executed B will not be in R1. 

It is the value B plus C - that is, A - which will be in R1. This is one possible alternative. 

The other alternative is, if R1 contains B, but C is in memory, then generate add C 

comma R1; cost is 2 because you need to fetch from the memory location, C also; and 

the result is in R1. 

One more possibility is we load C into R2 and then add R2 to R1. (Refer Slide Time: 

22:29) Cost for this is 3 because you are loading this also into R2 and then adding it; the 

result is in R1. This is legal only if B is not live after the statement. Again the same issue; 

both these are the same. B is destroyed and it is attractive if the value of C is 

subsequently used. In both cases, if we are going to use C later on then we can take it 

from R2 and we do not have to load it into R2 all over again. 
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. 

That is how the many options available during code generation regarding availability or 

otherwise of a variable in memory or in register is tackled. To do that and to usefully 

retain only those values which are used later in registers, we use some information called 

next use information. 

It is used in code generation and also register allocation in scheme B. What is next use? 

For example, consider quadruple i and quadruple j; the control flows from i to j with no 

assignments to the variable A, which is defined here. 

There is an assignment to A and then there is usage of A; in between there are no other 

assignments to A. So, the value of A here, is valid here also. (Refer Slide Time: 24:01) 

The next use of this A in quad i is j, if this is true. In computing the next use, we assume 

that on exit from the basic block all temporaries are considered non-live, so they are not 

useful anymore. 

All programmer defined variables and non-temporaries are live. This is the assumption 

that we make. If this is not true then we will have to assume that all temporaries are, all 

variables are non-live. 

Each procedure function call is assumed to start a new basic block. There are no 

interactions from the procedure call inside the basic block itself. It becomes a separate 

basic block and it can be handled in a much better fashion. Next use is computed on a 



backward scan on the quadruples in a basic block, starting from the end. We will see an 

example of this now and next use information is stored in the symbol table itself. 
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Here is an example of how to compute next use. Here nlv means not live, lv means live, 

lu means last use. nu means next use. Let us start from the bottom and see how the 

algorithm computes next use information. This is the last quadruple of the basic block. 

So, there is no more usage of the variable I or any other variable for that matter after this 

basic block. For I, it is a programmer defined variable. So, it is recorded as live and then 

the current quadruple number in which it is used is recorded as last use - that is eleven. 

There is no next use because this is a last quadruple after which there are no usages of 

any variables. With this information, we go to quadruple of ten. Here is I is equal to I 

plus 1 again. 

I is live always. Remember that I and PROD are programmer defined variable. So, they 

are always live. Last use of this I is 10 because I is used here and this is the quadruple. 

Then next use of I is in 11 because the value defined here is used in 11. 

What we really have done is use this last use information to be recorded as next use 

information for the previous quadruple. That is how, the last use is used. PROD is a 

different variable; none of this holds now; it is always live. Its last use is nine, the current 

quadruple number and there is no next use because there is no usage of PROD after this 



and this was the initialization to the variable and it remains as it is. T6 is a temporary. So, 

it is always not live after the basic block. Its last use is 9 and there is no next use for it 

because it is not referred to anywhere here. As far as the initialization is concerned, it 

would have been initialized to nnu and continues to be nnu. 

When you come to quadruple number 8, for T3 and T5, there is no next use because this 

is the first time that we have used it and the current quadruple numbers are recorded as 8 

and 8. For T6, the last use is recorded as 0 indicating that this is a definition. A definition 

always terminates that live range. Even if there were to be any usages of T6 here, all 

those are not going to be the same T6. It is redefined here. So, it is apt to say that the 

there is no last use; that is last use is 0. 

Once we go up to T5, this information about T5 which is already in the symbol table, for 

example, it had recorded not live, last use 8 and nnu. (Refer Slide Time: 28:22) This lu 8 

is copied to this nu. For example, T5 becomes next use 8. So, whatever was here is 

copied here, lu is 0 because it is a definition and as far as T4 is concerned, it is not used 

again. We still do not have anything here which is useful. For T4 in quadruple number 6, 

we are copying lu 7 to nu and this continues. For T3 if for T2 T1 For example, T2 and T1 

have nothing. Let us look at this T1 itself. We had T1 here which recorded nu as 7 and 

then the last use as 5; lu 5 here is copied to next use 5 here and I is always recorded as 

live. (Refer Slide Time: 29:21) Finally, the last use is 3 and nu is 10; from this quadruple 

we had recorded lu as 10 and now this is recorded as 10. So, in a backward scan you can 

compute this next use information using the last use information. 
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How do we use this? We now begin the discussion of the algorithm itself. This algorithm 

deals with one basic block at one time and we assume that there is no global register 

allocation in this; there is a local register allocation which is the GETREG function 

which we are going to discuss very soon. 

For each quadruple A equal to B op C, we do the following. Find a location L to perform 

the computation B op C. It is not necessarily always a register, but most often a register 

is returned by GETREG. 

So this L is obtained via GETREG. We will see very soon how? It could be a memory 

location; normally it is not. Where is B? Let us say the location of the B prime B of B is 

B prime and it is found using the address descriptor for B that is what it is meant for. 

Address descriptors tell you for each variable, where exactly it is located. If it is 

available in register and memory, let us prefer the register; say B prime is a register now. 

If B prime and L are not the same, then we generate an instruction called load B prime 

comma L to move the value from B prime to L. If B prime and L are the same, there is 

no need for this particular instruction. 

Where is C located? It is in C prime and again we find it using the address descriptor. 

Now generate the instruction op C prime comma L. Once all this is done we have to 

update the descriptors for L and A. Now, L contains the result and it is supposed to be 



contained in A. L is a register; we need to modify the register descriptor for L. Similarly, 

whatever A is, the address descriptor for A will have to be modified, mention where 

exactly its value is contained whether a register or a memory location etcetera. If B and 

C have no next uses then update the descriptor to reflect this information. This is one 

place where next use is used. That means from now onwards B and C need not be in the 

registers; their registers can be used for some other purpose that is what this really 

means. 
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What does the function GETREG do? It finds a location L for computing the B op C; in 

other words, computing A. There are 4 steps here. First one says if B is in a register, say 

R, and R holds no other name, the address descriptor tells you what the other names 

corresponding to this R are and then B also has no next use; so, it is not useful anymore. 

This is the last place where B is used; B is not live after the block. So, we do not have to 

bother storing. 

If it is live, then we have to store it into its memory location. We cannot destroy the value 

now, and then return R. If all these conditions are satisfied, B is in a register, it 

corresponds to only one name, it has no next use and it is not live after the basic block, 

then return R. 

If this is not possible, failing one, return an empty register if it is available. If empty 

registers are also not available then if A has a next use in the block, that is A is useful 



later on or if B op C needs a register compulsorily, for example, in indexing operations a 

register is essential if op is an indexing operator, then somehow we will have to free a 

register. 

How do we free registers? We must use a heuristic to find an occupied register and then 

empty the contents of that register into its home location and release that register. 

How do you find an occupied register? There are many heuristics possible. For example, 

a register whose contents are referenced farthest in future. If it is used immediately in the 

next instruction, it is not a good idea to empty that register and release it. 

But if it is used 5 or 6 instructions away perhaps by the time we reach there, some other 

register would be free and therefore, we can load that into the register - the value can be 

loaded into a register all over again. 

Or the number of next uses is the smallest. Look at the next uses of each register, the 

value in the register. Take one which is used very few times that may be cost wise the 

best because if it is used very small number of times, we have to really load that value 

into a register only a few times, but if you choose a register which is used very large 

number of times or the value is used very large number of times, we have to load it into a 

register every time. 

So this is the issue behind the heuristic. Now we have a register. We have to split it by 

the generating an instruction MOV R comma mem. mem is the memory location for the 

variable in the register R. We can get this information from the register descriptor and 

that variable is not already in mem. 

So this address descriptor will tell you whether mem already contains the updated value 

or it does not. Once it is done, we probably generate the instruction and update the 

register and address descriptors because now situation has changed. The registers do not 

hold the value they are supposed to hold; they have been released. If A is not used in the 

block or no suitable register can be found, only then return a memory location for L. 

So, this is what I was saying it is not compulsory for L to be a register. It can be a 

memory location, but that is the last resort. 
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So let us look at a simple example to understand the code generation process. T, U and V 

are temporaries they are not live at the end of the block. So, there is no need to store 

them at the end of the block. W is a non-temporary and it is live at the end of the block. 

We have to store it into its home location after the block is completed and let us assume 

there are 2 registers. 

First statement is T equal to A star B. To begin with, the first instruction is this. All the 

registers are free; none of them contain any values. GETREG will return R0 for A. So, 

we load A into R0. We do not need another register for B because we do not call 

GETREG, the second time. GETREG would have returned location for A which is R0. 

Now, Op B comma R0 is Mult B comma R0 and the result now goes into R0. R0 now 

contains T that is the register descriptor content and address descriptor says T is in R0. 

Now, U equal to A plus C, remember that the R0 which is actually the value of A is now 

destroyed. It now contains the value of T that is A star B. This is because our code 

generation scheme is a very simple scheme. It does not see whether there are many uses 

of the same variable A on the right hand side. It only checks if this T is used later.  

U equal to A plus C, we load A into another register R1 which is free; add c to it. Now, 

R0 contains T, R1 contains U are the contents of register descriptor; T in R0, U in R1 are 

the contents of address descriptor. 



When we look at V equal to T minus U, immediately the GETREG function knows that 

T is contained in the register using these descriptors. It is in R0, U is in R1; this is 

immediately found out and it also sees that T is not used later on. So, it is okay to destroy 

it. It simply emits the single instruction Sub R1 comma R0. From now on, R0 contains V 

R1 contains U. For the instruction W equal to V star U, it emits the instruction R1 

comma R0 because it is okay to destroy V after this instruction and finally, once the basic 

block is completed the value of W which is in R0 is stored back into its memory location 

W. Memory is restored and code generation is complete for this particular block. 
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Now we start looking at another scheme of code generation. So far, we saw a model in 

which code generation is not guaranteed to be optimal or otherwise. There was no result 

which said anything about the code generation strategy. 

Sethi-Ullman algorithm is one of the algorithms which is guaranteed to generate optimal 

code for a certain type of machine model. For example, look at the cost model; the cost 

model says it generates the shortest sequence of instructions. The cost is the length of 

that particular sequence itself and it is possible to prove with respect to the length of the 

sequence that this is an optimum algorithm. 

In other words, the code which is generated by this algorithm is the shortest in length. No 

other code can be shorter than this, no scheme can give you shorter than this and it is 



useful for only expression trees. This is a slight disadvantage because you cannot 

generate optimal code for directed acyclic graph. 

Unfortunately that problem is (( )). So, there is nothing we can do. We have to actually 

represent basic blocks as trees instead of directed acyclic graph and that is possible. We 

will see that later. 

The machine model which is used here assumes that all computations are carried out in 

registers. There is no computation which is directly carried out in memory and 

instructions are of the form, Op R comma R or Op M comma R. So register and register; 

it does not mean the same register, could be Op Ri comma Rj and op M comma R.  

Whatever is the operation, it takes one of the operand as M but, the result is always in R. 

It always computes the left subtree into a register and reuses it immediately. 

This is a very important feature of this particular algorithm. The left subtree is computed 

into a register and the result of that left subtree is used immediately. There are 2 phases 

in this particular algorithm: the first phase is the labeling phase and the second phase is 

the code generation phase. 
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The labeling phase labels each node of the tree with an integer. So, the number that we 

compute tells you what exactly is the fewest number of registers required to evaluate the 

tree with no intermediate stores to memory. 



So this is what the number tells you. How do we compute such a number? We will see 

that very soon and we are going to consider only binary trees because all over operators 

are either unary or binary. 

Suppose the node is a leaf node, in that case, if n is the leftmost child of its parent then 

label of n is 1, otherwise label of n is 0; very simple, leftmost child 1, otherwise 0. 

For internal nodes, label is computed as the maximum of L1 and L2, if L1 not equal to 

L2 and it is L1 plus 1, if L1 equal to L2. 
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Let us look at an example and understand this process better. We start with the leaves. 

This is the leftmost child of its parent; so this is 1. This is the second one, the right one; 

so this is a 0. 

Similarly this is a 1 and this is a 0; this is a 1 and this is a 0. For the internal node n1, this 

value and this value are not the same. L1 not equal L2; so, the maximum is taken and 

that is 1 here, here also the maximum is 1 and here also the maximum is 1. 

Now, all these 3 nodes have 1. Let us look at this node; it has 2 children and its 

numbering has been 1 and 1. These 2 values are equal; so, this is numbered as 1 plus 1 

that is 2 - L1 plus 1. 



Now n2, n3 and n4 are the children of n5. This is 2 and this is 1; so they are unequal. We 

just take the maximum, which is 2. 

What does this really mean? This means that this entire expression tree can be evaluated 

with no stores into memory, with just 2 registers. The same is true for this. It requires 2 

registers; this requires 1 register, this requires 1 register and this also requires 1 register. 

Let us see how this is done. If you have just 1 register, then load the value of A into that 

register and perform this operation with b as the other operand. The result is also going 

to be in the same register. So, 1 register is sufficient for us. 

(Refer Slide Time: 45:40) If you do not have another register, this cannot be evaluated. 

That is the reason, to compute this particular tree, we require 2 registers. We evaluate this 

tree into 1 register, we already saw how to do that and then we evaluate this tree into 

another register R1. This is very similar to that. R0 and R1 contain the 2 values of the 2 

children and now this can be computed into the same register R0 which is the register of 

its left child and now R1 becomes free. R0 is held; it holds the entire tree value, but R1 is 

free. That R1 is used for the computation here. 

This is just loading it into R1 and this does the operation with R1 and another operand 

from here. R1 contains the result of n4, R0 contains the result of this entire tree and 

finally, we can perform this operation with R0, store the result also in R0 and release the 

register R1. That is the reason why this entire tree can be evaluated in 2 registers. 

Suppose we had performed this particular operation first, we had loaded into R1, then we 

performed n4 and now the result is available in R1. 

We just have one more register left and that is not sufficient for the evaluation of this 

particular tree. Our code generation strategy is going to be straight forward. It always 

sees first we compute the numbers, these MINREG values and at every step, we see 

which subtree requires more registers then generate code for that particular subtree and 

then go to the other subtree. When we generate code for a particular subtree say k 

registers are needed for that; we use all the k registers, compute the result, hold it in one 

of the registers and release the other k minus one registers. This is our strategy. 
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Procedure GENCODE - with a node n which is a root of that particular tree. Here we use 

2 data structures: one is called the register stack which is stack of registers R 0 to R r-1. 

So, there are r number of registers. 

The stack of temporaries is called is called TSTACK and there is no limit on its length as 

many temporary as we need are available in this particular stack. When we call Gencode 

n, it generates code to evaluate a tree T rooted at node n, into the register which is on the 

top of RSTACK. That is a very important thing. 

Whenever we call the function Gencode, we give it a stack of registers and a stack of 

temporaries. The stack of registers will contain the result of this particular tree in the top 

most registers. 

And all other registers are supposed to be free. The rest of RSTACK remains in the same 

state as one before the call - that is free. 

We also require a swap operation of the top 2 registers of RSTACK sometimes to ensure 

that a node is evaluated into the same register as its left child. These are some of the 

features. This last feature is needed to prove the optimality of the code. That is why, this 

is also equally important. 
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Let us look at the various cases of this particular algorithm. case 0, there is a node n 

which is a leaf node. This is case 0. If n is a leaf representing an operand N and is the left 

most child of its parent, we generate the code LOAD N comma top of RSTACK. This 

will be some register at run time; it may be some R0 or R1, whatever it is, the instruction 

which should be emitted would be LOAD N comma that particular register. This is the 

case 0. 
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Case 1: the right operand is a leaf and the left operand is a subtree. n is an integer node 

with operator OP, left child n1 and right child n2. Right child is a leaf node. That is if 

label n2 equal to 0, that is it is a leaf node, let N be the operand for n2; we generate code 

for n1 by calling the rooting gencode recursively on this particular subtree. 

Once this is completed, the top of RSTACK will contain the result of n1. We generate 

code OP N comma top RSTACK. Now again the top of RSTACK will contain the result 

of this entire tree as well. So, we have restored the stack the way it was. 
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This is case 2. You have a subtree n1; you have another subtree n2 for this particular 

node n. This subtree n1 requires less than r number of registers; this subtree n2 requires 

more than what n1 requires. 1 less than label n1 less than label n2, that is the order; the 

other order is considered in the next slide and label n1 is less than r. In other words, we 

require less than r number of registers to evaluate n1.  

(Refer Slide Time: 51:52) This requires a little more than what this requires. Let us say r 

is 10, this requires 5, this could require 8 or it could require 11 that does not matter. In 

this case, we do what is known as swap operation on the RSTACK. Why? The swap 

function ensures that a node is evaluated into the same register as its left child. 

This will become very clear now. So, swap the RSTACK. If let us say the top two are R0 

and R1; now it becomes R1 and R0. gencode n2, R1 is at the top of stack. (Refer Slide 



Time: 52:28) The result of this entire thing, because this requires more registers, the 

recursive routine is called on n2 first. This I have explained already. 

This tree will evaluate into the top of RSTACK which is R1 after the swap. Pop that R1 

into the variable R at compile time, variable R. R0 is on the top of the stack, below that 

is R2 etcetera. Call this routine on n1. 

When we do that, R0 will now contain the result of this particular subtree n1. Now, 

generate the code for this entire thing OP R, which is this and top of RSTACK which is 

R0, which is corresponding to this. 

So this entire tree is now available in top of RSTACK which is R0, but R is outside the 

stack. So, we push the R into the RSTACK. 

But then now the order is reversed; R1 is at the top and R0 is below it. So, we swap the 

RSTACK, the top 2 entries. R0 comes to the top and it also holds the value of this entire 

tree, thereby we have restored the configuration the way it was. 
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Now the case number 3, this right child requires less than r; this requires more than what 

n2 requires - so the other case. 1 less than equal to label n2 less than equal to label n1 

and label n2 less than r. Obviously, in this case we do not require any swap. We just 

generate code for n1 and pop it. 



So, R0, now, is in the variable R. It is removed from the RSTACK. Call gencode on n2; 

that will be evaluated into the present top of stack say R1. Issue the instruction OP top of 

RSTACK comma R and finally, push. This should have been OP R comma top of 

RSTACK, there is a slight error here. The assumption is The result is the second operand. 

Then we push the removed register into the stack again, thereby R0 now is at the top of 

the stack and the configuration is restored. 
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The last case is case 4; both require more than r number of registers, more than equal to r 

number of registers. 

We need a temporary, in order to hold this particular result. Let us say arbitrarily, we 

gencode for n2, take a temporary from the stack, push that result from top of RSTACK to 

t, the temporary. All the registers are available for n1, generate code for n1, print the 

instruction OP T comma top of RSTACK, thereby the result of this entire tree is available 

in the top of RSTACK and replace the temporary into the temporary stack. 

So, thereby we have actually use the entire stack of registers which is available to us, but 

because both these children - the subtrees, require more than r number of registers, it is 

not possible to generate code without storing this particular result. Gencode n2 generates 

a result in the top of RSTACK; it cannot be retained there. We have to place it in a 

temporary and then continue with the operations. We will stop here. This lecture will 



stop here and the next time, we will continue with examples of the Sethi-Ullman 

algorithm and also the dynamic programming algorithm. Thank you. 


