
Compiler Design
Prof. Y. N. Srikant

Department of Computer Science and Automation
Indian Institute of Science, Bangalore

Module No. # 17
Lecture No. # 35

Energy-Aware Software Systems-Part 4
(Refer Slide Time: 00:21)

Welcome to part 4 of the lecture on Energy Aware Software Systems. We will now

discuss Compiler Techniques to save Static Energy in CPUs.

(Refer Slide Time: 00:32)

So, as I mentioned in the last lecture what we want to do in this compiler technique is to

save leakage energy; the function units are going to be switched on and switched off at

various times during the running of the program. This is important, because with 70

nanometer technology this leakage energy consumption will be on par with dynamic

energy consumption.

(Refer Slide Time: 01:01)

How do we do all these? It is possible to incorporate these dual threshold domino logic

with sleep mode circuits, which facilitate transitions between active and sleep modes

very quickly without much performance penalty; infact, just 1 second 1 cycle and with

very moderate energy penalty. If there is a very sharp transition, then usually there is an

energy penalty as well. So, that is the reason for concern. So, integer ALUs are known to

be idle for 60 percent of the time on the average; that is the scope for actually saving

energy.

(Refer Slide Time: 01:43)

Pure hardware schemes are available; that is these dual threshold domino logic circuits,

but they have 26 percent energy overhead over ideal schemes; whereas, software based

schemes can do much better.

(Refer Slide Time: 02:01)

So, we essentially try to bunch instructions which use the same function unit, so that

active and idle periods of function units are increased simultaneously. CPU uses supply

voltage or clock gating during idle periods. This lead to better benefits and saves

transition energy. Now, the question is - how is this performed?

(Refer Slide Time: 02:24)

So, we go back to our good old instruction scheduling which is nothing but reordering

instructions to reduce pipeline stalls. This is a technique that we use in order to save

energy as well. It was used to exploit instruction level parallelism in our lectures earlier,

but now we try to use the same technique in order to save energy. This is possible,

because the priority ordering that we use in instruction scheduling could be with energy

in mind or performance in mind; so, because of this flexibility, it is possible to use this

same technique again to save energy as well. As we know this is an NP complete

problem and it uses a directed acyclic graph and is limited to basic blocks. So, list

scheduling with a ready queue is the most common approach that is adopted and that is

what we use here as well.

(Refer Slide Time: 03:19)

So, let us look at a new type of architecture, which is slightly more energy efficient, so

that our techniques can actually work even better on such architectures. These are

clustered VLIW architectures. We have clusters of function units connected to an inter

connection bus and then within each cluster we have many function units. So, this is the

architecture that we are looking at. Now, the question is during instruction scheduling,

how we allocate clusters to instructions and function units within clusters to the

instruction again. So, these are the important questions that we need to answer. The

problem is when we actually look at just the function units they can possibly have a local

register file and communicate within that, but when we actually look at clusters, inter

cluster communication is not cheap. So, this is a reason for concern. So, we need to

allocate cluster and function units very carefully. Within the cluster we need to make

sure that the energy is saved when we assign cluster units; I mean function units.

(Refer Slide Time: 04:39)

An integrated energy aware instruction scheduling algorithm for clustered VLIW

architectures is what is proposed. So, it reduces the number of transitions between active

and sleep states and increases the active idle periods as I mentioned before. It reduces the

total energy consumption of the function units; and generates a more balanced schedule

which helps to reduce peak power and step power as well. How is this last point taken

care of? The point is if the function units which are busy are kept busier for a longer

duration, then there is no need to actually make another unit which was sleeping; bring

another unit which was sleeping into an active state. So, if we bring something from

active to sleep or sleep to active state when there is a power requirement. So, since we

are going to continue using the same function unit, it reduces the peek and step power

requirements as well.

(Refer Slide Time: 05:45)

What is the scheduling algorithm? It makes the cluster assignment decisions during the

temporal scheduling that is the cycle by cycle scheduling. Basic block scheduler is used

and it uses the list scheduling algorithm. There are three main steps in the algorithm: the

first one is prioritizing the ready instructions. This was done even for parallelism

extraction the exploiting parallelism. Assignment of a cluster to the selected instruction

and assignment of a function unit to the selected instruction in the assigned target cluster.

So, this is important that we do it in this particular order as we will see very soon.

(Refer Slide Time: 06:35)

What is priority? Priority is a function of the slack and the number of consumers of that

particular instruction. So, if an instruction produces let us say, some data say an add

instruction produces the sum. That sum will be used by many instructions so these are

the consumers. The slack between the time of production and the time of consumption is

exploited in this prioritization scheme. The slack is latest finish time and earliest start

time, which is the difference between these two and slack is dynamically updated as we

go on. Why is this necessary? It is possible that instructions are not scheduled at the

same time slot. They could be in brought either closer or pushed to an earlier slot. So,

because of this, the slack keeps changing during the instruction scheduling, when

instruction scheduling is happening. The higher the slack, the lesser the priority; that is

because it is possible to place an instruction with a very high slack in many slots; so, that

is why the priority is low. If the slack is very low then, the number of slots available to

place the instruction is small and therefore, it has higher priority. So, choose the highest

instruction highest priority instruction first; then try to schedule it using the list

scheduler.

(Refer Slide Time: 08:16)

What is the cluster assignment and function unit binding stage does? What is it that it

does? So, we prefer a cluster that has an active function unit of the type that we require

for the instruction. Why? The reason is; let us go back to what we wanted to do. We

wanted to save energy. We wanted to keep a function unit which was active in the same

active state as long as possible. That is why; we prefer a cluster that has an active

function unit of the type that we require. So, bind an active function unit if available.

Once we assign a cluster; if none of the clusters have an active function unit of the type

we need and then anyone of them would do, but otherwise this heuristic is possible. So,

in that cluster bind an active function unit if available. So, again then, we want to keep

the function unit active as long as possible. If it is not available then, the function unit in

sleep mode for a longer duration is woken up. So, this is to make sure that the peak

power consumption etcetera is reduced. So, something sleeping for a long time can be

used instead of something which has been sleeping for a shorter duration so, only if the

instruction slack is less than the threshold. So, we do not really otherwise, the instruction

is put back into the ready queue itself. So, this threshold can be used; can be chosen

experimentally. If the instruction slack is greater than a particular threshold then, there is

no need to hurry and schedule that instruction right away; it can be put back in the ready

queue and some other instruction can be chosen for scheduling at this time. This is

because, the instructions which are very tightly; which have a tight slack need to be

scheduled quickly. So, if there is a lot more time, we might as well schedule it a little

later.

(Refer Slide Time: 10:28)

Here is a simple example of a directed acyclic graph actually a tree. We are going to use

it is just it suffices to observe that there are multiply instructions and add instructions in

this particular tree. So, we are going to schedule this tree and see the effect on different

scheme the effect of different schemes on this particular example.

(Refer Slide Time: 10:53)

So, let us see what exactly we are doing here. So, in this example, we have presented 2

schedules: one of them is using a traditional performance oriented scheduler; the other

one is using an energy efficient scheduler. In this schedule 1, we have started as many

instructions as possible straightaway multiply; multiply 2 add 1 and add 2 and these are

running on M 1, M 2, A 1 and A 2 respectively. Then we start multiply 4, add 4, add 3

then, multiply 3, add 5 and in cycle 5 multiply 5 and then finally, add 6 in cycle 7. So,

this is the performance oriented scheduler and it requires 8 cycles in order to finish the

whole thing. This schedule number 2 is an energy efficient scheduler and all these are on

1 cluster assuming 2 multiply units and 2 add units. So, if you look at this schedule 1 and

see how many transitions are being made from low to high or high too low. For schedule

1, this multiplier 1 is being used here, here and here. So, assuming that it was sleeping

before the schedule began; in cycle 1, we wake it up so, 1 transition. Then it is used in

cycle 1, 2, 3 and then in 4 it is idle, but 1 cycle of idleness does not force it to go to sleep

mode, so in this particular cycle 5, it is used again and then it sleeps. So, it goes down to

sleep mode. So, 2 transitions for M 1; similarly, 2 transitions for M 2; M 2 is used here

and then, it sleeps. A 1 actually has 4 transitions. So, A 1 was asleep to begin with; now,

it has woken up. Then it is used in cycle 2; then cycle 3; then cycle 4, 5, 6 it sleeps. So,

actually it has its idle so, it goes back to sleep mode; then again wakes up for cycle 7 and

then goes to sleep again. So, there are 4 transitions as far as adder 1 is concerned; 2 for

adder 2; adder 2 is used only in cycle 2. So, that means, the number of transitions is very

high in this particular schedule. So, it is not very energy efficient; you should also

observe that there are too many instructions function units being used in cycle 1. So, that

means, the peak power consumption is going to be high in cycle 1. Let us look at

schedule 2. It requires the same number of cycles, but we have scheduled only 2

instructions per cycle. So, multiply our and let us look at the number of transitions for

schedule 2. So, for multiplier 1, it is only 2 transitions; M 1 is used here and then in 5

and then it sleeps; M 2 has also only 2 transitions. Most importantly, adder 1 is used

here, used here, used here and used here, used here and used here again. So, we have not

used adder 2 at all. So, there are no transitions as far as adder 2 is concerned.

(Refer Slide Time: 15:14)

So, now we have tried to keep adder 1 busy as long as possible; and we have tried to

keep adder 2 sleep as long as possible in fact, for the whole duration in this case. So, this

reduces the number of transitions and therefore, we have saved energy. This is a very

simple example, but it goes to show what we intend to do. Similarly, resource usages for

schedule 1 and 2; there are 4 resources in cycle 1; then 3, 2 etcetera just count the

number of add and multiply units that are active at various points in time. So whereas,

schedule 2 is more uniform; it does not have very big changes within the schedule it is

very uniform. So, the peak and step over requirements are being minimized as far as

possible in schedule 2, which is a side effect of our scheduling strategy. So, the same

example using 2 clusters so, I will not elaborate too much on this again. It is enough to

show, that the schedule number 4 has lesser number of transitions and has a more

uniform schedule compared to schedule number 3.

(Refer Slide Time: 15:36)

So, let us see what results we got out of this scheduling algorithm. The comparison was

with hardware only scheme. So, that means, the architecture had hardware inside to

switch on and switch off function units; if they were actually idle for more than 1 unit of

time. So, if it is idle for more than 1 unit it switches it off; when it is required it is again

switched on; the power supply is switched on. Number of transitions reduce on the

average by about 58 percent for 4 cluster systems and the reduction in number of

transitions is directly proportional to the available slack. Now, the average reduction in

energy overhead; so observe that this is the reduction in energy overhead is about 17

percent for 4 clusters; only 34 percent of the overall number of idle periods are now

smaller than 10 cycles; whereas, they were 48 percent in the max sleep or hardware only

scheme. Now, what we want to emphasize here is that - since the cycles actually, the idle

periods are now much larger; the number of transitions actually is also lesser; so there is

a reduction in the transition energy and that is showing here. So, in the reduction by

overhead implies that we are comparing against the max sleep scheme that is-the

hardware only scheme. So, that is we gain 17 percent over the hardware based scheme.

(Refer Slide Time: 17:27)

So, here the same idle period reduction size reduction is shown here. So, if you observe

at our scheme actually is according to this graph and the older one is according to the

hardware scheme is according to this. So, you can see that - for 10 the number of idle

periods of about 10 cycles in size is much lesser in our scheme than the other one.

(Refer Slide Time: 17:59)

(Refer Slide Time: 18:24)

So, here the results are shown for a large number of benchmarks. You can uniformly see

that-this violet color which corresponds to the hardware max sleep scheme; the other

darker one corresponds to our scheme. So, our scheme has much lesser energy overhead

compared to the hardware only scheme. So, that is the summary of the results.

How do we save energy in the communication energy in the CPU? So, that is the next

topic.

(Refer Slide Time: 18:36)

What are the communication possibilities inside a CPU? There are many buses. We want

to transfer data; then addresses and all this in CPUs. So, we require buses for all this and

suppose, we want to reduce the voltage over the bus. So, low swing signaling over buses.

So that means, if the bus is switching between 1 and 0 anyway, the all transmissions are

digital. It may rise to say something like 2 volts or 3 volts or 1 volt depending on the

power supply. So, if that voltage and the low can be maybe 0 or negative. So, if this

swing is reduced; let us say, instead of 2 volts the high becomes 1 volt; instead of minus

1 actually, it can be reduced to say minus 0.5 or something like that. So, that means, we

are reducing the total swing of the voltage over the bus. This saves power definitely,

because capacitances now have to charge to a lesser extent. But then there are going to

be more errors because reliability is reduced; noise increases when, we reduce the swing

therefore, reliability gets reduced and there will be more errors during the transmission.

Therefore, we require some coding in order to increase the redundancy in such a scheme.

So, this may add to the overhead and may or may not help too much.

It is possible to encode data. So, minimize the average switching activity over the

communication channel. Some types of data encoding can actually reduce

communication. Say for example, we try to and it is also possible to rearrange

instructions in order to reduce switching and so on. So, the bus design hierarchical buses

actually, seem to reduce the energy consumption; it is also possible to use heterogeneous

buses. What are these? For example, we may have a single bus which is used for the

entire CPU. But suppose we have 2 buses: one of the buses is very fast; the other bus is

bit slow. The advantage is the slower bus requires less energy consumption; the faster

bus actually uses more energy. So, if we have communication which is very urgent, we

can send it over the faster bus even though, it requires more energy and if there is

communication, which can actually be sent in a relaxed manner; it can be sent over the

slower bus which requires less energy.

(Refer Slide Time: 21:49)

So, that is the principle behind the heterogeneous operation. We are going to see that a

little later. So, reduction of switching on the instruction bus for example, can be achieved

by instruction scheduling. So, the hamming distance between consecutive instructions is

minimized. So, that means, the number of changes from 1 to 0; 0 to 1 between 2

instructions is minimized. So, if the bit pattern is 1 1 1 0 1; the other one obviously if it is

0 0 0 1 0; then the number of switches from 1 instruction to the other is maximum.

Whenever there is a 1 in the first instruction; there is a 0 in the second one. Whereas, if

the instructions are 1 1 0 1 and 1 0 0 1; then the number of switches is only between 1

and 0 is only 1; so, the bus actually switches. Number of switches on the bus will also be

reduced. So, when the instructions are fetched switching on the instruction bus reduces if

we rearrange instructions so, that the hamming distance between 2 consecutive

instructions is minimized. So, this can also be actually used as a heuristic to perform

instruction scheduling.

(Refer Slide Time: 23:10)

So, I mentioned heterogeneous interconnects. Let us look at this a little more in detail.

An interconnect composed of 2 sets of wires is in heterogeneous; is a heterogeneous

interconnect. So, 1 set is optimized for latency; the other set is optimized for energy. So,

1 is very fast; the other one is slow. Now, the both these require less together require less

area than 2 sets of low latency or high speed wires. So, the other important point is even

though, one of them is very fast; the other one is slightly slower; the by intelligent

instruction scheduling; the performance bit of the program is not going to suffer. So, less

area than 2 sets of low latency wires and instruction scheduling can help reduce energy;

therefore, thereby maintain performance.

(Refer Slide Time: 24:13)

What do we do? How are we going to do this? We selectively map communication to the

appropriate interconnect during the instruction scheduling phase. So, urgent

communications to the low latency path or high energy path. So, what do you mean by

urgent communication, that is, which has less slack. So, that is what we want to measure

again. We want to measure the slack and then see how much slack we have. So, those

instructions which have less slack will be mapped to the urgent the low latency path;

non-urgent communications will be mapped to the high latency path. So, we need to

identify urgent communication using communication slack. So, it has been shown that -

about 60 to 61 percent of communications have a 3 cycle slack. This can be exploited by

our algorithm so, increase in execution time is just about 1.11 percent whereas, reduction

in communication energy is about 39 percent for a 4 cluster processor. So, this is a

variation of the instruction scheduling that we do. So, slack is used to map

communication to either 1 bus or the other bus.

(Refer Slide Time: 25:34)

Now, we move on to a tool called INTACTE that - we have developed. So, this is an

interconnect area delay and energy estimation tool. So, it is well known that

interconnects consume power equivalent to 1 core; an area equivalent to 3 cores; delay

can account for 0.5 of half of the L 2 cache access time. So, in other words, interconnects

can be a major source or performance bottleneck, if they are not designed properly. The

problem is when architects design chips; let us say multi core chips and they need an

interconnection bus in between inside the multi core chip. As of today, there is no way to

assess the amount of energy that is, consumed by the interconnect - it is possible to

assess the amount of energy consumed by a core or a CPU by using simulators, but

nothing of this kind is available for interconnect and our tool INTACTE will fill will

supposed to fill this gap. So, we present an interconnect modeling tool, which enables co

design of interconnects along with architectural components.

(Refer Slide Time: 26:57)

What does it do? What does INTACTE do? INTACTE - it is an interconnect

microarchitecture exploration tool to estimate the delay and power of interconnects. The

technology that is, 90 nanometer or 65 nanometer etcetera. The area of the chip or the

area of the interconnects and the clock frequency and latency are the inputs to our tool.

We have designed it for point to point interconnects only. Of course, it is possible to use

several interconnects from 1 point to another; in order to have a bigger interconnect. And

it is analogous to the cacti tool, which is used for cache you know energy estimation and

so on.

(Refer Slide Time: 27:52)

How does it work? It solves an optimization problem of minimizing power by finding

the optimal values for wire width; wire spacing; repeater size and repeater spacing. So,

what are these repeaters? The wires, we understand because interconnects are nothing,

but they are supposed to be actually communicating from 1 point to another. So, between

the various electronic components there is going to be some wire. So, the repeaters are

required to boost the voltage levels in between; because voltage levels may drop on the

way due to the resistance in the path.

(Refer Slide Time: 28:34)

There could be additional design variables so, can be either constraints or they could

even be determined by the tool itself; for example, area and the number of stages in the

pipeline. So, these can be either determined by the tool or they can be supplied by the

user then, voltage scaling support. So, the tool optimizes power and delay for nominal

maximum supply; power and delay numbers are reported for 32 different voltage levels;

separated by a small voltage of 15 millivolts from the nominal value. So, in this way, the

tool gives us power and delay numbers for various points in the space; various voltages

in that we want. And then the architect can decide which one of these is the most

suitable. He or she can say even though, I am going to actually use more power. This

gives me a faster interconnect; they may also say, I do not mind the interconnect being a

little slow, but since the power is most important to me I will choose this particular

design. So, various design possibilities are shown and the architect can choose any one

of them.

(Refer Slide Time: 30:01)

(Refer Slide Time: 31:10)

So, this explains the various terms. So, the tool models interconnect as consisting of a set

of identical equal length pipeline stages. So, these are the various stages. Here is 1 stage

then, there is another third etcetera. Each one of these stages starts with a flip flop. So,

here is the flip flop and then driving a repeater so, these are all repeaters. Here this and

this are repeaters; through a set of buffers; so, these are the buffers followed by equally

spaced wire repeater sections. So, again this entire thing is 1 section; then we would have

another section and so on. So, all parameters for the model are taken from detailed H

SPICE simulations. So, we simulate each of these in a very detailed device level manner;

then use very realistic parameters for these buffers; repeaters; flip flops etcetera. So, the

parameters related to the flops, repeaters, wires and buffers are pre computed by

simulations for 4 different technology nodes 90, 65, 45 and 32 nanometers and also 32

different supply voltages. So, by doing this computation early before we start

optimization we are saving a lot of optimization time. For each iteration of the

optimization, the tool computes the power and delay for each wire repeater section. So,

these values are multiplied by the number of repeaters and the degree of pipelining and

added to the pipelining overhead to get the overall power and delay numbers. So, we are

assuming that they are all identical sections. So, it is possible to just take them; add the

powers and so on. So, this reduces the size of the search space. So, the limitation is that -

you cannot have pipe these sections of different varieties combined with each other.

They are all supposed to be identical.

(Refer Slide Time: 32:22)

Here is the block diagram. There are many inputs. And then in this design space, we are

going to enumerate various points and the user can pick any one of them.

(Refer Slide Time: 32:34)

What are the results that we can show out of this tool? So, we wanted to demonstrate the

accuracy of the tool. So, various trends in interconnect power and performance have

been exhibited in this tool. So, detailed HSPICE simulations have been carried out to

validate the results. What are those?

(Refer Slide Time: 32:53)

So for example, architectural tradeoffs in having 2 heterogeneous wires can be evaluated

using our tool. So, I mentioned instruction scheduling with heterogeneous paths. How do

we get realistic values for such paths the interconnects? Our tool provides these realistic

values. The architect provides length, number of bits, target technology, operating

voltage, and design delay estimates. The tool provides with a set of possible interconnect

design options that we can choose from. It also tells us, how much energy and power

consumption happens when a particular interconnect is used. So, these figures are used

by our instruction scheduler in order to estimate whether, the high speed interconnect or

the low speed interconnect should be used at a particular point in time.

(Refer Slide Time: 32:50)

So, here are the results that we really have. So, what we just want to show is that it is

effective. For example, interconnect energy savings for 2 clustered and 4 clustered

machines are shown here. So, first 3 bars correspond to 2 clustered units; next 3 bars

correspond to 4 clustered units. So, for various technologies, such as, 90 nanometer, 65

nanometer and 45 nanometer. This is the saving. So, on the average, we save about 35

percent to 40 percent of energy in the interconnect by using a dual interconnect strategy;

rather than a single interconnect strategy.

(Refer Slide Time: 34:37)

So, let us look at memory now and what exactly is Energy-Aware memory.

(Refer Slide Time: 34:44)

So, we have hierarchical memory designs. So, these are known to be much better than a

single memory level. So, there are going to be L 0 caches, L 1 caches, L 2 caches and

then the main memory DRAM. So, this is the hierarchy. Instead of having just DRAM; it

is better to have such hierarchy. So, L 0 is the fastest and then DRAM is the slowest. So,

sizes of lower level memories are smaller. So, L 0 is the smallest cache; L 1 is slightly

bigger; L 2 is bigger than that and DRAM is obviously the largest size memory. Energy

consumption per access; let us look at some samples to motivate us in saving energy. So,

L 0 access is 150 milliwatt, L 1 access is 300 milliwatt, and L 2 is 700 milliwatt for each

access. And DRAM bank, it is not possible to access 1 element; it is a burst transaction

of say 1 block of memory elements. So, it requires about 12.71 watts for a burst

transaction, but we are really transferring a huge block of memory say 256 bytes or

words per burst transaction. So, this is the amount of power that is required. Smaller

memories need less power and per access. So, that is - the inference that we have drawn;

that is very clear. So, memory could consume 50 percent more power than the processor

itself. If we have huge memories; nowadays, we have gigabytes; so, memory actually

could be a power guzzler. So, there is every reason to believe that we must save energy

in the memory banks.

(Refer Slide Time: 36:50)

What are the various memory models that are available? For example, each RDRAM

Rambus Dynamic RAM chip can be activated separately. So, one can be in sleep state;

the other one can be in powerup state; etcetera. Standby, nap and powerdown modes are

possible so of course, active state is always there. Then it goes to standby state or nap

state or powerdown state. Powerdown state no power at all; nap state is slightly above

powerdown, but deep into napping. So, when we bring it up the data may be lost.

Whereas, standby state data is still available and bringing it to active state; requires less

energy compared to the nap state or powerdown state. The power control, the controller

memory, controller controls switching between the modes based on performance and

permitted slowdown. So, the algorithms which go into controller are the ones that we

actually need to worry about. The hard disk can also be modeled and controlled

similarly. So, variable speed drives are now available. Hard disk can be made to spin at

various speeds in order to save energy higher the speed the more energy. So,

consumption lesser speed drives require less energy, but they also take rather more time

to access the sectors and so on.

(Refer Slide Time: 38:27)

What about the cache memory? Whatever we studied about or studied so far was main

memory. So, cache memory lines may have clock gating, supply voltage gating or even

supply voltage scaling. So, in other words, cache lines may be switched off; if they are

not in use that is the idea. So, cache line gating may be at circuit level or at the program

level. So, it is probably a mixture of both and switch off the cache line when not in use

for a certain number of cycles. So, this could be actually a fixed scheme or an adaptive

scheme. So, in other words, we just check whether, the cache line has been not in use for

a certain number of fixed number of cycles and then switch it off. Otherwise, it is also

possible to take an adoptive stand thereby, saying let me not fix the time duration once

for all, but it will vary based on the program. It could even vary. So, that is an adaptive

scheme. It could become smaller or larger and it can be used both for instruction and data

caches.

(Refer Slide Time: 39:47)

So, the drowsy cache enables compiler analysis. So basically, we try to identify data

critical data in a program. Critical data is something that is, required very often and place

these critical data in a hot cache; so, that is non-drowsy cache. Whereas, the non-critical

data can be accessed slowly; no harm done in that; there will be a lot of slack before that

data is actually used. So, we can initiate access of that particular non critical data a little

early; so, that it is available in time. So, non-critical data can be placed in drowsy cache

and thereby, we are going to actually spend energy; more energy on the non-drowsy

cache and less energy on the drowsy cache; this needs simple modification to the

architecture; to accommodate extra information that is - necessary to tell the cache

controller that my data is either is in the hot cache or in the cold cache. So, here we have

found by experimentation that by partitioning the data appropriately into hot and cold

critical and non-critical; there is a fair amount of energy say, 20 to 30 percent energy that

- can be saved by placing them either in the non-drowsy or in the drowsy cache.

(Refer Slide Time: 41:10)

Then, there is a vertical cache partitioning scheme possible and this is called as a filter

cache. A very small cache placed in front of the L 1 data cache is called as filter cache;

so, this is even before L 1. So, most data will be accessed from the filter cache that is, the

basic idea and L 1 data cache will be placed in standby mode. So, when is being cached

accessed L 1 is going to sleep. So, this is good for applications with very small working

sets; if the working set is large and all the data does not fit into; let us say, the filter cache

then, it does not serve any purpose. So for example, streaming a media applications have

such a property. So, filter caches are used in such embedded systems.

(Refer Slide Time: 42:04)

So, vertical cache partitioning with pre-decoded buffers and loop buffers. So, pre

decoded buffers are what are they. They store recently used instructions in an instruction

buffer in decoded form. So, there is no need to spend time in and energy in decoding an

instruction they are already decoded. So, this eliminates the dynamic energy in fetching

and decoding. So, if the same instructions are used again and again; these pre decoded

buffers are very useful they save energy. Loop buffers hold time critical loop bodies in

dedicated buffers. So thereby, this eliminates the need to fetch them from memory and so

on.

(Refer Slide Time: 42:51)

Now, what is horizontal cache partitioning? So, they are called region based caches. Two

small additional say, 2 KB L 1 data caches are region based. One of them is meant for

the stack variables; the other one for global data variables. So, dedicated decoding

circuitry detects data access to the appropriate cache. So, whether if the data is global; it

goes to the appropriate region based cache. And there is a substantial gain in dynamic

energy consumption for streaming media application with negligible impact on the

performance. So, these are all very special caches and they are useful only for

specialized applications.

(Refer Slide Time: 43:34)

Now, what exactly is scratchpad memory? So, we know about cache. When we use a

cache memory; so, there is actually a reasonable amount of hardware that goes with the

cache memory. So, there is a tag array; it is necessary to compare whether, the tag array

and find out whether the data is inside the cache or is it inside the main memory itself.

So, because of this; when we access a cache line there is a need to spend energy on this

comparison with the tag array and so on. So, the extra hardware that comes with the

cache actually, makes us lose more at the runtime. So, scratchpad memory is more like a

register set. It is very fast; it is as fast as cache memory, but it does not have any tag

array. So, there are no comparisons; it consumes lesser amount of energy than cache; that

is very obvious, because there is no extra hardware. Then, how are they really different

from any registers or anything like that. Well they are not very different; it is just that the

register allocation policy, which is used for smaller number of registers is not really

useful in the same way here, but the principle is similar. It is actually, a very large set of

registers, but we do not have a separate name for each register as we have in the register

set. For example, we have names for registers r 1, r 2, r 3, r 4, r 10 etcetera. That is

possible, because we may have just 16 or 32 or even 128 number of registers. But if we

have a very large number of registers; the scratchpad memory elements say thousands;

some kilobytes say 100, 10 kilobytes, 20 kilobytes etcetera. It is not possible to name

them and the programmer cannot even think of using these names in the program. So,

that is the difference between a cache memory, register set and a scratchpad memory. So,

because they are very large software controlled; the scratchpads have to be software

controlled and they need efficient allocation algorithms. It is not usually possible for the

programmer to say, I will use this part of scratchpad memory for this purpose and so on.

Even though, theoretically it is possible; it is better if the energy usages are all controlled

by the compiler. So, it caters to both program and data objects that is - instruction and

data both. There are a huge energy benefits: 12 to 43 percent and then there are

performance benefits as well 7 to 23 percent. Why? If we had used cache memory then,

there would have been cache misses and there would have been a performance penalty.

Whereas, with scratchpad memory there is always a hit. There is the compiler already

knows what data is in scratchpad and what data is in main memory. So thereby, it can

actually generate the right kind of addresses. So, performance improves as a side effect;

that too not in a very small amount 7 to 23 percent. There is another advantage. Worst

case execution time can be estimation can be performed very accurately. With a cache at

a particular memory access is not known to be either a hit or a mess; at the time of

compilation. So, the access time is not known. Whereas, with scratchpad if we do not

have any cache; we know, where the data is; either in the scratchpad or in main memory.

So, the estimation of time; how much time does a program take can be performed very

accurately.

(Refer Slide Time: 47:58)

So, let us get a feel for scratchpad memory allocation by looking at a very simple

algorithm. Let us assume that - there is a single scratchpad memory and just a single

memory only 2. So, memory segments are each global variable is a segment. So, locals

are not considered for SPM allocation in our simple scheme. Each function completely

the instructions of a function is a memory segment. So, each global variable is a

segment; each segment on its own. So, this whole thing is formulated as a knapsack

problem and can be solved using integer programming. So, let us see how the

formulation takes place.

(Refer Slide Time: 48:47)

We need to maximize the gain; gain in energy. What is that? It is sigma of x i star E g i.

What are the constraints? Constraint is subject to sigma x i star s i less than or equal to k.

So, let us look at the various symbols now. So, E g is the energy gained resulting from

the segment i to the scratchpad memory; s i is the size of the memory segment i; x i is the

optimization variable. So, 1, if segment i is mapped to the SPM 0, otherwise. So, for

those segments, which are mapped to the scratchpad memory; we sum up them; sum up

their sizes; then that should be less than or equal to k; the total size of the SPM. And for

those, which are mapped to the SPM again, we look at the energy gain and compute the

sum that is - the sigma that we are computing. So, this g must be maximized.

(Refer Slide Time: 49:56)

How do we compute the energy gain? We just look at E m, which is nothing, but the

energy for one access to main memory. And we look at E s, which is the access to the

scratchpad memory. So, the difference between these 2 is the energy gain. Look at the

number of memory accesses to the segment i obtained by static analysis or by profiling

the program. So, this count multiplied by this gain gives you the energy gain for this

particular i.

(Refer Slide Time: 50:32)

So, once we know that - we can maximize the gain using any integer linear programming

tools such as, whatever is available on the internet. There are many tools. There are

many extensions possible to this SPM allocation algorithm. For example, if there is a

hierarchy of SPMs of various speeds and energy requirements. Then there are basic

blocks, stack frames, etcetera. So, hierarchy of various types of scratchpad memories;

then, we have basic blocks, stack frames, etcetera. So, we can include all these in our

model. Instead of just function now, the unit becomes a basic block or a stack frame. So,

it is not difficult to include all this into our model. However, if we want to do dynamic

overlaying of memory segments in a scratchpad memory; based on the lifetimes of

segment this is not trivial. In other words, one small part of data or instruction comes

into the scratchpad; stays there for the lifetime of that particular segment and then, once

it is of no use anymore; some other data memory segment is brought into the SPM and it

is used. So, such dynamic overlaying of memory segments based on lifetime of segments

is definitely a non-trivial extension and that a nice research topic for future.

(Refer Slide Time: 52:13)

So, now we come to the end of this energy based software system lecture. Let us

summarize so; energy optimizations are essential in tomorrow’s electronics systems. So,

energy optimizations of a computer system should be carried out at all possible levels.

So, in fact, at the algorithm level, micro architecture level, compiler level, operating

system level, and also the network level. It is not a good idea to forget some of these and

say, let just the compiler or operating system handle my requirements; I would not do

anything at the algorithm or micro architecture level. We need to try hard at every level

in order to optimize energy. Energy optimizations should be considered at the design

stage itself, and not as an afterthought. So, that is - something we should not be doing.

We can design the software and the hardware and then try to optimize, but we should be

looking at these options at the design stage itself.

So, that is the end of this lecture. Thank you.

