
Compiler Design 
Prof. Y. N. Srikant 

Department of Computer Science and Automation 
Indian Institute of Science, Bangalore 

 
 Module No. # 21  

Lecture No. # 39 
Worst Case Execution Time 

 (Refer Slide Time: 00:19) 

 

Welcome to the lecture on worst case execution time estimation. The technique we are 

going to use is called as abstract interpretation; so in some sense it is a very great 

generalization of the data flow analysis. So, you can say that this is an application of 

compiler techniques to execution time estimation. The difficulty is multiplied many 

times when there is a data cache present. People have actually run a lot when about a 

worst case execution time estimation when there is no data cache, but only instruction 

cache, but in the presence of data cache the problem becomes more difficult. 



(Refer Slide Time: 01:13) 

  

So, let us look at some motivation for this study. We are going to consider 4 sub 

problems, apart from the introduction - address analysis, cache analysis, access 

sequencing and worstcase path analysis. Then, we will look at some experimental setup 

and conclusions. 

(Refer Slide Time: 01:36) 

  

Why is the estimation of worst case execution time of programs very important? 

Basically, it is important in the context of real time systems; because in the real time 

systems scenario, the correctness of the entire system depends on the computations 



performed and the timing of such computations; so, computations will have to be 

performed within a certain period of time. 

(Refer Slide Time: 02:08) 

  

On such systems scheduling of task is also very important. Thus it is necessary to know, 

whether the task can execute to completion within a predetermined time interval. So, 

because of these reasons, in real time systems otherwise, havoc may be created if we do 

not switch off a fan or heater etcetera, at a predetermined time and that may be based on 

some computation which is given a dead line. 

So, the problem of WCET estimation - we can define it as given a program and target 

architecture. The WCET problem is to estimate a bound on the maximum execution 

time, taken by the program for any input data set. So, it is not the same as running the 

program on a given input; here we are really trying to find the maximum execution time 

and a bound on it and this should hold for any dataset. That is the maximum we are 

looking at. 



(Refer Slide Time: 03:24) 

  

So, what is a very simple approach to such a WCET? Remember, we always want to 

consider the binary form of the program rather than the source form of the program, 

because the idiosyncrasies of the machine - that is the specialties of the machine cannot 

be captured at the high level. It has to be captured only by the instructions at the lower 

level. 

A very simple approach would be to assume worst case latency for every instruction. For 

example, you assume that every add instruction perhaps, when it is pipelined floating 

point add may actually give you one instruction throughput every cycle when the 

pipeline is full, but if the pipeline is not full then depending on the number of phases in 

the pipeline say stages in the pipeline say 3 or 4 as many cycles will be required for the 

instruction to complete. 

Similarly, in that case, we assume the worst case latency of 4 cycles for every floating 

point instructions. Similarly, an add instruction which fetches an operand from memory, 

may actually take say 2 or 3 cycles; if the operand is not available in the cache, but may 

take only 1 cycle if the operand is in the cache, so in such a case, we assume that the 

operand is really in memory and assume, that it takes 3 cycle. So, this is the worst case 

scenario that we are really interested in. 



So, you determine the maximum execution time for each basic block. Then, solve an 

integer linear program for maximizing the execution time along any path, subject to the 

structural constraints of the control flow graph. 

This is fairly straight forward. Once, the branch probabilities of the execution the control 

flow graph we can say, what is the maximum along any path and so on and so forth. 

Otherwise, we can always if you do not want to take the branch probabilities, which may 

actually not give you WCET exactly. You can take the time along every path and then 

take the maximum. So, that is where the integer linear program comes into picture. 

So, this approach may over-estimate the WCET by a large amount. Why? We ignore the 

caches as I told you. We may ignore even the pipelining and thereby, we assume that 

each instruction takes the maximum amount of time. But this is not so in practice most of 

the time 97, 98, 99 percent of the time. The cache is a hit and once there are many 

instructions to go through the pipeline, then the throughput through the pipeline is also 

going to be very good. 

So, in such a case, the estimate is going to be much more than what it should be. It fails 

to recognize the presence of performance enhancing features such as, caches and 

pipelines in the architecture. 

(Refer Slide Time: 07:10) 

  



Now, in the context of hard real time systems in other words, there is no way you could 

miss a dead line it must be satisfied in all respects. WCET estimate of programs must be 

safe. In other words, a safe estimate is one in which estimate cannot be exceeded by the 

actual execution time for any input data set. So, it is similar to the safety in data flow 

analysis as well. 

Simultaneously, the estimate must be very tight to reduce the resource allocation costs. 

Otherwise, you would probably be allocating the resource for a much larger duration we 

do not want to do that given the WCET estimate which is very tight, we can use the 

resources very efficiently. 

So, safety may be relaxed in the case of soft real time systems because in such a case in 

soft real time systems, deadlines maybe occasionally missed without having a significant 

impact on the quality of service offered. So, in such a case the WCET analysis can be 

need not consider safety thereby it may be violated sometimes, but most of the time it 

will be correct. 

(Refer Slide Time: 08:33) 

  

What is the effect of data cache on WCET? So, here is a set of programs from 

benchmark suites, so by actual running on a very large number of datasets, we have 

computed the worst case execution time. This is the maximum among the data set runs 

that we have conducted and assuming that all cache accesses are misses, here is the time 

that we have computed from the program. So, the configuration is with cache is 4 way 32 



byte blocks with 256 sets and the Latencies of the cache are hit requires 1 cycle, read 

misses 6 cycles whereas, write misses 4 cycles. So, read miss is 6 because you have to 

fetch from memory and also write into the block and all that whereas, write miss directly 

writes into the memory. 

Now, you can easily see that the all miss value is almost twice the value of the actual 

simulation time. This is too bad, 100 percent excess is not acceptable. 

(Refer Slide Time: 10:00) 

  

So, here is a picture a graph which shows, what is safety? And what are unsafe behavior 

and all that. Here, is the probability of a particular time execution time taken by the 

program, so here is the execution time itself.  

This is the best case execution time and as we go along the upper bound that is the 

maximum, but too far away from the actual worst case execution time is here. All these 

points are unsafe because we get these by measurement. So, this is the reason why you 

cannot use measurement based execution time, you will actually be somewhere here and 

you will never reach this point. 

So, what this graph shows is some inputs actually take so much time. The maximum 

numbers of inputs probably are here, which require as much time and there are few 

inputs which really stretch the program to its worst case execution time and that is the 



reason why, we cannot get it easily through experimentation. Most of our inputs may be 

somewhere in this region, so we will never reach this without too much effort. 

(Refer Slide Time: 11:26) 

  

What is the existing art for WCET? So, with Data cache of course, with instruction cache 

the analysis is simple, not too difficult. But with data cache the analysis is very hard. 

There are very complicated linear algebra based approaches. So, one of them uses cache 

miss equations, which are well-known safe, but they do not they really give you the 

behavior as tightly as desired. 

Presburger arithmetic is another method. That is used again, it has similar difficulties. 

Then, Abstract Interpretation based methods use what is known as MUST analysis. So, 

MUST analysis says what accesses must be hits, what accesses must be misses and so on 

and so forth. 

So, if this is similar to the MUST and May analysis in data flow analysis as well for 

example, in reaching definitions, when you compute the reaching definitions it is enough 

if at least one of them reaches the particular point. So, it is actually it may reach that 

point, when it is the point racks us and so on and so forth. 

Even in actually execution if the path taken is a different one then it may not reach. So it 

is vice versa called a May analysis, where as in available expressions we must make sure 



that the expression is available through every path at a particular point so it is an 

example of the MUST analysis. 

Then, there are data flow based approaches, which use static cache simulation. So, we 

are not going to elaborate and then there are simulation based approaches which are 

measurement based. Our approach that actually will be Abstraction Interpretation based. 

(Refer Slide Time: 13:44) 

  

So, there are four sub problems in the worstcase execution time estimation. The first one 

is the address analysis - which uses the abstract interpretation technique. I am going to 

tell you a little bit about the abstract interpretation technique as well. Then, there is cache 

analysis - which is also abstracted interpretation based. We are not going to use any 

cache simulators here. 

The third sub problem is the access sequencing problem. So, in which order should be 

consider the instructions and loop etcetera. Here, we use what is known as partial 

unrolling, physical and virtual this will become only later. Physical unrolling is 

something we all understand unroll the loop one way etcetera, but virtual unrolling 

implies we do not really physically unrolling the loop, but we go through the analysis 

goes through the loop many times that is what we call as virtual unrolling. The last one is 

the worst case path analysis - which uses the integer linear program formulation. 



(Refer Slide Time: 15:00) 

  

The first sub problem is the address analysis problem, so its objective is - to compute a 

safe approximation of the set of memory locations that can be accessed by any memory 

reference. Why is this essential? We are given a binary and each one of the instructions 

in that binary program, may access register, it may access a stack, it may access the main 

memory itself, it may access heap or whatever. 

So, there is going to be some address, for each one of these locations and we want to 

actually find out or other makes a safe approximation of the set of memory locations that 

can be accessed by any memory reference. So, if we know that it is a particular register 

then we can make it concrete there is only reference at that point, but if we are actually 

accessing or if you are accessing a particular scalar variable directly, then we would be 

accessing particular memory location and that would be concrete. 

But if you are accessing let us say some area in memory some memory in array, we may 

not to be able to say at compile time which particular element of that array is being 

accessed that may not be possible. But we may be able to partition the array into a few 

parts and then say this particular reference falls in to this partition a, the second reference 

falls into partition b, etcetera. 

So, the objective of address analysis is basically find out carve the entire memory space 

into regions, such that we know at a point in time if we are making a memory reference 

which region we are accessing. 



(Refer Slide Time: 17:35) 

  

So, this is going to be very helpful for us in cache analysis as well. This address analysis 

is in general a special case of general executable analysis. There are many applications 

for the executable code analysis such as - detecting malicious content in code, learning 

about the algorithm, comparing different code versions, timing analysis that we are 

interested in, the cross platform porting, source code recovery and verification. So, there 

are many applications it is not as if executable analysis is a speciality of our particular 

approach. 

(Refer Slide Time: 18:08) 

  



There are many issues in address analysis. So, let us look at them in some detail binary 

code does not have type information so at the register level it may be possible to say this 

register contains integer information, this register contains floating point information and 

so on. Because the register set may be different, but we have no information about which 

is a character which is a integer and whether this is user define data type or whatever. 

So, we have no type information and it is difficult to separate address generation and 

address computation. Whether, the arithmetic that we are performing is on the address or 

it is some data is very difficult to actually separate, so this is another issue that we how to 

worry about, so compiler transformation might have changed apparent code structure 

remember we are using binary code.  

This is already optimize code, the complier has change it and there is very little that may 

not be too much mapping rather, it may not be possible to retrieve much information 

from the source code and use it in the binary analysis, so because the transformations 

might have change the code structure. 

It is difficult to reverse-map registers source variables we cannot say which variable we 

will be in register all the time by doing some reverse mapping we have been no 

information about that sort of anything to here. 

(Refer Slide Time: 19:58) 

  



What does traditional analysis do? So, we have use traditional analysis with some minor 

changes, so basically our changes are very are very minor in the analysis part itself, but 

are major when we comes to storing the various partitions. So, there are static objects 

which are tracked such as, registers then statically known memory partitions such as, 

absolute offsets stack operations all locations within a particular are tracked collectively. 

So, when we go through the program line by line or instruction by instruction, we also 

actually update the data structures related to the various partitions. So, there is going to 

be some data structure for register and for each partition is as well so these are all going 

to be tracked and modified as and when it is necessary. 

(Refer Slide Time: 21:06) 

  

Memory partitions are determined by scanning the global data section and program code 

for numeric offsets and stack operations, so this analysis gives enough information to us. 

We do a simultaneous numeric analysis and also pointer analyses. All competitions of 

course, tracked and we use actually abstractions for the computations, we will talk about 

these abstractions in a short file from now. 



(Refer Slide Time: 21:35) 

  

As I said, the partitions that we get for the addresses must be stored and in fact when we 

look at the contents of these memory locations and registers, we go through the 

computations that are performed in the data. We actually have to perform the same 

computation during our analysis of the code on the partition as well for example, if we 

say we are going to store a value in a particular register and then add something to it. We 

will have to actually perform this addition and then store the result again in that 

particular directed data structure corresponding to the partition. 

So, if we do not know the exact value, it may be a set of values and so we will have to 

learn how exactly a set of values can be represented and manipulated efficiently in our 

mechanism. We define an abstract domain, so we are going to discuss abstract 

interpretation some detail now and we define operations on the elements of that domain, 

so these must be consistency with the concrete execution semantics. So, concrete 

execution semantics implies the actual when we run the program whatever is the 

semantics of that program in an instruction by instruction manner is called as the 

concrete execution semantics. 

Whatever we do in abstract interpretation, will be at a slightly higher or abstract level but 

these must be consistence with the concrete execution semantics. In other words, you 

cannot do addition in concrete execution semantics and multiplication in the abstract 

interpretation. It has to be addition all the time, but only thing is on what values you do 



the addition is it on a set of elements or is it on a particular element etcetera, have to be 

worked out properly. 

At any point in time, the set of abstract values is an over approximation of the possible 

set of concrete values, so this will become clear as we go long now. 

(Refer Slide Time: 24:09) 

 

Let us take an example for abstract interpretation. So, let us consider in extremely simple 

language with integers and one just one operations star multiplication. So, the grammar 

is here, an expression can be either in integer constant or of the form e star e. You can 

generate constants in this language or you can generate expression which star in this 

language. The expression again will have integer constraints in them. 

What is the concrete semantics of this small language? So, let us say the operator is 

rather the mapping function is mu, which takes an expression and produces a number. 

When we run this program, this is what is going to happen. If there is an integer say, mu 

of i, i is this stand for this int. So, it is going to be int dot value the value of that 

particular of that integer nothing more than that. 

Whereas, if it is expressions even star e 2, then the value of that expression is mu of e 1 

star mu of e 2. In other words, you evaluate mu the e 1 with mu function, evaluate e 2 

with the mu function and then multiply the 2, in the integer domain. For example, if you 

have 15 star 6 the answer should be 90 here. So, mu of 15 star mu of 6 so mu of 15 from 



here would be the value of 15 which is 15 and the mu of 6 would be 6 so the 

multiplication in integer domain would be 60, 90. 

(Refer Slide Time: 25:59) 

  

(Refer Slide Time: 26:10) 

 

  

So, that is as for as the concrete domain in is concerned so, this is the concrete semantics 

and how exactly it works now let takes an abstraction of this. What is the abstraction that 

we want to consider? 



Let us say given an expression, the previous example could take either negative numbers 

or positive numbers all integers of course, but either negative 0 or positive right. Let us 

say, we are interested in only the sign of that expression. Here is the expression, this 

function sigma or the mapping function sigma will take an expression and then it has to 

tell us, whether it is a positive number the result finally is positive negative or 0. 

So, if you are given just an integer, sigma takes that integer if the integer is greater than 0 

then it written, plus if the number is 0, then it gives a 0 and if the number is less than 0, it 

returns minus sign, so for as a single integer is concerned this is fairly straightly forward. 

Whereas, if it is an expression e 1 star e 2 then again this is syntax directed, so we apply 

sigma e 1, we apply sigma e 2 and in the abstract domain we apply this square operator 

which actually hope here is the square operator. It tells you, what is the sign of the 2 in 

combination will be. 

So, let us take this square operator and its table. On this side are the 3 possibilities of 

plus, 0 and minus and on this side we have plus, 0 and minus. If sigma e 1 and sigma e 2 

are both plus obviously, the result will be plus and the square operator also says it is plus 

so far so good. 

If one of them is plus and other is 0. So, plus and 0 or plus and 0. The result is 0. Plus 

and 0 is 0, plus and 0 is 0. So, that is obvious because whatever we do in any 

multiplication, if one of the operands is 0, then the result is going to be 0 so that is why 

this the result here will also be just 0. 

And similarly, sigma e 1 is plus and sigma e 2 is minus then the result is said to have 

minus sign this is also well-known. If one of them is a negative operand then 

multiplication not both one of them is negative the result is negative. But if both of them 

negative then the result is positive. So, this is also well-known. Similarly, if one of them 

is 0, then again it is 0 and so on. 

In other words, sigma uses this square operator in its abstract domain that is plus 0 and 

minus in this domain, combines these two results and tells us the result of the sign of the 

result. This is the abstraction that we are looking at so we have actually taken integers 

but then a rather integer expressions, but then converted that entire thing into only we 

want to only the sign so that is the abstraction that we are looking at so the entire. For a 

single plus there could be many integers and many expressions possible right so all those 



are actually map to that plus, so in that sense every element of this abstract domain maps 

to a large number of expressions in the x domain. 

(Refer Slide Time: 30:14) 

  

So, let us elaborate a bit, what are abstract and concrete values? We know what concrete 

values are, so those are our integer’s right, we have to look at abstract values. Let us 

associate each abstract value with the set of concrete values it represents. So, gamma is 

this function: it takes plus, minus and zero and yields an element in the power set of z 

which is the set of integers. 

So, in other words as I was just now telling you, there are many integers corresponding 

to this plus and this minus. There is possibly 1, 0 with this, nothing more than that. So, 

that is what is indicated here. Gamma of plus is all those integers which are greater than 

0, gamma of 0 just one element 0 whereas, gamma of minus is all those integers which 

are less than 0. 

So, each of these is an infinite set in this case so very large. Suppose we add plus this top 

and bottom elements to the set of abstract values, then our abstract domain becomes a 

lattice. Why should we do this? Lattices have nice properties and there is easy to deal 

with their well-known structures and that is the reason we make these into a lattice. 

We can now map other operations such as plus minus and slash, to suitable operations on 

the abstract to domain as well. So, we have considered only the simple abstraction and 



we consider only the star. We could similarly consider plus operation, minus operation, 

unary operation etcetera and map them appropriately to these top, bottom or plus, minus 

and 0 values. So, without top and bottom, we will not be able to handle addition and 

subtraction, forget division that is not possible at all otherwise. 

(Refer Slide Time: 32:33) 

  

What is a concretization function? So, we have already seen that gamma is a mapping 

from abstract domain A to the power set of the concrete domain D, so mapping from 

abstract values to sets of concrete values is done by gamma so that is here this is the 

gamma part. 

And mu is our concrete concretization function. We really have not mu is the operator 

which takes the expressions to our concrete domain, so mu of e is in gamma of sigma of 

e. Sigma of e really takes an expression to its abstract domain and then applying gamma 

on it brings it back to the concrete domain. 

If you take an expression apply mu on it. Then, it will be in the set of elements produced 

by gamma of sigma of e, remember gamma produces sets of elements rather than a 

single element. We saw is there are many integers corresponding to a single A value that 

is either plus or minus are 0. So, mu really is from Exp to S whereas, S is actually z, but 

here we will says S, S is in 2 to the power D as a generalization. 



(Refer Slide Time: 34:26) 

  

(Refer Slide Time: 34:38) 

  

So, D is a concrete domain, A is the abstract domain. Now, there are other mappings also 

possible from 2 to the power D that is the power set of the domain D to A, but before that 

the abstraction function itself, so here is the abstract function which take 2 to the power 

D to A. So, it takes concrete values from this domain and then produces this abstraction. 



(Refer Slide Time: 34:47) 

(Refer Slide Time: 35:05)  

Mapping from concrete values to abstract values so this is the dual of concretization, so 

the smallest value of A that is the abstraction of s set of concrete values. So, remember 

what Exp does is to take this expression and produce a concrete value or sigma does is it 

takes expression and produce an abstract value, but in 2 to the power D we have sets of 

concrete values, so what happens what alpha does is take this set and produce an abstract 

value. 

(Refer Slide Time: 35:23) 

 

So, that is what is indicated here, 2 to the power z to A or 2 to the power D to A. When 

we map is we will take this smallest value of A that is the abstraction of a set of concrete 

values so it becomes clear here. So, alpha apply to this S set of values which is an 

element of 2 to the power D, it is the least upper bound lowest upper bound of minus 

such that the integer i is less than 0 and integer belongs to S.  

Take all those elements in S, in this S which are negative and for that minus is the 

representative, 0 is the representative of 0 and plus is the representative of all the positive 

numbers. 



We at any point in time, some may actually belong to some in a set (36:24) some of them 

belong to this set, some of them belong to this set, some may belong to this set. We have 

to take the least upper bound of these so taking least upper bound implies going up. 

Here are some examples, if all the numbers are positive 24, 45 and 3. There all positive 

so the lowest smallest value of A is really plus. All of them belong to this and there is 

only plus. 

Similarly, if all the numbers are negative then map the least upper bound is minus. If it is 

just 0 then it is a 0 in all other cases for example, if we take a negative number and a 

positive number this will map to minus and this maps to plus, so the least upper bound 

minus and plus is really top. So, this is the abstraction function that we are talking about. 

(Refer Slide Time: 37:24) 

  

What exactly is abstract interpretation? It consists of an abstract domain A, a concrete 

domain D. An abstraction function alpha and a concretization function gamma, forming 

what is known as a Galois connection. These are the elements of abstract interpretation. 

So again, we must have an abstract domain and a concrete domain. We already saw 

examples of this. We had integer as forming a concrete domain and this plus 0 and minus 

forming an abstract domain. 

And we were mapping elements from the sets of elements from concrete domain to 

abstract domain. An abstraction function alpha and a concretization function gamma so 



abstraction function gives takes sets of concrete elements and then gives you abstract 

domain element, a concretization function does the other way. It takes an element from 

the abstract domain and gives a set of values in the concrete domain. So, these form what 

is known as a Galois connection. I will elaborate a little more on this Galois connection 

very soon.  

A sound abstract semantics function sigma is also necessary and this approximates the 

standard semantics. So, this soundness is needed to make sure that a everything is correct 

so in other words, whatever we do here should be correct so as I said you cannot really 

take a set of negative and positive numbers together and then say this abstract function 

gives me negative minus or something like that that would be unintuitive as well. 

Soundness implies correctness and this must approximate the standard semantics or the 

way we really want to view the entire computation. Now, we are let us look at Galois 

connection which is also called as insertion. 

(Refer Slide Time: 39:58) 

  

So, just to because abstract domains are very important here is summary, the abstract 

domains can be thought of as dividing the concrete domain into subsets, but these subsets 

are not necessarily disjoint. 

In other words each of these the subsets map to a single abstract value. The abstract 

function maps a subset of the concrete domain to the smallest abstract value which is 



already mention. The concretization function maps abstract values into sets of concrete 

values, so that is what these three arcs, it is a summary. 

(Refer Slide Time: 40:40) 

  

Let us see, what a Galois connection? So, here is the diagram which we say a must 

commutes so in other words we go like this and then take this path, so in other words we 

apply the sigma function, then the gamma function. That result must be a same or 

consistence with the result we get when we map Exp to this 2 to the D directly or we go 

like this and then come back and then go back, we must get the same value as we had 

started with or we must at least get the value that this consistence with our intuition, or 

we come this way and then go back and then come down, you must still get a consistent 

and intuitive result. So, that is what we mean by commuting. 

So, this id is the identity element, so id less than is equal to gamma dot alpha, so gamma 

dot alpha. In other words, we do this once and then go back we must actually get 

something consistent. So, what is that really? For all x in 2 to the D that is in this power 

set of D, x is a subset of gamma of alpha of x. So, you apply, you take a subset the 

element of 2 to the D, apply alpha on it. That is the abstract abstraction function then you 

apply gamma on it, so we have applied alpha got an abstract value then you applied 

gamma you would again get some concrete values. 



So, whatever you get must be a subset of x must is a subset of whatever you have got 

now. It cannot be missing some elements, this x must be embedded in that said you get 

here. When you go up and then come down again. 

So, that is why, id less than equal to gamma dot alpha. Whereas the other way is id is 

equal to alpha dot gamma so in other words you apply gamma first, then you get a set of 

concrete values then you apply alpha again you must get exactly the same the abstraction 

abstract value that you started with. 

So, that is says for all x in 2 to the D, x equal to alpha gamma of x. So, you apply gamma 

then alpha you must get the exactly the same element. Whereas if we had apply alpha 

and then gamma you would actually get a subset, what you started with. 

Alpha and gamma are monotonic functions, so this goes back to what we had studied in 

data flow analysis. Abstract operations op A in the abstract domain A or locally correct. 

In other words, you apply op A on a 1 to a n the abstract values here. Then you apply 

gamma this is the superset of the values you get when once you apply gamma on each of 

these a 1 to a n and then apply op on in this domain. So, that is what at the correctness of 

abstract operation in the abstract domain is. 

So, in other words the abstract domain cannot be something adhoc and it cannot drop 

elements all these elements must be present and you can only get a subset of those you 

go down but you cannot really remove everything or you cannot add anything extra. 



(Refer Slide Time: 44:32) 

  

Why did we do all these? As I told you, we are going to a represent the various partitions 

as abstractions so because instead of a single memory location now we have a set of 

memory locations, so that set is an abstraction but it is not a simple set that we are 

looking at for example, you may be looking at elements separated by a value of 4 for 

example, you may say minus 8, minus 4, 0, 4, 8, 12 etcetera. 

And all the elements in between such as minus 3 or 2 etcetera are all missing. So, we 

want to represent such intervals, may be from minus 4 to 12 with the value separated by 

4, distance of 4. 

Such abstractions are not easy to represent so we have our own method of representing 

them and that is called as a circular linear progression CLP for short. So, this is 

abstraction for finite width computation, so we have finite width in the representation of 

the numbers as well, number of bits is finite. In other words, if there may be an over flow 

or there may be an under flow, CLP are used to represent the discrete values contained in 

various static objects namely registers memory partitions etcetera, this is what I was just 

now explaining. 

We provide safety on overflow, it is very handled very nicely, as we will see very soon 

and the CLPs are composable so in other words, why is this composition important? So, 

we are now not adding a concrete number like 4 to another concrete number like 5. We 

are really now taking 2 abstractions corresponding to 2 values and then an instruction 



may actually be adding them. Let us say, a register is supposed to contain values which 

are separated by 4 in the range 4 to 12. 

Another register may contain values let us say from 3 to 15 separated by 3 and we want 

to add these two, the instruction maybe addition of these two values. 

So, these are two abstractions now we must know how to compose these two abstractions 

appropriately by the addition in this abstract domain so these must be defined as well. In 

other words this abstract interpretation frame work that we are going to present provides 

for definitions of arithmetic logical set bitwise operations on these abstractions and they 

are very efficient analyze because they require only quadratic space and time for the 

analysis. 

(Refer Slide Time: 47:54) 

  

This is the briefly what CLPs are about? So, what exactly is a CLP? A CLP is a 3-tuple 

representation there is l, there is u and there is delta and we use a finite number of bits 

for example, if each of these l u and delta require n bits, we requires 3 n bits for the 

entire representation. 

l is the lower bound, u is the upper bound and the step is delta. In other words, if we let 

us say let us take one of these minus 1, 1 and 2. So, minus 1 is a lower bound, 1 is the 

upper bound, so we can visualize the entire CLP as a circle in on which the value is 

marked. We have minus 1 here and plus 1 here, these are the two lower and upper 



bounds and we say that 2 is the step. In other words this CLP minus 1, 1 and 2 actually, 

is corresponds to the set minus 1, plus 1 that is it. It does not corresponding to anything 

else because these are the only 2 values generated by this particular abstraction of l, u 

delta that is minus 1, 1, 2. 

So, the concrete values that this particular CLP maps 2 or minus 1, 1 that set. whereas, if 

we consider the CLP 1, minus 1 and 2, so we have 1 here and then minus 1 here and the 

step is 2, so in other words we always go in clockwise direction, we would go to 3, 5, 7 

etcetera, go round that circle and then come back to this minus 1. 

So, there going to be a large number of values in this particular CLP. There is a max 

value max n, so that is the maximum that you can represent using whatever number of 

bits that you are using represent this abstraction. 

Beyond that again the numbers are all negative. So, in this half the numbers are all 

positive and in half the numbers are all negative. You really cannot go beyond Max p for 

positive numbers ad max n for negative numbers if it is a tools complement 

representation. Because we can always represent 1 number more in the tools 

compliments representation. 

There is a nice visualization possible here see, so you always have the circle, marked the 

values on the circle, travel around in the circle clockwise direction using the step. So, 

used go from the lower bound l, to the upper bound l, using delta as this step and once 

you add the values accumulate in this traversal is the concrete set that you want to 

represents, so that is the CLP domain and its meaning. 



(Refer Slide Time: 51:00) 

  

Let us see, why this is useful? We have x equal to 3 and we have also have x equal to 7. 

So, y equal to complement of x bit complement of course, plus 4. This is what we want 

to compute when you actually have x equal to 3 and you do y equal to tilde x plus 4 there 

is going to be an overflow that is the way we have the number of bits. 

This is 3 and tilde of 3 is minus 4, so if this was all 0s 1, 1 you complement it. You get 

all 1s and 2 0s, so that is nothing but minus 4 in the tools component notation then you 

added to 4, you really get a 0 with this 1. So, there is an overflow. 

Whereas, if you takes 7 and do tilde x plus 4, you have tilde 7, which is minus 8 add it to 

4 and then you get minus 4 there is no overflow in this case. But the nice thing is the 

representation for y which is minus 4, 0, 4 captures both these factors even though there 

is an over flow and the value is 0, we really can capture it minus 4 and till 0. These are 

the lower bound and upper bound and then the step is 4, so minus 4, plus 4 is 0. You are 

capturing with 2 value the set contain minus 4 and 0 it is captures both these. 

Similarly, z is tilde y so when you take 0 and complement it you get all 1s that is nothing 

but minus 1, so you have minus 1 here, you have minus 4 here you take a tilde on that. 

That is the complemented, then you get all 0s and 1, 1 that is nothing but 3. So, minus 1 

to 3 with a step of 4 so again you get two values minus 1 and 3. This CLP accurately 

represents this computation all these computations with both the values. 



This is not unrealistic situation, it is possible that x comes along this path and y x. This x 

comes along this path and the two values are different and now we need to actually 

represent the value computed by y that is can be done using our CLP very efficiently. 

Otherwise, we would have been stuck, if you had used a different configuration in this 

case. 

(Refer Slide Time: 53:45) 

  

So, we will stop this lecture at this point and in the next lecture we will continue with 

other operations on the CLPs and how CLPs are used in the WCET estimation. Thank 

you 


