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Welcome to part 3 of the lecture on run time environments. In the last part of this lecture, 

we learnt about various parameter passing methods, storage allocation, activation 

records, static scope, dynamic scope, passing functions as parameters and so on. 
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Today, we will discuss heap memory management and also garbage collection. What is 

heap memory management? What is a heap? We must describe what a heap is. 

If you look at the very systematic allocation and deallocation of activation records, it is 

clear that we can use regular stack as far as activation record allocation and deallocation 

is concerned, but if you consider dynamic data structure such as linked lists and trees, the 

nodes of such lists and trees are created arbitrarily all over the program possibly and they 

are also deleted all over the program. The allocation, deallocation is not as systematic as 

in the case of activation records. 

Therefore, we require a slightly different mechanism - The dynamic memory allocation, 

deallocation to perform dynamic memory allocation and deallocation, in the case of a 

heap. In C programs, we have malloc and free to perform allocation and deallocation; the 

equivalents in C plus plus programs are new and delete; and finally, in java programs, 

there is only allocation, which is going to happen using the new call; there is no 

deallocation by the programmer. It is actually done automatically by the java run time 

system. What happens is that when the program runs out of the heap memory, a call to 

the garbage collector is made. The garbage collector collects all the memory area which 

is not in use, and returns to the program and continues with the allocation. That is how 

allocation and deallocation happen in various programming languages. 
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 A memory manager is the one which manages heap memory; it implements the 

allocation, deallocation policies - possibly manual or possibly automatic. 

Of course, the goals of a good memory manger are many; first of all, space efficiency - 

as we will see soon, whenever there is allocation followed by deallocation at random, the 

heap memory available gets fragmented. The problem with fragmentation is that you 

may have enough memory available in small chunks, but request for very large chunk of 

memory cannot be satisfied. 

This is fragmentation; and we need to minimize fragmentation so that we can satisfy as 

many request for allocation as possible; then the efficiency of the program itself - we 

must actually take advantage of the locality of objects in the memory and make the 

program faster. How do we do this? If we are able to take advantage of the locality of 

objects, then possibly the cache will accommodate many objects which are going to be 

used very frequently, and when objects are located in cache, obviously, the programs run 

faster. 

The memory manager must also have low overhead. Allocation and deallocation by 

themselves should not take too much time; they must take as little time as possible. The 

heap also needs a data structure for its maintenance. Usually, it is maintained as a doubly 

link list or as bins of free memory chunks; these are all going to be discussed, in some 

detail, in the coming slides. 



(Refer Slide Time: 05:08) 

 

What is allocation and what is deallocation? Let us look at a picture along with this slide 

in order to understand. In the beginning, the heap is one large and contiguous block of 

memory. Then, as allocation requests are satisfied, parts of this large piece of memory 

are cut off from this block and given to the program. These are based on the allocation 

requests of the program and then, possibly, some nodes are deleted in the data structure. 

So, deallocations are performed by the program. Then, these chunks, which are 

deallocated, are returned to the heap and now they can be allocated again. Such free 

chunks are called as holes. 
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After a number of such allocations and deallocations, memory gets fragmented and it is 

not contiguous any more. Let us look at a picture to understand what is happening. Here 

is a large piece of memory; to begin with, the whole heap is a single chunk of size 500k 

bytes. 

Let us say we allocated all these to begin with; we made a request for 100, then 50, then 

20, then 50, then 200, then 30, then 50 and so on. Then, somewhere in the middle of 

these allocations, we also freed this particular chunk of memory 50k; and then we freed 

another 50k; finally, we freed one more 50k. It is just coincidence that these are all equal 

in size; they could have been even the 200k or the 20k nodes. Once a sequence of such 

allocations and deallocations happens in any particular order, the memory looks as 

shown here; these are the free holes. These are the only ones which can be allocated to 

the program when there is a request.  For example, if there is a request for 50k block, this 

can be released or this can be released or this can be released, but if it is for less than 

50k, then we can cut off a part of this free memory and return it. If the request is for 

more than 50k, say 70 or 100k or even more than 100k, say 110 and 120 etcetera, even 

though the total size of the free memory is 50 plus 50 plus 50 - 150, none of these 

requests can be satisfied. It is not possible to combine these two into a single piece of 

memory and then return that contiguous piece as what is required by the program. 

Let us go back. Allocation from a fragmented heap may be made in either a first-fit 

manner or the best-fit manner; we will see what these are. After a deallocation, we try to 

combine or coalesce contiguous holes and make a bigger hole. This is needed to 

minimize the fragmentation; that is what I was explaining a few minutes ago. If possible, 

we could shift this free chunk to this place, then the busy chunk to this place and then 

may be combine the two free chunks to get a much bigger chunk. These are possibilities, 

not that every memory manager does all these. 



(Refer Slide Time: 09:00) 

 

What is first-fit and what is best-fit? The first-fit strategy: it always picks the first 

available chunk that satisfies the allocation request. There may be many chunks, which 

satisfy the request; as I told you it is maintained as a doubly link list. 

The free chunks are all maintained as a doubly link list. Any one of these, which actually 

satisfy the programmer’s request, can be picked and then returned to the program. So, in 

the case of first-fit, the first one which satisfies the request is taken and returned to the 

program. Of course, the whole chunk, if it is much greater than what the program 

requires is not returned; part of it, which satisfies the programs request is cut off, 

chopped off from the free memory block and then returned; the rest remains in the 

doubly link list pool. 

In the case of best fit strategy, the allocator searches through the doubly link list of the 

free blocks, picks the smallest which is the best possible chunk that satisfies the 

allocation request. In such a case, even if that smallest chunk is bigger than what we 

require only a small part will be left out in the heap because of this chopping process. 

Whereas in the first fit case, even if is the first one is much bigger than what we require, 

then large piece has to be cut off and the remaining large piece remains in the heap. This 

may actually increase the fragmentation. So, rest of the chunk remains in the heap itself. 
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As I explained the best fit strategy has been shown to reduce fragmentation in practice; 

that is the best. It is much better than the first fit strategy because first fit strategy cuts off 

chunks from free memory in some arbitrary manner and is not like the best fit strategy. 

These two, first fit and best fit are really very well-known strategies. A slightly less 

known strategy is the next fit strategy. What is it? The next fit strategy tries to allocate 

the object in the chunk that has last been split. In other words, suppose there is a free 

chunk x which was actually very large, so the allocator chopped off one part of it and 

returned it to the program at this instant. The next allocation is also made from the same 

chunk. So, whatever was chopped and returned to the pool, the remaining one that stays 

in the heap; that is used for allocating the next request as well. 

If this happens, it obviously improves speed of allocation. Why? The pointer in the 

doubly link list - one of the pointers will be pointing to the last allocated or chopped off 

chunk. If the next request is automatically done from that particular chunk, the speed of 

allocation is good; allocation is done immediately. There is no need to search anything; 

searching will be definitely required if that chunk does not satisfy our request; then you 

have to find the different chunk .if it satisfies the request then the same chunk is used. 

It tends to improve the spatial locality also, since objects allocated at about the same time 

tend to have similar reference patterns and life time as well. The result of this is these 



objects get into the cache one after another and the behavior of the cache may become 

much better. 

These are all together; they all get into the cache at the same time. The program is going 

to refer to these objects very soon and therefore, the behavior becomes much better. 

(Refer Slide Time: 13:37) 
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That was about first-fit and best-fit strategy and that used doubly link list based approach 

for allocation and deallocation. Here is a different strategy called the bin based heap. In 

this case, the free space is organized into bins according to their sizes. Such a memory 

manager was proposed by Lea; therefore, it is called as the Lea memory manager and 

that is what is used in the GNU C compiler, GCC. 

Many more bins for small sizes exist in such a manager because there are many more 

small objects than large objects; that is the statistical information. Small sizes are used 

many times where as large sizes are not used so often. 

A bin for every multiple of eight byte chunks from 16 bytes to 512 bytes is used. Let me 

show a picture. 
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. 

These are the various bins and these are the chunks which are actually used for 

allocation. Here from 2 to 64 we have exact size bins; in other words, the chunks here are 

all of 16 bytes size. The next one will have a linked list here, we have not shown any 

because of lack of space. The linked list here will have chunks of size 24 bytes; the third 

one will have chunks of 32 bytes and so on and so forth. Up to this sixty fourth bin 

which will have chunks of size 512, these are all exact bins, there is no variation in the 

size of these bins. They are all of the same size; these are all of size 16; these are all of 

size 32 etcetera.  

Then we have many of these bins which actually have variable size chunks. Let us see. A 

bin for every multiple of 8 byte chunks from 16 bytes to 512 bytes that is what I just now 

explained. Then approximately logarithmically, in other words, every bin is of double the 

previous size - that is here. 

 So, 576, 640 and so on and so forth. These are the sizes of the various bins. There are 

chunks of this size possibly between 512 and 576, between 576 and 640 and so on and so 

forth. That is how it would be. Within each small size bin, chunks are all of the same 

size. I mentioned this just now. In others, they are ordered by size. Here these chunks are 

not of the same size they may be of different sizes, but they are stored in sorted order. 

So, between 512 and 576, there are many chunks; they are all stored here, between 576 

and 640, they are all stored here and so on and so forth. 



The last chunk in the last bin is called as the wilderness chunk which gets us a chunk by 

going to the operating system. What does that mean? (Refer Slide Time: 17:22) For 

example, here there may be many chunks. Suppose the memory manager wants 

something which is much bigger than what is available even in the last bin - this 

particular bin. The last chunk or the node of this particular linked list is called as the 

wilderness chunk; that is not really a chunk. It is actually going to be some kind of a 

sentinel and when we reach it, the memory manager makes a call to the operating system 

saying that we do not have any more memory. Please give us more memory. Then more 

memory is returned to the memory manager and the operation continues from that point 

onwards; that is why it is called as a wilderness chunk. 

(Refer Slide Time: 18:18) 
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How does one manage and coalesce free space? So far, we saw first fit based strategy 

then, best fit based strategy and bin based strategy for allocating and deallocating space. 

How is free space managed? Let us see. 

Whenever there is deallocation of chunk of memory, it is necessary that the adjacent free 

chunks be coalesced. If they are coalesced, then fragmentation reduces because the 

chunk size now increases. The problem with fragmentation is there are many small 

chunks and we cannot satisfy a big request. If it is possible to combine smaller chunks 

and make them bigger; that can be done when free chunks are adjacent to each other; 

then the fragmentation automatically reduces. 



Many small chunks together cannot hold one large object. In the Lea memory manager, 

no coalescing in the exact size bins, only in the sorted bins. Exact size bins have chunks 

of the same size. So, there cannot be any coalescing performed on those bins, but in the 

other bins that we saw there are chunks of various sizes. So, it is possible to coalesce 

them. Only thing is when you coalesce and they become much bigger, they may be have 

to be shifted to a different bin altogether. 

Then how is this coalescing done? We use what are known boundary tags. This is a bit 

which indicates whether the chunk is used or it is free and there is also information about 

the chunk size. This is maintained at the end of each chunk for both used and free chunks 

and there is a doubly linked list of free chunks. This is true for first fit, best fit strategy 

and also for the bin based strategy. Let us look at a picture. 
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We have three chunks here. All the three chunks are adjacent. C is occupied, so, it is 

really being used by the program. Chunk B has just been deallocated; A was deallocated 

quit some time ago. This was returned to the free list or the heap. Now, because A and B 

are adjacent they can be merged and we can create a single node of double this size. How 

can this be done? Let us look at the boundary tags first. 0 here 0 here, at the two ends of 

chunk A indicate that chunk is free. Similarly, 200 here and 200 here at the end of chunk 

A indicate the size of this free chunk. The same is true for chunk B. Observe that this 

boundary tag and this boundary tag are zero indicating that both are free, but this chunk 



is also free; whereas for chunk C, which is occupied, the boundary tag is one; the size 

information is maintained; and the boundary tag information is maintained for all free 

and occupied chunks. When this particular chunk B is freed, it is easy to see that the 

adjacent bit - the boundary tag bit, free used bit can be checked. It is one location beside 

this in memory. If that is a zero, then we know that the entire chunk is free. When it 

checks the chunk on the right side, it is one; therefore, entire chunk is not free. So, you 

cannot really coalesce B and C; you can only coalesce A and B. When we coalesce A 

and B, these two links have no meaning anymore; it is only this link and this link which 

matters to us. 

(Refer Slide Time: 22:25) We manipulate only these two links and we forget about these 

two links. This boundary remains as zero; the size information becomes 200 plus 100, 

300. Here it becomes 300 and here also it becomes 300. That is how chunk coalescing 

happens. The merged chunk AB may have to be placed in a different bin, if it is a bin 

based memory manager. 
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What are the problems with manual deallocation? For example, there may be memory 

leaks: failing to delete data that cannot be referenced. We have actually started 

manipulating links in a linked list. May be we made a small mistake in the program. A 

link which was pointing to the next node now points to some other node. So, the node 

which was being pointed to is not reachable any more. It cannot be referenced at all, but 



the programmer forgot to delete that particular node. So, this is failing to delete data that 

cannot be referenced any more. The memory is being used; it has not been returned to 

the pool or the heap; that memory cannot be used for allocation and it is a waste. This is 

a memory leak and such memory leaks are very important in long running or nonstop 

programs such as monitors and operating system programs because it is not as if the 

program stops and memory gets flushed and all the objects go away and we start all over 

again. The memory which is wasted in this manner will actually be wasted forever; there 

is nothing we can do about it. 

So, memory leaks are very important in such long running or nonstop programs. Then 

we have the famous dangling pointer dereferencing. Here we are referencing deleted 

data. This is very common. You think that the link is not null; you try to actually do 

some a dot or a pointer data and so on and so forth. Unfortunately A is null. There was a 

problem with the program; it was not written well. A is null and you are trying to access 

null dot something; not possible at all. This is a dangling pointer dereferencing problem; 

it happens because of programmer’s bugs. 
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Both these are very serious and very hard to debug. Therefore, if we can actually do 

allocation automatically, then some of these problems may be eliminated. So reclamation 

of chunks of storage holding objects that can no longer be accessed by a program is 

called garbage collection. 



GC should be able to determine types of the objects. We will know why, very soon we 

will know that. Then the size and pointer fields of objects can be determined by the 

garbage collector. Once I know the type of the object, I know the size of the object as 

well - this is the point. Languages in which types of objects can be determined at compile 

time are known as type safe. Even if they can be done at run time, even then they are 

called type safe. So, it is even stronger, if it can be done at compile time. 

Java is type safe. You can determine the types of objects, most of the time, at compile 

time. C and C plus plus are not type safe. Why? It is because they permit type casting. 

You can convert any type to any other type in C and C plus plus which creates new 

pointers. Thus, any memory location can be accessed theoretically at any time and hence 

it cannot be considered as inaccessible. You have a problem here. You type cast one 

variable to another type and you try accessing it. In other words, you can make anything 

a pointer anytime, try accessing any part of the memory. Well, you may actually get a 

core dump and the program may stop, but that is beside the point. 
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How is garbage collection performed? The concept of reachability of object is very 

important here. See, there is something called a root set. The root set is all the data that 

can be accessed or reached directly by a program without having to dereference any 

pointer. In other words, most of the time these are the variables which are declared by 

the programmer. 



Of course, there are slightly error possibilities, but most of the elements of the root set 

are programmer defined variables - pointer variables. Then, we determine this root set to 

begin with. They are all pointers. So, recursively, any object whose reference is stored in 

a field of a member of the root set is also reachable. So these are now first level are 

programmer defined variables, they are definitely accessed by the programs and so they 

are reachable. Now you look at the inside of this particular object which is pointed to by 

one of the field members of the root set. That is also reachable. Many pointers has fields; 

so, the objects that can be accessed from these pointers; they are all reachable. 

This goes on recursively. In other words it is like a graph. Imagine a tree. Start with the 

root, which is pointed to by a programmer defined variable then slowly, gradually the 

left link and right link can be traversed then they become reachable. Then the left link 

and right link of the children can be traversed and so on and so forth. So recursively the 

whole tree becomes reachable. 

New objects are introduced through object allocations and they are added to the set of 

reachable objects. How we do this, we will see very soon. 

Parameter passing and assignments can propagate the reachability of these objects. New 

objects are created through new or malloc calls and when we pass some pointer as a 

parameter to another function, then the objects pointed to by this parameter are visible 

within that function also, then you can manipulate a little more and the reachability 

propagates. 

Assignments and ends of procedures can terminate reachability. If I have A equal to B, 

both are pointers, whatever was pointed to by A is now destroyed. B is copied to A now. 

From now on that variable A points to whatever B points to. So, this assignment has 

ended the reachability of objects which were reached by A. Similarly, ends of 

procedures: when I return from a procedure all the local variables are lost. So, 

reachability of objects from those local variables is also reduced or affected. 
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Similarly, an object that becomes unreachable can cause more objects to become 

unreachable. I will show you a picture to demonstrate this. What does a garbage collector 

do? A garbage collector periodically finds all unreachable objects by one of the two 

methods: first method is catch the transitions as reachable objects become unreachable; 

we will see the reference counting method which is one such method or periodically 

locate all reachable objects and infer that all other objects are unreachable. This method 

we are not going to describe. There are many such methods under the second category; 

they are far more complex than the garbage collector itself and become the topic of very 

serious discussion 



(Refer Slide Time: 32:04) 

. 

Let us look at the reference counting garbage collector, which is an approximation to the 

first approach mentioned above. That is when an object changes its state from a 

reachable object to unreachable object we catch that object and do something. Let us see 

what we do. We maintain a count of the references to an object. As the program or the 

mutator performs actions that may change the reachability set. So, this count also is 

going to be changed. When the count becomes zero, the object becomes unreachable and 

reference count requires an extra field in the object and is maintained as below. 

(Refer Slide Time: 33:00) 

 



Let me show you a picture to understand reference count manipulation and then we go 

back to discussion. Here is a data structure; there are four nodes A, B C and D. A was 

pointed to by some programmer defined variable. The programmer did not want this data 

structure anymore. So, he made the pointer which points to A point elsewhere. This 

particular thing became garbage; it is not reachable anymore, but the reference counting 

fields do not say the same thing. For this, the reference counting field has now become 

zero because it is not reachable from any other variable or pointer.  

(Refer Slide Time: 33:45) This reference count field is one because this node is pointing 

to it. Similarly, the reference count field for this is one because this node is pointing to it. 

The reference count field for D is two because both these nodes are pointing to it, but the 

situation changes very soon. The reference count of this is zero. So, it is garbage 

collected; this disappears. 

(Refer Slide Time: 34:13) 

 



Now, because the node A disappeared, the reference counts of B and C have also been 

made zero; that happens during the collection process. So, these two will also be now 

removed by the garbage collector. 
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Then the reference count field of D also becomes zero and that is also collected by the 

garbage collector. Let us go back and see how the reference counts are maintained. 
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If there is a new object allocation, then reference count is set as one for the new object. 

The new object is created. There is a pointer pointing to it and that is what is returned by 



the malloc or new call. It is reasonable to set the reference count one for the new object; 

there is only one pointer to pointing to it. 

Parameter passing: Reference count plus plus for each object passed into a procedure. 

That is each parameter that comes into the procedure is pointing to some object. This 

becomes a variable in a different procedure. We can say that the reference count now 

becomes one more because there is a new variable which is pointing to it - that is 

parameter itself. 

Reference assignments: u equal to v is the assignment statement where u and v are the 

references. Reference count plus plus for the object star v; that is this particular object 

now is star v; whatever is pointed to by v will also be pointed to by u now. v was 

pointing to something; now u also points to it. Now the object star v has one more 

reference. So, reference count plus plus. For u, it was pointing to something; from now 

on it points to what v points to. So, for the object which was pointed to by u, it is 

reference count minus minus object star u. 

Procedure returns: For returns, reference count minus minus for each object pointed to 

by the local variables. This is what I was saying. Once the procedure returns, all the local 

variables which are pointing to some objects are not available any more. Reachability 

reduces; so, reference count minus minus for each object pointed to by the local 

variables. 

Transitive loss of reachability: This is what I showed just now. Whenever reference 

count of an object becomes zero, we must also decrement the reference count of each 

object pointed to by a reference within the object. 
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This is what it is. These 2 fields are pointing to this node and this node. The reference 

count of A has become 0. We are going to actually reduce the reference count of this by 

one. So, this becomes 0; this also becomes 0. Finally, this is pointing to this and this is 

pointing to this. Both of them decrement this reference count by one; so, this also 

becomes 0; that is what I have showed just now; finally, D is also collected. 
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What are the advantages and disadvantages of the reference counting type of garbage 

collector? The red ones are all disadvantages and the blue ones are all advantages. There 



is very high overhead due to reference maintenance. For every assignment statement 

involving pointers, you do a plus plus or minus minus etcetera. So, there is a lot of 

overhead due to reference maintenance. You have to keep manipulating the reference 

counter and you cannot collect unreachable cyclic data structures, circularly linked lists I 

will show an example of this, since the reference counts never become zero. 
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The same old picture, this pointing to this, this pointing to this and this pointing to this, 

but I have also added cyclic part here. So, this points to this and this points to this. This 

counter is still one because this is the pointer pointing to this; this field is pointing to this 

particular node. This counter is one because this field is pointing to this node. This 

counter is two because this is pointing to it and this is also pointing to it. This is two 

because these two are pointing to it. None of the nodes are in the root set. No 

programmer defined variable is pointing to any of these, but because of the cyclic nature 

of this particular data structure none of these reference counts are zero. Therefore, none 

of the nodes can be garbage collected so this is the problem. 



(Refer Slide Time: 39:27) 

 

What are the advantages? Garbage collection is incremental; overheads are distributed to 

the mutator or program’s operations and are spread out throughout the life time of the 

mutator. If you have run any java program and when it runs out of memory; the java 

program just pauses. You try to do anything, click a mouse or something like that, click a 

button, nothing works. 

This is because the java program is now doing garbage collection. This is the pause that I 

was talking about. In the reference counting type of garbage collection, there is no such 

pause. Overheads of reference counting are distributed slowly gradually. The memory 

becomes unreachable and as soon as it becomes unreachable, it is returned; that is 

reference count becomes zero, the memory chunk is returned to the heap. 

So, it is incremental and it is very fast. Garbage is collected immediately and hence space 

usage is low. Imagine you had a large chunk of memory, you went on allocating it and 

no collection was made. Only when the entire memory was consumed, the garbage 

collector ran and then it collected and went back to the program. So, here, you probably 

need much more memory even though some parts of it became free in the middle 

because you are not really collecting such free memory somewhere in the middle. 

Whereas with reference counting type of garbage collection garbage is collected 

immediately, once the reference count becomes zero and hence you can probably do with 

less amount of heap memory. 



Reference counting method is very useful for real time and interactive applications 

where long and sudden pauses are unacceptable. This is what I just now told you java 

program introduce such pauses and these may be unacceptable to us. Therefore, this 

reference counting GC even with its limitations has its place in real time and interactive 

applications. That is the end of the lecture on run time environments. 

(Refer Slide Time: 42:09) 

 

Now, we begin the lecture on local optimizations. 
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The outline of the lecture is we study and understand: what are the basic blocks, what are 

control flow graphs, some of the local optimizations, how to build a control flow graph, 

directed acyclic graphs, value numbering and things like that. Why are all these very 

important? We know that the intermediate code generator produces intermediate code in 

the form of quadruples or trees and so on. 

Now because of the control instructions, jump instructions in the program the sequence 

of quadruples can be actually partitioned into smaller blocks and a graph structure can be 

accorded to them. These blocks are called basic blocks and the graph is called as a 

control flow graph. This basic block plus control flow graph structure is very useful in 

optimizations. We will see how they are done and they are also useful for machine code 

generation that will be studied sometime later. 
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What are basic blocks? Basic blocks are sequences of code with a single entry and a 

single exit.  
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Let me give you an example. There is only a straight line sequence within such basic 

blocks. You cannot quit until you come to the end of the basic blocks. Take this big 

block; there is no jump instruction anywhere in the middle of this particular block. It is 

only at the end. This type of sequence of quadruple is known as a basic blocks. 

So, they have a single entry and a single exit. We consider the quadruple version of 

intermediate code so that explanations are easier, but with some modification we can 

also process tree intermediate code. Flow graphs actually show the control of flow 

between these basic blocks and basic blocks are represented as directed acyclic graph. I 

will show you some examples of this which are in turn represented using the value 

numbering method which is applied on quadruples. We are going to all these processes 

along with optimizations on basic blocks. 

This is an example of a control flow graph. If you look at the sequence of quadruples 

alone, you would have PROD equal to zero, I equal to one then T1 equal to 4 star I 

etcetera. Then we have if I less than equal to 20 go to B2, instead of B2 it would be 

quadruple number three. This is number one, this is number two, this is number three and 

so on and so forth. Finally, this will also become number three and following that would 



be the stop. Each of these is a basic block and the control flow is between these basic 

blocks. 
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What are the local optimizations that we can perform? Optimization which are 

performed within a basic block are called local optimizations. We are not going to move 

any quadruples from the basic block to some other basic block, when we perform local 

optimizations. We move quadruples within the basic block or we delete quadruples 

within the basic block or change them within the basic block, but nothing leaves the 

basic block and goes to some other basic block. If it goes to some other basic block and 

there is code movement across basic blocks, that would be a global optimization and that 

it would be the subject, a little time later. 

Local common subexpression elimination is one of the very important optimizations. As 

the name suggests if there are many expressions a equal to b plus c, x is equal to b plus c 

etcetera within the same basic block, b plus c is a common subexpression. 

There is no need to compute this subexpression again and again under certain conditions 

that is, b and c are not modified. Then it is also possible to do dead code elimination. 

What is dead code? They are instructions that compute a value that is never used. It is 

possible that we just use another extra variable, assign it a value and the variable is never 

used in the program. 



How does us such a thing happen? It may not be intentional and it may not be done by 

the programmer the first time he or she writes a program. When the program is being 

debugged, when the program is being changed it is possible that some variables are 

introduced and some are not used anymore and the programmer forgets to delete the 

declaration of such variables or even the assignments of such variables. It is also possible 

that some code is introduced into the program for debugging purposes, but it does not 

actually contribute to the program performance alone. 

Reordering statements that do not depend on one another: Such reordering may actually 

increase the speed of the program. For example, if a load can be done early some other 

load can also be initiated at the same time. These loads may not depend on each other. 

So, we may want to move them appropriately so that some delays are taken care off. 

Reordering computations using algebraic laws: Algebraic laws are commutativity and 

associativity. We will see how this can be used later on. For example, to give you a 

simple example if v plus c is an expression, c plus b is another expression and if 

commutativity holds, these two are equivalent. If you can detect such computations using 

commutativity or any other algebraic law then the code can be improved. The above two 

optimizations can be applied only on direct acyclic graph or tree representation - that is 

the reordering of statements that do not depend on one another and reordering 

computations using algebraic laws. We will see how to do this using value numbering as 

well; one of these can be done is value numbering. 
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How do you partition the quadruples into basic blocks? That is the next topic. Algorithm 

is simple; essentially we determine the set of leaders. What are leaders? The leaders are 

the first statements of basic blocks. The first statement in the program that is a procedure 

is a leader; any statement which is the target of a conditional or unconditional goto is a 

leader. I will give you an example of this and any statement which immediately follows a 

conditional goto is also a leader.  
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. 

Look at this example. We have PROD equal to zero, then we have I equal to zero, then 

we had T1 equal to 4 star I etcetera. Finally, read this B2 as three - number three because 

it is going to three. At this point when we scan this we find that if I is less than 20, go to 

three. That means three becomes a leader because it is the target of a conditional goto 

statements. This statement, the stop statement immediately following this is also a leader 

simply because it is following this conditional goto and it is not after an unconditional 

goto. 

So, any statement which immediately follows a conditional goto is also a leader. A 

leader and all statements following it up to, but not including the next leader is the basic 

block corresponding to that leader. 

(Refer Slide Time: 51:08) For example here, we marked this as a leader, we marked this 

as a leader and we marked this as a leader. Start scanning from here up to this point that 

is, these two statements that is one block, from here which is a leader to this point just 

before that is another basic block and this stop statement is a basic block on its own. A 

leader and all statements following it up to but not including the next leader is a basic 

block corresponding to that leader. Any statements, not placed in a block, can never 

executed and may now be removed if you want to. 
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What is a control flow graph? The nodes of the control flow graph are basic blocks. We 

saw this already. One node is distinguished as the initial node; (Refer Slide Time: 52:03) 

here this is the initial node. There is a directed edge from B1 to B2, if B2 can 

immediately follow B1 in some execution sequence. How do you determine this? There 

is a conditional or unconditional jump from the last statement of B1 to the first statement 

of B2. Let us do this. There is conditional or unconditional jump from the last statement 

of B1 to the first statement of B2. For example here, last statement of this particular 

block to the first statement of the same block, it could have been a different block; this is 

the arc. Here is a control flow and this corresponds to an arc. B2 immediately follows B1 

in the order of the program and B1 does not end in an unconditional jump statement. 

Here the stop statement follows this and this is a conditional jump and not an 

unconditional jump. This is another arc which is added to the control flow graph. 
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. 

How do we represent basic blocks? A basic block is represented as a record. What does 

the record consist of? A count of the number of quadruples in the block, a pointer to the 

leader of the block; these are essential, pointers to the predecessors of the block; this is 

the representation for the graph structure and pointers to the successors of the block; 

again, this is a representation for the graph structure of the control flow graph. We need 

these things when we want to traverse the control flow graph in a particular order. We 

may want to do a first search on the control flow graph or we want to do a DFS on the 

reverse flow graph. So, all these become useful at that point. 

Note that jump statements point to the basic blocks and not quadruples so as to make 

code movement easy. Let us see what happens here. As I said this if I less than equal to 

20, goto, it says B2 and it does not say three. Suppose it had said three and because of 

some optimizations not necessarily local, it could have been global also, we moved some 

of the statements such as T2 is equal to address a minus 4 and T4 equal to address b 

minus 4 into block one; these two move here. So, then block one will have four 

quadruples and T1 equal to 4 star I will become the fifth quadruple. If we had written I 

less than 20 goto three, it would have been an error. We had to probably go and modify 

this as well. So, what we do is write this as B2 which implies a pointer to the beginning 

of the block there by any changes in the block, the movement of quadruples even to the 

outside will not affect it. We always know what the first quadruple in the block is. That 

would be T1 equal to 4 star I even if these are moved even if T1 equal to 4 star I is 



removed from the block, there would be some other quadruple. It does not matter which 

quadruple is the first. We only want to make sure that this pointer is to the beginning of 

the quadruple. That is what this is saying. So, it makes code movement easy and then it 

is not necessary to patch code whenever we move some quadruple outside the basic 

block.  
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We will stop at this point and in the next part of the lecture, we will discuss the directed 

acyclic graph presentation of a basic block and how to perform various optimizations on 

the basic block. Thank you very much. 


