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Welcome to the lecture part 3 of energy aware software systems. So, today we are going 

to look at Microarchitectural Techniques to save energy and move on to how compliers 

are going to be useful in saving the energy using the Microarchitectural Techniques. 
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For example, the CPU and memory are the energy guzzlers in a computer system. So, on 

the CPU front, we can use voltage and frequency scaling, change the voltage and 

frequency of the CPU. We can use supply voltage getting of function units inside the 

CPU. We are going to look at each of these a little more in detail. 

Then, we can gate the clock of function units and we can do some bus encoding for the 

buses inside the CPU. On the memory front, a new type of memory called the drowsy 

cache can be utilized. It has a facility to switch off power supply to several cache lines 

which are not active. 

Compression in the instruction cache is possible to save energy because if we compress 

instructions, then the space occupied will be much lesser. So, the access will be faster 

and less energy consuming. 

Cache region reservation and partitioning, scratchpad memory - these are some of the 

techniques which are possible at the Microarchitectural Level. 
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What is CPU voltage scaling? It basically reduces the voltage of the CPU and this saves 

mostly dynamic energy of the CPU. It cannot change the static energy consumption of 

the CPU. In CMOS circuits, the delay inside the CPU will increase with reduction in 

voltage. 

So, we definitely have will be forced to reduce the clock frequency, if we reduce the 

voltage. This in turn reads to performance degradation; so, the challenges in voltage 

scaling would be to retain the same level of performance, but with reduced energy 

consumption. 

For example, inside the Intel XScale 80200 processor, voltage can be change from 1.0 to 

1.5 volts in small increments. Automatically, the frequency will also change from 

between 200 to 733 Megahertz. In other words, the highest frequency may be 733 and 

the lowest frequency would be 200 in steps of 33 or 66 Megahertz. So, if we increase the 

voltage, frequency increases; if we reduce the voltage, frequency also reduces. 

Another important factor is the time for change in voltage. There is hardware inside the 

CPU in the voltage regulator, which has to stabilize its output when we want the voltage 

to be change from 1 step to another step; this requires a finite amount of time. This is 

quite large, for example, up to 1 millisecond. 



The reason is there are capacitances inside the voltage regulator; these require time to 

charge and discharge.  That is the reason why this change in voltage requires some extra 

time. 
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We will look at static voltage scaling which implies we change the voltage of the CPU 

right in the beginning of running the program and we do not change it during the running 

of the program itself. 

This Intel’s speed step technology which detects if the system is plugged into a power 

outlet or is a battery, and accordingly runs the processor at highest voltage frequency or 

less power hungry mode, thereby using less voltage frequency it actually saves battery 

power. 
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Then, there is dynamic voltage scaling. So, this is possible at task level  and is done by 

the operating system task scheduler. So, of course, it is also possible to do it inside the 

program; we will see that a little later, but that requires compiler help. 

Modern day, embedded processors provide for dynamic voltage scaling through program 

instructions. For example, Intel XScale, StrongARM, AMD mobile K6 Plus, Transmeta 

Crusoe and Power PC 405 LP - these are some of the processors which have instructions 

to change voltage. 

So, when the program is running, it is possible to change the voltage of the CPU. It is 

also possible for the operating system to execute these instructions and change the 

voltage of the CPU. 
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Then I mentioned CPU Clock gating. Basically, if you gating implies stopping, so the 

clock to the function units is stopped implies that the function unit cannot run at all. 

These are all synchronous systems; they require a clock in order to run. 

Make the function unit clock 0 during the idle period. So, if the clock is 0 during the idle 

period, then the clock energy would be reduced. It also reduces the dynamic energy of 

the function unit, because the function unit cannot run when the clock is zero. 

It reduces dynamic energy usage, but the static leakage remains. Not much can be done 

about it unless we cut the voltage of the function unit itself. The change in the energy 

due to clock gating is not really great, but it definitely helps; we need to save energy in 

every possible way so that the total sum of energy saved due to several techniques is 

reasonable. 
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Both circuit-level and compiler level techniques are possible in this case for gating the 

CPU Clock; we will see that a little later. So, supply voltage gating is another possibility 

for function units; what we saw before was supply voltage gating for the whole CPU. 

Now, are rather supply voltages scaling for the whole CPU? We are looking at supply 

voltage gating of function units. So, function units are switched off during idle periods. 

So, this implies that even the static energy is going to be saved and circuit level 

automatic techniques have been proposed for this purpose. 

So, they have a mechanism to sense idle periods. They see how many cycles the function 

unit has been idle and based on that the algorithm switches off the supply voltage to the 

function unit. Let us say two cycles of inactivity, they trigger switching off of the supply 

voltage to the function unit and then it remains in that state until the function unit is 

required again. 

So, once it is required, the supply voltage is reactivated and the function it becomes 

functional. But both switching off and switching on requires some finite amount of time. 

Now, that has to be factored in when we want to actually use this technique in the 

architecture or through the compiler mechanism. 
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Now, let us look at compiler techniques to save dynamic energy in CPU.  The first one 

is not strictly a complier technique, but has been mentioned because it is widely referred 

to in the literature. We accumulate the work load history, what is the load on the CPU, 

for how many and if during this particular interval the CPU has not been working at its 

best. For example, its activity factor is probably less, may be 0.5, 0.4, and 0.6. 

In such a case, it is possible that by running the CPU at a lower voltage and frequency 

during the next interval. We are going to save some energy, but at the same time, stretch 



the activity factor to 1 and make sure that the CPU itself, rather the program itself does 

not suffer in performance. 

If this requires  direct intervention of the operating system and or application, it in 

interval based techniques. It considers, as I said, the idle time on a previous interval as a 

measure of processor’s utilization for the next interval. 

So, the assumption is whatever happened in this interval will happen in the next interval 

also. Use this to decide on the voltage frequency settings to be used throughout the next 

interval. It is also possible to use a moving average of the previous intervals and this 

came possibly give some better advantage. 

Inside the compiler, how do we incorporate a dynamic voltage scaling technique? The 

basic idea is to make different parts of a program, operate at different voltage frequency 

pairs. During CPU stall, that is when memory operations are happening and the result of 

the memory operation is required for the next instruction to execute and therefore the 

CPU is doing nothing. 

During such a stall, it is possible to scale down the CPU voltage and frequency, save 

energy, but performance will not be degraded because CPU is really doing nothing. So, 

we can reduce its voltage and frequency. 
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Let me show you a picture to make this very clear. The memory is supposed to operate at 

a constant voltage and frequency. So, let us say, the memory operation is going this way 

and it requires T mem cycles to finish. 

The CPU operation is happening. So, its starts here; it goes on until this point. Then, 

until it gets the memory operand, it can do nothing. So, it stalls and waits until the 

memory operation is completed, receives the memory operand and then continues its 

operation. 

Now, there is nothing wrong, if we stretch this period - which is actually the useful 

activity region of the CPU - up to this point by reducing the voltage and frequency of the 

CPU; so, because during this period, the CPU is doing nothing. We can stretch this 

period up to this period, make the CPU run at a lower speed and thereby we actually 

during this entire period anyway CPU was active. Now, we have reduced the voltage; the 

time remains the same; so, we have saved energy. At this point, we increase the CPU 

speed, the frequency and voltage. So, that the performance is not degraded. This is the 

basic idea behind the voltage scaling. 
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Memory operations are assumed to be asynchronous. So, they go on independently of the 

CPU and they always operate at the highest voltage frequency. It is the CPU whose 

voltage and frequency will be change. Schemes of this kind have been shown to provide 

0 to 25 percent energy saving with 0 to 3 percent performance loss. 



It is possible that the whole program has to be run at a single frequency - the highest 

possibly and it may not be possible to divide every program into couple of regions which 

run at different frequencies. That is the reason why, the savings vary between 0 to 25 

percent. 
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Now, how does this perform? So, we try to partition a program into regions based on the 

consumption of energy at different voltage and frequencies. It has been shown, that two 

regions are usually sufficient: one of the region operates at a lower frequency and the 

other operates at the maximum frequency. 

Introduce the frequency-changing instructions at the entry and exit of the lower 

frequency region. In other words, when the program control enters the lower frequency 

region, the frequency is changed to a lower one and when it exits the lower frequency 

region, the frequency is changed again to the higher one. 

Finding best partitions in this fashion is an optimization problem. We need to factor in 

the frequency change timing: 100 memory accesses may be needed 10 to 20 

microseconds depending on the processors frequency. In order to perform this change, I 

already mentioned that, this is due to the voltage regulator and its capacitances. 
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What is a region? All top level statements inside a region R are executed the same 

number of times. This is the rationale behind dividing a program into regions. So for 

example, a loop nest is a region, call site, a procedure sequence of statements or entire 

program; they are all regions. So, this is an informal description of a region, but how do 

we use this. 
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So, what we really do is, let us assume, that we have built or rather partitioned the 

program into 2 regions. Now, given that there are 2 regions: there is a region R and there 

is a whole program P. 

There is a constraint on the size of the region R. In other words, T (R, f max) is the time 

required to run the region R at the highest frequency f max and T (P, f max) is the time 

required to run the whole program at f max. 

So, T (R, f max) divided by T (P, f max), the ratio of these is required to be greater than 

or equal to rho, which is usually about 20 percent. Why do we want this constraint? The 

point is, if we have a very small region, then the number instructions executed in that 

region will be very small. So, the time that the CPU spends inside the region R will be 

very small. 

If the region is very small, then the overheads of the switching; that is we have to switch 

to a lower frequency and then again to a higher frequency at the borders of the region R. 

This overhead may become quite substantial. In order to make sure that this overhead is 

not very high, we make the region of a reasonable size. 

If the region is very large, then the energy benefits are going to be very low. We have to 

make the region of reasonable size somewhere in between. So, in the optimization 

problem, there is a constraint on the region which is set by experimentation for each 

processor is could be different. So, we set it to approximately 20 to 25 percent. 
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What is the minimization problem? So, it says minimize over all regions R and all 

frequencies f. We have to find the region R, let us see later how to find it. For a given R, 

we need to experiment with all possible frequencies f. What is it, which we need to 

minimize? The energy: total energy of the CPU. 

The energy of the CPU or the program is in 3 parts: the first part is powers spent by the 

region R, at frequency f multiplied by the time spent by region R, at frequency f. So, 

power into time is energy. This is as far as region R which is executed at lower 

frequency f. 

Then, we have the region P minus R, which actually operates at the highest frequency. 

So, the power consumption, at this level is P f max and T of P minus R comma f max, is 

the time spent in the rest of the region in the program; that is P minus R. 

The last part is the energy spent for switching. So, P of trans into 2 into N of R. N of R is 

the number of times the region R is executed. There is a factor 2 here, because we need 

to switch twice. We need to switch to the lower voltage, when we enter the region and 

we need to switch to the higher voltage, when we exit the region. P trans is the power 

consumed during switching. 

This is the total energy consumption for the program. This must be minimized over all 

possible regions and frequencies subject to a constraint. The constraint is the total time 



required to execute the program should be below a certain threshold. So, r is the 

performance degradation tolerated, let us say, 5 percent. T (R, f) is the time required to 

execute region R, at frequency f. T P minus R comma f max is the time required to 

execute the rest of the program - P minus R, at the frequency f max. 

Then, we have the switching time. T trans into 2 into N R, the time required for switches. 

This entire thing is the time for the program with a lower voltage and frequency selected 

for a region. This time should be less than or equal to 1 plus R into T of P comma f max. 

So, assume that we did not do any reduction and voltage for any region in the program. 

Then, the time required would be T of P comma f max at the highest frequency. So, we 

are willing to spend a little more time. So, that is why the 1 plus R factor. So, 1 plus R 

into T of P comma f max, is a little more than T of P comma f max and we do not want 

the degradation to be more than this particular specification of r, say, 4 to 5 percent. 

(Refer Slide Time: 21:59) 

 

How does one implement dynamic voltage scaling? So, there is going to be code 

instrumentation for very basic regions, such as: call sites, loops, if then else and so on. 

The instrumentation measures, the time R comma f. So, assuming that the region is 

small, we require a very high precision timer. So, T(R, f) is the time required to execute 

region R, at frequency f and N R is the number of times region R is executed. This can 

be measured using a counter. 



Code instrumentation is needed to start and stop the timer and also increment the counter 

at the various basic region levels. P of f max is the maximum power consumption - this 

is steady power consumption; let us, assume that. So, if once we know that the power 

consumption is steady, we can either measure it directly using a wattmeter connected to 

the power supply or we could use a simulator such as, Wattch to tell us what is the power 

consumption of the processor? 

Power consumed at various frequencies to simplify the matter is obtained through 

interpolation using P of f max. So, change in frequency is assumed to be proportional to 

change in power. So, we are going to use that equation in order to interpolate and find 

the power consumption at various frequencies. 

If this is not going to be linear, then it is possible to change the frequency, run the 

program at that particular frequency and measure the power. We could do this for a 

couple of frequencies and then fit a curve and calculate the power consumption at other 

frequencies using this fit at curve. 

We have basic regions, but we do not want such very small regions - regions have to be 

of reasonable size. So, we must provide a simple composition mechanism for combining 

basic regions. 

So for example, we could combine different segments of the program into one using 

program composition rules. So, the then part and the else part could be combine into 1; 2 

loops could be combine into one and so on. 

These are the usual programs syntax composition rules that we are going to use for 

producing bigger and bigger units. So, in the same way as a parser, starts from the 

smallest expression and builds up parse tree for the whole program. We are also going to 

use the same rules; combine smaller basic regions into bigger regions. Then compute the 

power and time requirements of the composed regions. All the region combinations are 

enumerated and the optimal one is chosen. This is not going to be too large. So, we can 

afford to do this; otherwise an integer linear program or some other formulation can be 

utilized as well. 
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So, that was about changing voltage during run of the program, rather using run of the 

program, but determined by the compiler. So, what happens if we have a dynamic 

compiler, in other words, for example, a just in time compiler for java, is also a form of 

dynamic compiler. So, what happens in such a compiler, there are java byte code 

instructions, which are actually translated into machine code during the interpretation of 

the java byte code. 

Therefore, there is no separate time available for us to analyze the program like we 

proposed in the previous scheme. Then, insert instructions to change frequency voltage 

etcetera. It is also possibly superior to change the frequency and voltage during by 

accumulating information during the run of the program, rather than by the compiler. 

So, just in time compilers and dynamic compilers try to do this. They try to accumulate 

information about, which methods are very hot or much executed very frequently using 

simple profiling methods. Then, they compute reduction in frequency as proportional to 

the relative CPU slack time. The time required for accessing memory minus the overlap 

time, which is a useful activity of the CPU - that is, the overlap. So, T mem minus T 

overlap is proportional to the CPU slack. So, divided by T total is really the ratio, which 

is used as a measure of the slack of the CPU. 

This relative CPU slack time is used to compute the reduction in frequency. Let us see, 

how T mem and T overlap are computed, we cannot be using very heavy instrumentation 



to compute this. We are going to use the performance counters available inside the CPU, 

which actually have no overheads at all to compute the CPU slack time. 
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For example, T mem by T total can be computed as k 1 into number of memory bus 

transactions divided by number of micro operations retired. So, both these number of 

memory bus transactions and number of micro operations retired are given by two 

different performance counters. 

So, what is involved is to reading those performance counters. k 1 is a constant which is 

set by some experimentation. Similarly, T overlap by T total is proportional to k 2 into 

floating point and integer instructions divided by number of micro operations retired. So, 

again there is a performance counter which gives us this information and also this 

information. We could compute a quantity which is proportional to T overlap by T total. 

So, computing the slack or relative CPU slack is a fairly straight forward process, once 

we compute these 2 quantities. So, remember these are obtaining from the performance 

counters so, this is a fairly straight forward operation. 



(Refer Slide Time: 29:37) 

 

So, that was about using dynamic voltage scaling inside a dynamic compiler. Let us see, 

how dynamic voltage loops scheduling is done. Why should we look at a different 

technique for loops? The reason is twofold: one is, suppose, we have program which are 

not necessarily memory bound. So, the previous technique assumed that the programs 

are memory bound, that is, the CPU is waiting for a memory operation and therefore, it 

has very little to do; during this time we reduce the frequency and voltage of the CPU; 

suppose that was not so. 

The program was not necessarily memory bound. The other reason is, we could have 

multicore processors and we still have not seen a technique which can be used for 

multicore. This particular technique is can be used both on multicore and single core 

processor. The strategy is to repeatedly regroup a loop based on what is known as a 

rotation scheduling. 

I will give an example to show, what rotation scheduling is very soon. Decrease the 

energy by dynamic voltage scaling as much as possible within a timing constraint and 

this is not necessarily for a memory bound program. So, what exactly is rotation of a 

loop? 
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Let’s assume that we have a loop of this kind. There is some initialization here and then, 

we have a for loop with 5 instructions. Remember, that we have the order of these 

instructions A B C D E. So, loop rotation implies that we change the order of the 

instructions of the loop subject to the dependents requirements of the various 

instructions. 

So for example, this instruction one of them was taken upwards; so it is here. The loop 

started with the second instruction onwards and the A i instruction was introduced at the 

bottom. So, when the loop starts execution, this is executed for the first iteration and 

then, these are executed and this will be the instruction for the second iteration. 

We have changed the instruction subscripts also. It was A i equal to E i minus 3 star E i 

minus 3 whereas, now it is A i plus 1 equal to E i minus to the star E i minus 2; others 

have not changed. So, there is a prolog which of some size and then there is an epilog for 

the rest of the instructions in the last iteration. 

Because we have already executed one instruction in the last iteration, the rest of them 

have to be executed outside the loop. So, this is rotation of the loop by 1, because this 

instruction has come to the bottom like this. Suppose, we rotate the loop twice, then this 

instruction will also go up. We start with this instruction and B would actually be placed 

after A and there would be appropriate epilog here. So, this is the rotation of a loop. 



(Refer Slide Time: 33:28) 

 

How does loop rotation help? Let us consider a 2 core processor: there are 2 processors; 

2 CPU’s and the hatched area indicate that the processor is running at the highest 

frequency in voltage. The black area indicates that the processor is doing nothing. 

So, to begin with for some program, not necessarily the program that I showed you just 

now; processor 1 is executing the 3 regions: A D and E, and then the processor number 2 

is doing nothing for certain duration of time. Then, it is executing C and B; then again it 

is doing nothing. 

The number of time slots is really 12; this cannot be changed, this is a time requirement -

time constraint. Suppose, we rotate the loop once, the question is, is it possible to 

actually do some dynamic voltage scaling and get some benefit out of it. 

Now, the processor 1 executes D and E. A is actually scheduled on processor 2. So, 

processor 2 executes C and B, and then, it reduces the voltage. That is why, there is a 

linear bar here, executes A in lean mode - that is, lower frequency mode and then, again 

changes the voltage back to its normal. 

Now, during this time, the program is really doing nothing on processor 1. During this 

time, there is some saving because we have actually reduced the voltage of the processor 

number 2. Let us do, loops rotation once more. 



Now, processor 1 does very little here; then it executes E; then it executes D and in 

between it does nothing. Processor number 2 actually runs the entire duration of 12 

cycles. It executes in lean mode, at a lower frequency so, there is a substantial amount of 

reduction in energy consumption. 

If we do, let us say loop rotation once more. In this particular example, we are able to 

reduce run D on processor 1, then reduce the voltage and run E on processor 1. Then, the 

processor number 2 runs the other C B and A in lean mode. So, there is saving here and 

also here. So, in this fashion, we are able to reduce a substantial amount of energy. This 

only an example, which shows that the third rotation blimps out the maximum benefit; it 

is not necessarily show in all programs. 

It is possible that, only one rotation is allowed in certain loop; 2 may be possible in 

another loop; 3 may be possible in one more. The number of rotations is dependent on 

the dependencies in the program and is not necessarily always fixed. 

But this example shows, that loop rotation enables slowing down processors without 

reducing the amount of time.  So the time is the same; power consumption is less, so, 

energy is saved. So, that is loop rotation and scheduling of the parts of the program, 

rather parts of the loop in order to save energy. Again, we must stress that we are saving 

dynamic energy and we are not really saving any static energy in this case. 
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Let us look at a third type of processor. We saw a single core, multi core and now, 

multiple clock domain processors. What is an MCD processor? The basic idea is 

different parts of a CPU will run at different clock frequencies. Why is this needed and 

how does it solve any problems at all if a t. 

In general, this type of MCD processor addresses difficult clock distribution and power 

dissipation problems. So, it is well know that in a large CPU or large chip, in general, 

supplying the same clock to all parts of the CPU is very difficult; it is not easy. It is 

simpler if separate clocks are used in different parts of the CPU, but then clock 

synchronization between these is a very difficult problem. So, it is not easy to use such 

processors. Now, why should we actually have large chips? Obviously, the larger the 

chip, more chip area and more electronics that can be put on it. So, power dissipation 

becomes very large if we have a very large chip. 

We are going to have smaller regions of the chip, which have different clocks. So, the 

clock distribution electronics and the CPU area needed for clock distribution itself, 

increases power dissipation. So, if we use local clock in different parts of the CPU; this 

clock power dissipation also comes down. 

So, we are going to partition the chip into domains. So, each partition functions at an 

independent voltage and frequency, so that is the assumption in an MCD processor. It 

needs synchronization circuits between for inter-domain communication such as buffers, 

queues and so on. 
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Domains, whose performance is non-critical, can operate at lower frequencies and 

therefore, they will consume potentially less power. Performance costs for 

synchronization are not very significant for out-of-order processors. So, if somebody 

builds MCD processors; it may still be useful. 
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Here is an example, so there is an MCD Microarchitecture. So, there is a front end which 

does fetch and decode; so, this is one domain; memory itself main memory is another 

domain. The L1 data cache, load queue and L2 cache form one more load domain, then, 



there is a floating point domain and integer and register domain. So, this is a 5 domain 

processor. 
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How does one use the compiler technique for doing the DVS on such processors? 

Basically, the technique builds a Timed Petrinet based program performance model; this 

Petrinet model is parameterized by microarchitectural settings and resource 

configurations. 

I cannot provide a tutorial on Petrinet for lack of time, but it surprises that a Petrinet can 

model concurrency; it can model nondetermine some and so on. This model is used to 

evaluate the performance impact of various frequency settings for a program region. 

During this evaluation, we really do not have to run the whole program, but it is 

necessary to just run the program. It rather run the simulation of the Petrinet and watches 

the performance of that processor using the Petrinet model for certain duration. 

So, using this duration based simulation; it is possible to evaluate the performance of the 

CPU at various frequencies. So, we choose a low frequency setting with acceptable 

impact on performance this impact can be specified by the user. 

The advantage of this particular scheme is that, it uniquely and directly estimates 

performance impact of a lower frequency setting instead of relying on weak indicators of 



performance. So, directly we try to simulate for certain duration and measure the 

performance. 
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The results available for MCD processors using this Petrinet model based technique. So, 

for the SPEC FP benchmarks: there are many L2 misses in this bench mark. So, energy 

delay product improvement is very large. Our technique uses saves 60 percent energy, 

while meeting performance constraints; whereas, existing hardware profile-based 

dynamic voltage scaling techniques save an only about 34 percent. 

Media Benchmarks have almost no L2 misses; so here using ED has a metric does not 

help much; so, we use the ED square a measurement metric and improvement in our 

case, is 22 percent whereas, in the case of profile based hardware technique is about 18 

percent. 

In general, hardware based DVS saves less energy; relatively and it is better in media 

benchmarks and whereas, the queue occupancies of floating point and the load store 

domain are very low in media benchmark. That is why; it gives slightly the profile based 

hardware technique gives much better results. So, our technique is found to be very good 

if there are many misses L2 misses such as in the SPEC FP bench mark. 
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Now, let us start looking at Compiler Techniques to save Static Energy in the CPU. So 

far, we have seen techniques which saved dynamic energy. So, we did not see any 

techniques to save any static energy. 
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Function unit voltage gating is one of the forms, which can save this static energy; that is 

supply voltage to the CPU for the functionality switched off. Why should we do this? I 

mentioned this in the introduction: Leakage energy is the static dissipation energy in 



CPU cache etcetera and function units are in active state, but are not doing any useful 

work. That is the time when we actually want to save energy. 

With the 70 nanometer technology, leakage energy consumption will be on power with 

dynamic energy consumption, whereas, above 70, say, 90 around 35, older technologies 

dynamic energy consumption was the maximum; rather it was actually the major 

contributor to energy consumption whereas, static energy consumption was very low. 

With lower level technologies say 65 and then 32 etcetera. The leakage energy is going 

to be high. We need techniques to save leakage energy, because whether we do anything 

useful in the CPU or not; it will still consume as much energy as when the CPU is really 

doing something useful. 

Dynamic energy consumption and static energy consumption will be on power. So, each 

will contribute 50 percent of the energy consumption. So, we need to save both of them 

in order to get the maximum benefit. 

So, there is something called dual-threshold domino logic with sleep mode. This is an 

electronic circuit and this can facilitate very fast transitions between active and sleep 

modes. In other words, when a function unit is in active state; the full voltage is supply to 

it and when it is in sleep state; the voltage is made 0. So, this is the transition that we are 

talking about between active and sleep state. 

But the nice thing about these dual-threshold domino logic circuit is; they can actually 

switch between these active and sleep states with very little performance penalty; very 

moderate energy penalty. So, observe the words, there is not much performance penalty, 

because we are going to switch within 1 cycle. So, active to low is 1 cycle; low to active 

is another cycle, but the once the switching time is very low, energy consumption 

becomes high. There is moderate energy penalty for such switching. 

Now, the problem is if the switch requires a fair amount of energy, then is it useful to put 

the CPU in sleep mode very frequently; obviously not. So, the 1 cycle of idleness is all 

that we required putting it into low leakage mode, and we also know the factor that 

motivates us is, integer ALU’s are known to be idle for 60 percent of the time on the 

average. That is, the integer ALU’s to very little for 60 percent of the time in general. 
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There are two schemes: one is a pure hardware scheme proposed by Dropsho. So, they 

have these dual threshold domino logic circuits. They watch the CPU rather the ALU for 

1 cycle and if the ALU is idle for 1 cycle or more; it is put into sleep mode. 

Automatically, the hardware takes care of switching from low to high and high to low. 

The problem is, there is 26 percent energy overhead, over the ideal scheme with no 

overhead. The switching causes 26 percent overhead; assuming over the scheme which 

assumes that there is no overhead. There are very frequent transitions between active and 

sleep states. 

So, if software-based scheme such as a compiler based one aids the hardware; then 

together they can actually save much more energy with very little performance loss. 
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What is it that we are trying to do here? This technique can be used both for voltage 

gating and also clock gating of the CPU. So, the CPU is active for some time. Now, we 

try to bunch instructions, which use the same CPU rather same function unit. So, that the 

active and idle periods function units are increased; let me elaborate. The function unit is 

executing some operations. Now, in the program which has not been transformed by any 

compiler technique, it is possible in the worst case that there are 1 or 2 ALU operations. 

Then, there is an idle period of 1 or 2 cycles; another ALU operation another idle period 

and so on. And because the idle period is more than 1 cycle; the hardware switches it to 

low state and then again to high state, whenever the FU’s needed. 

Suppose, the ALU instructions which are executed after idle period - two consecutive 

idle periods are not dependent on each other. In such a case, we can actually push these 

ALU instructions together, rather the CPU instructions together so, that the function 

units which was busy in executing 1 or 2 instructions. 

Now, continues to execute the next bunch of instructions also, because there was no 

dependency. The instructions scheduler brought them together. So, the ALU now keeps 

itself busy as long as possible. That is, as long as there is no dependency on the next 

instruction and it is force to wait. 

So, assuming that there was an idle period between consecutive two instructions, now 

there will be no idle period between these two instructions. The other advantage is, 



because we have made the function unit busy for a longer time.  The idle periods 

actually add up together so, idle periods increase and the busy periods also increase. That 

means the switching between the active period and idle period has reduced. 

So, if there were 4 or 5 switches between; now, it probably reduces to 1 or 2. So, there 

by, the number of switches reduces and the energy consumed during this switching will 

also reduce. So, the CPU uses supply voltage clock gating during this idle periods, that 

is, done by the hardware whereas, the rearrangement of instructions so, that the 

instructions which use the same function unit are bunch together is done by the compiler. 
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So, this leads to better benefits and it saves transition energy in the CPU as well. So, we 

will stop the lecture at this point and next time we will look at details of the instructions 

scheduling mechanism which saves energy to a large extent. 

So, this is based on the same list scheduling strategy that we have discussed before, with 

the heuristics for priorities etcetera being different. Thank you. 


