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Welcome to part 4 of the lecture on Energy Aware Software Systems. We will now 

discuss Compiler Techniques to save Static Energy in CPUs. 
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So, as I mentioned in the last lecture what we want to do in this compiler technique is to 

save leakage energy; the function units are going to be switched on and switched off at 

various times during the running of the program. This is important, because with 70 

nanometer technology this leakage energy consumption will be on par with dynamic 

energy consumption. 
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How do we do all these? It is possible to incorporate these dual threshold domino logic 

with sleep mode circuits, which facilitate transitions between active and sleep modes 

very quickly without much performance penalty; infact, just 1 second 1 cycle and with 

very moderate energy penalty. If there is a very sharp transition, then usually there is an 

energy penalty as well. So, that is the reason for concern. So, integer ALUs are known to 

be idle for 60 percent of the time on the average; that is the scope for actually saving 

energy. 
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Pure hardware schemes are available; that is these dual threshold domino logic circuits, 

but they have 26 percent energy overhead over ideal schemes; whereas, software based 

schemes can do much better. 
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So, we essentially try to bunch instructions which use the same function unit, so that 

active and idle periods of function units are increased simultaneously. CPU uses supply 

voltage or clock gating during idle periods. This lead to better benefits and saves 

transition energy. Now, the question is - how is this performed? 
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So, we go back to our good old instruction scheduling which is nothing but reordering 

instructions to reduce pipeline stalls. This is a technique that we use in order to save 

energy as well. It was used to exploit instruction level parallelism in our lectures earlier, 

but now we try to use the same technique in order to save energy. This is possible, 

because the priority ordering that we use in instruction scheduling could be with energy 

in mind or performance in mind; so, because of this flexibility, it is possible to use this 

same technique again to save energy as well. As we know this is an NP complete 

problem and it uses a directed acyclic graph and is limited to basic blocks. So, list 

scheduling with a ready queue is the most common approach that is adopted and that is 

what we use here as well. 
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So, let us look at a new type of architecture, which is slightly more energy efficient, so 

that our techniques can actually work even better on such architectures. These are 

clustered VLIW architectures. We have clusters of function units connected to an inter 

connection bus and then within each cluster we have many function units. So, this is the 

architecture that we are looking at. Now, the question is during instruction scheduling, 

how we allocate clusters to instructions and function units within clusters to the 

instruction again. So, these are the important questions that we need to answer. The 

problem is when we actually look at just the function units they can possibly have a local 

register file and communicate within that, but when we actually look at clusters, inter 

cluster communication is not cheap. So, this is a reason for concern. So, we need to 

allocate cluster and function units very carefully. Within the cluster we need to make 

sure that the energy is saved when we assign cluster units; I mean function units. 
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An integrated energy aware instruction scheduling algorithm for clustered VLIW 

architectures is what is proposed. So, it reduces the number of transitions between active 

and sleep states and increases the active idle periods as I mentioned before. It reduces the 

total energy consumption of the function units; and generates a more balanced schedule 

which helps to reduce peak power and step power as well. How is this last point taken 

care of? The point is if the function units which are busy are kept busier for a longer 

duration, then there is no need to actually make another unit which was sleeping; bring 

another unit which was sleeping into an active state. So, if we bring something from 

active to sleep or sleep to active state when there is a power requirement. So, since we 



are going to continue using the same function unit, it reduces the peek and step power 

requirements as well. 
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What is the scheduling algorithm? It makes the cluster assignment decisions during the 

temporal scheduling that is the cycle by cycle scheduling. Basic block scheduler is used 

and it uses the list scheduling algorithm. There are three main steps in the algorithm: the 

first one is prioritizing the ready instructions. This was done even for parallelism 

extraction the exploiting parallelism. Assignment of a cluster to the selected instruction 

and assignment of a function unit to the selected instruction in the assigned target cluster. 

So, this is important that we do it in this particular order as we will see very soon. 
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What is priority? Priority is a function of the slack and the number of consumers of that 

particular instruction. So, if an instruction produces let us say, some data say an add 

instruction produces the sum. That sum will be used by many instructions so these are 

the consumers. The slack between the time of production and the time of consumption is 

exploited in this prioritization scheme. The slack is latest finish time and earliest start 

time, which is the difference between these two and slack is dynamically updated as we 

go on. Why is this necessary? It is possible that instructions are not scheduled at the 

same time slot. They could be in brought either closer or pushed to an earlier slot. So, 

because of this, the slack keeps changing during the instruction scheduling, when 

instruction scheduling is happening. The higher the slack, the lesser the priority; that is 

because it is possible to place an instruction with a very high slack in many slots; so, that 

is why the priority is low. If the slack is very low then, the number of slots available to 

place the instruction is small and therefore, it has higher priority. So, choose the highest 

instruction highest priority instruction first; then try to schedule it using the list 

scheduler. 
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What is the cluster assignment and function unit binding stage does? What is it that it 

does? So, we prefer a cluster that has an active function unit of the type that we require 

for the instruction. Why? The reason is; let us go back to what we wanted to do. We 

wanted to save energy. We wanted to keep a function unit which was active in the same 

active state as long as possible. That is why; we prefer a cluster that has an active 

function unit of the type that we require. So, bind an active function unit if available. 



Once we assign a cluster; if none of the clusters have an active function unit of the type 

we need and then anyone of them would do, but otherwise this heuristic is possible. So, 

in that cluster bind an active function unit if available. So, again then, we want to keep 

the function unit active as long as possible. If it is not available then, the function unit in 

sleep mode for a longer duration is woken up. So, this is to make sure that the peak 

power consumption etcetera is reduced. So, something sleeping for a long time can be 

used instead of something which has been sleeping for a shorter duration so, only if the 

instruction slack is less than the threshold. So, we do not really otherwise, the instruction 

is put back into the ready queue itself. So, this threshold can be used; can be chosen 

experimentally. If the instruction slack is greater than a particular threshold then, there is 

no need to hurry and schedule that instruction right away; it can be put back in the ready 

queue and some other instruction can be chosen for scheduling at this time. This is 

because, the instructions which are very tightly; which have a tight slack need to be 

scheduled quickly. So, if there is a lot more time, we might as well schedule it a little 

later. 
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Here is a simple example of a directed acyclic graph actually a tree. We are going to use 

it is just it suffices to observe that there are multiply instructions and add instructions in 

this particular tree. So, we are going to schedule this tree and see the effect on different 

scheme the effect of different schemes on this particular example. 
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So, let us see what exactly we are doing here. So, in this example, we have presented 2 

schedules: one of them is using a traditional performance oriented scheduler; the other 

one is using an energy efficient scheduler. In this schedule 1, we have started as many 

instructions as possible straightaway multiply; multiply 2 add 1 and add 2 and these are 

running on M 1, M 2, A 1 and A 2 respectively. Then we start multiply 4, add 4, add 3 

then, multiply 3, add 5 and in cycle 5 multiply 5 and then finally, add 6 in cycle 7. So, 

this is the performance oriented scheduler and it requires 8 cycles in order to finish the 

whole thing. This schedule number 2 is an energy efficient scheduler and all these are on 

1 cluster assuming 2 multiply units and 2 add units. So, if you look at this schedule 1 and 

see how many transitions are being made from low to high or high too low. For schedule 

1, this multiplier 1 is being used here, here and here. So, assuming that it was sleeping 

before the schedule began; in cycle 1, we wake it up so, 1 transition. Then it is used in 

cycle 1, 2, 3 and then in 4 it is idle, but 1 cycle of idleness does not force it to go to sleep 

mode, so in this particular cycle 5, it is used again and then it sleeps. So, it goes down to 

sleep mode. So, 2 transitions for M 1; similarly, 2 transitions for M 2; M 2 is used here 

and then, it sleeps. A 1 actually has 4 transitions. So, A 1 was asleep to begin with; now, 

it has woken up. Then it is used in cycle 2; then cycle 3; then cycle 4, 5, 6 it sleeps. So, 

actually it has its idle so, it goes back to sleep mode; then again wakes up for cycle 7 and 

then goes to sleep again. So, there are 4 transitions as far as adder 1 is concerned; 2 for 

adder 2; adder 2 is used only in cycle 2. So, that means, the number of transitions is very 

high in this particular schedule. So, it is not very energy efficient; you should also 

observe that there are too many instructions function units being used in cycle 1. So, that 



means, the peak power consumption is going to be high in cycle 1. Let us look at 

schedule 2. It requires the same number of cycles, but we have scheduled only 2 

instructions per cycle. So, multiply our and let us look at the number of transitions for 

schedule 2. So, for multiplier 1, it is only 2 transitions; M 1 is used here and then in 5 

and then it sleeps; M 2 has also only 2 transitions. Most importantly, adder 1 is used 

here, used here, used here and used here, used here and used here again. So, we have not 

used adder 2 at all. So, there are no transitions as far as adder 2 is concerned. 
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So, now we have tried to keep adder 1 busy as long as possible; and we have tried to 

keep adder 2 sleep as long as possible in fact, for the whole duration in this case. So, this 

reduces the number of transitions and therefore, we have saved energy. This is a very 

simple example, but it goes to show what we intend to do. Similarly, resource usages for 

schedule 1 and 2; there are 4 resources in cycle 1; then 3, 2 etcetera just count the 

number of add and multiply units that are active at various points in time. So whereas, 

schedule 2 is more uniform; it does not have very big changes within the schedule it is 

very uniform. So, the peak and step over requirements are being minimized as far as 

possible in schedule 2, which is a side effect of our scheduling strategy. So, the same 

example using 2 clusters so, I will not elaborate too much on this again. It is enough to 

show, that the schedule number 4 has lesser number of transitions and has a more 

uniform schedule compared to schedule number 3. 
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So, let us see what results we got out of this scheduling algorithm. The comparison was 

with hardware only scheme. So, that means, the architecture had hardware inside to 

switch on and switch off function units; if they were actually idle for more than 1 unit of 

time. So, if it is idle for more than 1 unit it switches it off; when it is required it is again 

switched on; the power supply is switched on. Number of transitions reduce on the 

average by about 58 percent for 4 cluster systems and the reduction in number of 

transitions is directly proportional to the available slack. Now, the average reduction in 

energy overhead; so observe that this is the reduction in energy overhead is about 17 

percent for 4 clusters; only 34 percent of the overall number of idle periods are now 

smaller than 10 cycles; whereas, they were 48 percent in the max sleep or hardware only 

scheme. Now, what we want to emphasize here is that - since the cycles actually, the idle 

periods are now much larger; the number of transitions actually is also lesser; so there is 

a reduction in the transition energy and that is showing here. So, in the reduction by 

overhead implies that we are comparing against the max sleep scheme that is-the 

hardware only scheme. So, that is we gain 17 percent over the hardware based scheme. 
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So, here the same idle period reduction size reduction is shown here. So, if you observe 

at our scheme actually is according to this graph and the older one is according to the 

hardware scheme is according to this. So, you can see that - for 10 the number of idle 

periods of about 10 cycles in size is much lesser in our scheme than the other one.  
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So, here the results are shown for a large number of benchmarks. You can uniformly see 

that-this violet color which corresponds to the hardware max sleep scheme; the other 

darker one corresponds to our scheme. So, our scheme has much lesser energy overhead 

compared to the hardware only scheme. So, that is the summary of the results. 

 

How do we save energy in the communication energy in the CPU? So, that is the next 

topic. 
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What are the communication possibilities inside a CPU? There are many buses. We want 

to transfer data; then addresses and all this in CPUs. So, we require buses for all this and 



suppose, we want to reduce the voltage over the bus. So, low swing signaling over buses. 

So that means, if the bus is switching between 1 and 0 anyway, the all transmissions are 

digital. It may rise to say something like 2 volts or 3 volts or 1 volt depending on the 

power supply. So, if that voltage and the low can be maybe 0 or negative. So, if this 

swing is reduced; let us say, instead of 2 volts the high becomes 1 volt; instead of minus 

1 actually, it can be reduced to say minus 0.5 or something like that. So, that means, we 

are reducing the total swing of the voltage over the bus. This saves power definitely, 

because capacitances now have to charge to a lesser extent. But then there are going to 

be more errors because reliability is reduced; noise increases when, we reduce the swing 

therefore, reliability gets reduced and there will be more errors during the transmission. 

Therefore, we require some coding in order to increase the redundancy in such a scheme. 

So, this may add to the overhead and may or may not help too much. 

 

It is possible to encode data. So, minimize the average switching activity over the 

communication channel. Some types of data encoding can actually reduce 

communication. Say for example, we try to and it is also possible to rearrange 

instructions in order to reduce switching and so on. So, the bus design hierarchical buses 

actually, seem to reduce the energy consumption; it is also possible to use heterogeneous 

buses. What are these? For example, we may have a single bus which is used for the 

entire CPU. But suppose we have 2 buses: one of the buses is very fast; the other bus is 

bit slow. The advantage is the slower bus requires less energy consumption; the faster 

bus actually uses more energy. So, if we have communication which is very urgent, we 

can send it over the faster bus even though, it requires more energy and if there is 

communication, which can actually be sent in a relaxed manner; it can be sent over the 

slower bus which requires less energy. 
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So, that is the principle behind the heterogeneous operation. We are going to see that a 

little later. So, reduction of switching on the instruction bus for example, can be achieved 

by instruction scheduling. So, the hamming distance between consecutive instructions is 

minimized. So, that means, the number of changes from 1 to 0; 0 to 1 between 2 

instructions is minimized. So, if the bit pattern is 1 1 1 0 1; the other one obviously if it is 

0 0 0 1 0; then the number of switches from 1 instruction to the other is maximum. 

Whenever there is a 1 in the first instruction; there is a 0 in the second one. Whereas, if 

the instructions are 1 1 0 1 and 1 0 0 1; then the number of switches is only between 1 

and 0 is only 1; so, the bus actually switches. Number of switches on the bus will also be 

reduced. So, when the instructions are fetched switching on the instruction bus reduces if 

we rearrange instructions so, that the hamming distance between 2 consecutive 

instructions is minimized. So, this can also be actually used as a heuristic to perform 

instruction scheduling. 
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So, I mentioned heterogeneous interconnects. Let us look at this a little more in detail. 

An interconnect composed of 2 sets of wires is in heterogeneous; is a heterogeneous 

interconnect. So, 1 set is optimized for latency; the other set is optimized for energy. So, 

1 is very fast; the other one is slow. Now, the both these require less together require less 

area than 2 sets of low latency or high speed wires. So, the other important point is even 

though, one of them is very fast; the other one is slightly slower; the by intelligent 

instruction scheduling; the performance bit of the program is not going to suffer. So, less 

area than 2 sets of low latency wires and instruction scheduling can help reduce energy; 

therefore, thereby maintain performance. 
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What do we do? How are we going to do this? We selectively map communication to the 

appropriate interconnect during the instruction scheduling phase. So, urgent 

communications to the low latency path or high energy path. So, what do you mean by 

urgent communication, that is, which has less slack. So, that is what we want to measure 

again. We want to measure the slack and then see how much slack we have. So, those 

instructions which have less slack will be mapped to the urgent the low latency path; 

non-urgent communications will be mapped to the high latency path. So, we need to 

identify urgent communication using communication slack. So, it has been shown that - 

about 60 to 61 percent of communications have a 3 cycle slack. This can be exploited by 

our algorithm so, increase in execution time is just about 1.11 percent whereas, reduction 

in communication energy is about 39 percent for a 4 cluster processor. So, this is a 

variation of the instruction scheduling that we do. So, slack is used to map 

communication to either 1 bus or the other bus. 
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Now, we move on to a tool called INTACTE that - we have developed. So, this is an 

interconnect area delay and energy estimation tool. So, it is well known that 

interconnects consume power equivalent to 1 core; an area equivalent to 3 cores; delay 

can account for 0.5 of half of the L 2 cache access time. So, in other words, interconnects 

can be a major source or performance bottleneck, if they are not designed properly. The 

problem is when architects design chips; let us say multi core chips and they need an 

interconnection bus in between inside the multi core chip. As of today, there is no way to 

assess the amount of energy that is, consumed by the interconnect - it is possible to 



assess the amount of energy consumed by a core or a CPU by using simulators, but 

nothing of this kind is available for interconnect and our tool INTACTE will fill will 

supposed to fill this gap. So, we present an interconnect modeling tool, which enables co 

design of interconnects along with architectural components. 
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What does it do? What does INTACTE do? INTACTE - it is an interconnect 

microarchitecture exploration tool to estimate the delay and power of interconnects. The 

technology that is, 90 nanometer or 65 nanometer etcetera. The area of the chip or the 

area of the interconnects and the clock frequency and latency are the inputs to our tool. 

We have designed it for point to point interconnects only. Of course, it is possible to use 

several interconnects from 1 point to another; in order to have a bigger interconnect. And 

it is analogous to the cacti tool, which is used for cache you know energy estimation and 

so on.  
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How does it work? It solves an optimization problem of minimizing power by finding 

the optimal values for wire width; wire spacing; repeater size and repeater spacing. So, 

what are these repeaters? The wires, we understand because interconnects are nothing, 

but they are supposed to be actually communicating from 1 point to another. So, between 

the various electronic components there is going to be some wire. So, the repeaters are 

required to boost the voltage levels in between; because voltage levels may drop on the 

way due to the resistance in the path. 
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There could be additional design variables so, can be either constraints or they could 

even be determined by the tool itself; for example, area and the number of stages in the 



pipeline. So, these can be either determined by the tool or they can be supplied by the 

user then, voltage scaling support. So, the tool optimizes power and delay for nominal 

maximum supply; power and delay numbers are reported for 32 different voltage levels; 

separated by a small voltage of 15 millivolts from the nominal value. So, in this way, the 

tool gives us power and delay numbers for various points in the space; various voltages 

in that we want. And then the architect can decide which one of these is the most 

suitable. He or she can say even though, I am going to actually use more power. This 

gives me a faster interconnect; they may also say, I do not mind the interconnect being a 

little slow, but since the power is most important to me I will choose this particular 

design. So, various design possibilities are shown and the architect can choose any one 

of them. 
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So, this explains the various terms. So, the tool models interconnect as consisting of a set 

of identical equal length pipeline stages. So, these are the various stages. Here is 1 stage 

then, there is another third etcetera. Each one of these stages starts with a flip flop. So, 

here is the flip flop and then driving a repeater so, these are all repeaters. Here this and 

this are repeaters; through a set of buffers; so, these are the buffers followed by equally 

spaced wire repeater sections. So, again this entire thing is 1 section; then we would have 

another section and so on. So, all parameters for the model are taken from detailed H 

SPICE simulations. So, we simulate each of these in a very detailed device level manner; 

then use very realistic parameters for these buffers; repeaters; flip flops etcetera. So, the 

parameters related to the flops, repeaters, wires and buffers are pre computed by 

simulations for 4 different technology nodes 90, 65, 45 and 32 nanometers and also 32 

different supply voltages. So, by doing this computation early before we start 

optimization we are saving a lot of optimization time. For each iteration of the 

optimization, the tool computes the power and delay for each wire repeater section. So, 

these values are multiplied by the number of repeaters and the degree of pipelining and 

added to the pipelining overhead to get the overall power and delay numbers. So, we are 

assuming that they are all identical sections. So, it is possible to just take them; add the 

powers and so on. So, this reduces the size of the search space. So, the limitation is that - 

you cannot have pipe these sections of different varieties combined with each other. 

They are all supposed to be identical. 
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Here is the block diagram. There are many inputs. And then in this design space, we are 

going to enumerate various points and the user can pick any one of them. 
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What are the results that we can show out of this tool? So, we wanted to demonstrate the 

accuracy of the tool. So, various trends in interconnect power and performance have 

been exhibited in this tool. So, detailed HSPICE simulations have been carried out to 

validate the results. What are those? 
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So for example, architectural tradeoffs in having 2 heterogeneous wires can be evaluated 

using our tool. So, I mentioned instruction scheduling with heterogeneous paths. How do 

we get realistic values for such paths the interconnects? Our tool provides these realistic 

values. The architect provides length, number of bits, target technology, operating 

voltage, and design delay estimates. The tool provides with a set of possible interconnect 

design options that we can choose from. It also tells us, how much energy and power 

consumption happens when a particular interconnect is used. So, these figures are used 

by our instruction scheduler in order to estimate whether, the high speed interconnect or 

the low speed interconnect should be used at a particular point in time. 
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So, here are the results that we really have. So, what we just want to show is that it is 

effective. For example, interconnect energy savings for 2 clustered and 4 clustered 

machines are shown here. So, first 3 bars correspond to 2 clustered units; next 3 bars 

correspond to 4 clustered units. So, for various technologies, such as, 90 nanometer, 65 

nanometer and 45 nanometer. This is the saving. So, on the average, we save about 35 

percent to 40 percent of energy in the interconnect by using a dual interconnect strategy; 

rather than a single interconnect strategy. 
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So, let us look at memory now and what exactly is Energy-Aware memory. 
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So, we have hierarchical memory designs. So, these are known to be much better than a 

single memory level. So, there are going to be L 0 caches, L 1 caches, L 2 caches and 

then the main memory DRAM. So, this is the hierarchy. Instead of having just DRAM; it 

is better to have such hierarchy. So, L 0 is the fastest and then DRAM is the slowest. So, 

sizes of lower level memories are smaller. So, L 0 is the smallest cache; L 1 is slightly 

bigger; L 2 is bigger than that and DRAM is obviously the largest size memory. Energy 

consumption per access; let us look at some samples to motivate us in saving energy. So, 

L 0 access is 150 milliwatt, L 1 access is 300 milliwatt, and L 2 is 700 milliwatt for each 

access. And DRAM bank, it is not possible to access 1 element; it is a burst transaction 

of say 1 block of memory elements. So, it requires about 12.71 watts for a burst 

transaction, but we are really transferring a huge block of memory say 256 bytes or 

words per burst transaction. So, this is the amount of power that is required. Smaller 

memories need less power and per access. So, that is - the inference that we have drawn; 

that is very clear. So, memory could consume 50 percent more power than the processor 

itself. If we have huge memories; nowadays, we have gigabytes; so, memory actually 

could be a power guzzler. So, there is every reason to believe that we must save energy 

in the memory banks. 
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What are the various memory models that are available? For example, each RDRAM 

Rambus Dynamic RAM chip can be activated separately. So, one can be in sleep state; 

the other one can be in powerup state; etcetera. Standby, nap and powerdown modes are 

possible so of course, active state is always there. Then it goes to standby state or nap 



state or powerdown state. Powerdown state no power at all; nap state is slightly above 

powerdown, but deep into napping. So, when we bring it up the data may be lost. 

Whereas, standby state data is still available and bringing it to active state; requires less 

energy compared to the nap state or powerdown state. The power control, the controller 

memory, controller controls switching between the modes based on performance and 

permitted slowdown. So, the algorithms which go into controller are the ones that we 

actually need to worry about. The hard disk can also be modeled and controlled 

similarly. So, variable speed drives are now available. Hard disk can be made to spin at 

various speeds in order to save energy higher the speed the more energy. So, 

consumption lesser speed drives require less energy, but they also take rather more time 

to access the sectors and so on. 
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What about the cache memory? Whatever we studied about or studied so far was main 

memory. So, cache memory lines may have clock gating, supply voltage gating or even 

supply voltage scaling. So, in other words, cache lines may be switched off; if they are 

not in use that is the idea. So, cache line gating may be at circuit level or at the program 

level. So, it is probably a mixture of both and switch off the cache line when not in use 

for a certain number of cycles. So, this could be actually a fixed scheme or an adaptive 

scheme. So, in other words, we just check whether, the cache line has been not in use for 

a certain number of fixed number of cycles and then switch it off. Otherwise, it is also 

possible to take an adoptive stand thereby, saying let me not fix the time duration once 

for all, but it will vary based on the program. It could even vary. So, that is an adaptive 



scheme. It could become smaller or larger and it can be used both for instruction and data 

caches. 
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So, the drowsy cache enables compiler analysis. So basically, we try to identify data 

critical data in a program. Critical data is something that is, required very often and place 

these critical data in a hot cache; so, that is non-drowsy cache. Whereas, the non-critical 

data can be accessed slowly; no harm done in that; there will be a lot of slack before that 

data is actually used. So, we can initiate access of that particular non critical data a little 

early; so, that it is available in time. So, non-critical data can be placed in drowsy cache 

and thereby, we are going to actually spend energy; more energy on the non-drowsy 

cache and less energy on the drowsy cache; this needs simple modification to the 

architecture; to accommodate extra information that is - necessary to tell the cache 

controller that my data is either is in the hot cache or in the cold cache. So, here we have 

found by experimentation that by partitioning the data appropriately into hot and cold 

critical and non-critical; there is a fair amount of energy say, 20 to 30 percent energy that 

- can be saved by placing them either in the non-drowsy or in the drowsy cache. 
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Then, there is a vertical cache partitioning scheme possible and this is called as a filter 

cache. A very small cache placed in front of the L 1 data cache is called as filter cache; 

so, this is even before L 1. So, most data will be accessed from the filter cache that is, the 

basic idea and L 1 data cache will be placed in standby mode. So, when is being cached 

accessed L 1 is going to sleep. So, this is good for applications with very small working 

sets; if the working set is large and all the data does not fit into; let us say, the filter cache 

then, it does not serve any purpose. So for example, streaming a media applications have 

such a property. So, filter caches are used in such embedded systems. 
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So, vertical cache partitioning with pre-decoded buffers and loop buffers. So, pre 

decoded buffers are what are they. They store recently used instructions in an instruction 

buffer in decoded form. So, there is no need to spend time in and energy in decoding an 

instruction they are already decoded. So, this eliminates the dynamic energy in fetching 

and decoding. So, if the same instructions are used again and again; these pre decoded 

buffers are very useful they save energy. Loop buffers hold time critical loop bodies in 

dedicated buffers. So thereby, this eliminates the need to fetch them from memory and so 

on.  
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Now, what is horizontal cache partitioning? So, they are called region based caches. Two 

small additional say, 2 KB L 1 data caches are region based. One of them is meant for 

the stack variables; the other one for global data variables. So, dedicated decoding 

circuitry detects data access to the appropriate cache. So, whether if the data is global; it 

goes to the appropriate region based cache. And there is a substantial gain in dynamic 

energy consumption for streaming media application with negligible impact on the 

performance. So, these are all very special caches and they are useful only for 

specialized applications. 
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Now, what exactly is scratchpad memory? So, we know about cache. When we use a 

cache memory; so, there is actually a reasonable amount of hardware that goes with the 

cache memory. So, there is a tag array; it is necessary to compare whether, the tag array 

and find out whether the data is inside the cache or is it inside the main memory itself. 

So, because of this; when we access a cache line there is a need to spend energy on this 

comparison with the tag array and so on. So, the extra hardware that comes with the 

cache actually, makes us lose more at the runtime. So, scratchpad memory is more like a 

register set. It is very fast; it is as fast as cache memory, but it does not have any tag 

array. So, there are no comparisons; it consumes lesser amount of energy than cache; that 

is very obvious, because there is no extra hardware. Then, how are they really different 

from any registers or anything like that. Well they are not very different; it is just that the 

register allocation policy, which is used for smaller number of registers is not really 

useful in the same way here, but the principle is similar. It is actually, a very large set of 

registers, but we do not have a separate name for each register as we have in the register 

set. For example, we have names for registers r 1, r 2, r 3, r 4, r 10 etcetera. That is 

possible, because we may have just 16 or 32 or even 128 number of registers. But if we 

have a very large number of registers; the scratchpad memory elements say thousands; 

some kilobytes say 100, 10 kilobytes, 20 kilobytes etcetera. It is not possible to name 

them and the programmer cannot even think of using these names in the program. So, 

that is the difference between a cache memory, register set and a scratchpad memory. So, 

because they are very large software controlled; the scratchpads have to be software 

controlled and they need efficient allocation algorithms. It is not usually possible for the 



programmer to say, I will use this part of scratchpad memory for this purpose and so on. 

Even though, theoretically it is possible; it is better if the energy usages are all controlled 

by the compiler. So, it caters to both program and data objects that is - instruction and 

data both. There are a huge energy benefits: 12 to 43 percent and then there are 

performance benefits as well 7 to 23 percent. Why? If we had used cache memory then, 

there would have been cache misses and there would have been a performance penalty. 

Whereas, with scratchpad memory there is always a hit. There is the compiler already 

knows what data is in scratchpad and what data is in main memory. So thereby, it can 

actually generate the right kind of addresses. So, performance improves as a side effect; 

that too not in a very small amount 7 to 23 percent. There is another advantage. Worst 

case execution time can be estimation can be performed very accurately. With a cache at 

a particular memory access is not known to be either a hit or a mess; at the time of 

compilation. So, the access time is not known. Whereas, with scratchpad if we do not 

have any cache; we know, where the data is; either in the scratchpad or in main memory. 

So, the estimation of time; how much time does a program take can be performed very 

accurately. 
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So, let us get a feel for scratchpad memory allocation by looking at a very simple 

algorithm. Let us assume that - there is a single scratchpad memory and just a single 

memory only 2. So, memory segments are each global variable is a segment. So, locals 

are not considered for SPM allocation in our simple scheme. Each function completely 

the instructions of a function is a memory segment. So, each global variable is a 



segment; each segment on its own. So, this whole thing is formulated as a knapsack 

problem and can be solved using integer programming. So, let us see how the 

formulation takes place. 
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We need to maximize the gain; gain in energy. What is that? It is sigma of x i star E g i. 

What are the constraints? Constraint is subject to sigma x i star s i less than or equal to k. 

So, let us look at the various symbols now. So, E g is the energy gained resulting from 

the segment i to the scratchpad memory; s i is the size of the memory segment i; x i is the 

optimization variable. So, 1, if segment i is mapped to the SPM 0, otherwise. So, for 

those segments, which are mapped to the scratchpad memory; we sum up them; sum up 

their sizes; then that should be less than or equal to k; the total size of the SPM. And for 

those, which are mapped to the SPM again, we look at the energy gain and compute the 

sum that is - the sigma that we are computing. So, this g must be maximized. 
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How do we compute the energy gain? We just look at E m, which is nothing, but the 

energy for one access to main memory. And we look at E s, which is the access to the 

scratchpad memory. So, the difference between these 2 is the energy gain. Look at the 

number of memory accesses to the segment i obtained by static analysis or by profiling 

the program. So, this count multiplied by this gain gives you the energy gain for this 

particular i.  

 

(Refer Slide Time: 50:32) 

 
So, once we know that - we can maximize the gain using any integer linear programming 

tools such as, whatever is available on the internet. There are many tools. There are 

many extensions possible to this SPM allocation algorithm. For example, if there is a 



hierarchy of SPMs of various speeds and energy requirements. Then there are basic 

blocks, stack frames, etcetera. So, hierarchy of various types of scratchpad memories; 

then, we have basic blocks, stack frames, etcetera. So, we can include all these in our 

model. Instead of just function now, the unit becomes a basic block or a stack frame. So, 

it is not difficult to include all this into our model. However, if we want to do dynamic 

overlaying of memory segments in a scratchpad memory; based on the lifetimes of 

segment this is not trivial. In other words, one small part of data or instruction comes 

into the scratchpad; stays there for the lifetime of that particular segment and then, once 

it is of no use anymore; some other data memory segment is brought into the SPM and it 

is used. So, such dynamic overlaying of memory segments based on lifetime of segments 

is definitely a non-trivial extension and that a nice research topic for future. 
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So, now we come to the end of this energy based software system lecture. Let us 

summarize so; energy optimizations are essential in tomorrow’s electronics systems. So, 

energy optimizations of a computer system should be carried out at all possible levels. 

So, in fact, at the algorithm level, micro architecture level, compiler level, operating 

system level, and also the network level. It is not a good idea to forget some of these and 

say, let just the compiler or operating system handle my requirements; I would not do 

anything at the algorithm or micro architecture level. We need to try hard at every level 

in order to optimize energy. Energy optimizations should be considered at the design 

stage itself, and not as an afterthought. So, that is - something we should not be doing. 



We can design the software and the hardware and then try to optimize, but we should be 

looking at these options at the design stage itself. 

 

So, that is the end of this lecture. Thank you. 


