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Welcome to the lecture on energy-aware software systems. It is a digression from the 

main topic of compilation, but there is a reason for it. So let me state the motivation first. 
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Then, look at the contents of the lecture. Suppose, we want to optimize energy 

consumption in a computer system, it is not enough if we optimize the program for the 

sake of energy consumption. 

The energy consumption in a complete computer system actually depends on almost 

every other subsystem – the operating system, the network interface, the memory, the 

cache and any other peripherals attached to it, like disk, and so on, so forth. 

If you simply optimize the program and reduce the energy consumption of CPU, the 

overall energy in the system may not be minimized. In fact, the CPU energy may be only 

about 25 percent of the total energy consumption. So, in some sense, this also shows 



what a compiler optimization cannot really do. Hence, there is much more to read than 

just compiler optimization. 
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To get a feel of such a limitation, it will be necessary for us to look at other things as 

well. Let me go back one step. We are going to look at the reasons – why energy-aware 

design is important in the introduction. Then, we will look at a case study on clouds and 

data centers to see what is the magnitude of saving that we can get and how. We also 

need to look at models for power and energy consumption because the basis for any 

optimization, either in a compiler or operating system, depends on how good the model 

is. 

We will also consider operating system- and system application-level optimizations, 

power-aware networks, energy efficiency of system models, micro-architectural 

techniques to save energy in CPU, compiler techniques to save dynamic and static 

energy in CPU, saving communication energy in CPU, energy-aware memory, and of 

course, summary. 
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Let us see what exactly is energy-aware design? Any software design will be a trade-off. 

Do we want to increase the performance of the software or do we want to reduce the 

power consumption? If we increase the speed of CPU, the performance will go up, but 

power consumption will also go up. And if you reduce the power consumption, by say, 

lower than the voltage, the performance will also go down. So, it is very difficult to 

increase performance and reduce power consumption at the same time. But that is our 

goal. We want to provide the same level of performance for software, but we would like 

to consume much less power than we used to. 

Power consumption reduction, energy reduction, etc., have received a lot of attention in 

the last few years. For example, we have battery-operated mobile systems; we want to 

retain the charge on the battery as long as possible. That is at the lower end. At the 

higher end, if you look at a data center, a large one, say, with 8000 servers, the power 

consumption would be 2 megawatts. Any reduction in this power will actually translate 

to money directly. Energy-aware design does not necessarily minimize power or energy. 
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Let us see what it really means. For example, it is possible to decrease peak power 

consumption in a processor by delaying issue of some instructions to smoothen 

instruction issue distribution. This is a fairly well-known thing. Peak power consumption 

will come down but this will increase the total power energy consumption due to the 

extra time needed to execute the application, because we have delayed instructions. More 

time will be needed to execute the application. That means, the chip is on for a longer 

duration, resulting in more power consumption. This is a power-aware design. In other 

words, we have reduced the power consumption – peak power consumption. But, it is not 

a low-power design because it does not reduce the power consumption. 
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Power and energy efficiency are separate design goals. For example, clock rate reduction 

reduces the power demand but it may increase time and hence energy consumption. 

Why? Chip clock rate will reduce the power consumption, but the frequency being low, 

you need more time to execute the program. 

Power constrained applications and energy constrained applications are also distinct. We 

are actually clarifying terminology here. Energy constrained applications are, for 

example, running on batteries. There is a finite amount of energy; we need to make the 

best use of it; so we have energy constrained applications running on it. Power 

constrained application, for example, running on solar power – there is a finite amount of 

power available because it depends on the size of solar cells. You really cannot increase 

it without increasing the size of solar array. 
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To give you some examples of how to save energy inside the CPU, we can exploit the 

idleness of CPU. In other words, whenever the CPU is idle, we could put in a small piece 

of hardware inside, which switches off parts of the CPU, say may be, the ALU’s, cache, 

and so on. Similarly, the operating system and device drivers can manage the power of 

peripheral devices very intelligently when the device is not being used – perhaps the 

power that is supplied to it can be cut off, or the voltage can be reduced, etc. This is seen 

very readily in the display of laptops and mobile phones. The display switches off after a 

few seconds in a mobile or after 10 to 15 minutes in a laptop, so that if the user is not 

using the laptop or mobile, there is no need to waste power on the display. Software 

controls clock management for on-board peripherals, so that the clocks speed could be 

reduced or increased as per requirement. Memory controllers manage power of memory 

sub-systems. It is possible to place memory blocks in low power mode when the memory 

is not being used at all, for a fair amount of time, and bring it back to life when there is a 

demand for memory. These are a few examples of how to save energy and power inside 

or outside a CPU. We will see more of this as we go on. 
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What is system-level energy-aware design? Such a design includes power and energy 

modeling. It also includes management issues at micro-architectural-level, compiler-

level, OS-level, and also at networking layers of the system. We are looking at 

optimization at all levels. Let us see what these means, with some examples. 

Consider a cluster design with local clock. In other words, there are clusters of function 

units, not just one function unit in the CPU, and instead of having a global clock for the 

several clusters, there would be a local clock for each cluster. This is a well-known 

design strategy. It reduces capacitance of the entire system. This is micro-architectural-

level design consideration, which can reduce power requirements because once the 

capacitance decreases, the charge and discharge, etc., will be less, and power 

consumption will be reduced. 

Instruction scheduling reduces activity factor a and this is a compiler-level optimization. 

If a function unit is not used, for example, for a few cycles, based on the history of 

usage, the architecture would have switched off the function unit. When an instruction 

executes again on this particular unit, it is brought back to life. 

If this happens at random, there may be wastage of power because switching on and 

switching off of the function unit requires much more power than executing files – 

executing something or staying idle. What an instruction scheduler a compiler can do is 

to rearrange instructions, so that a function unit, which is busy, keeps on doing work, that 



is, it keeps on executing instructions. And a function unit, which is idle remains idle as 

long as possible. 

In other words, by rearranging instructions, we try to increase the busy periods and also 

the idle periods of function units. So, we reduce the number of transitions from high to 

low and low to high, thereby saving energy and power. Operating system-level heuristics 

reduce the source voltage Vdd and the frequency, when peak performances not needed. 

If there are programs running on the system and you know the operating system priority, 

knows that a particular program can run slowly; there is no hurry for it to complete, 

when that particular program is running. The operating system can reduce the source 

voltage and the frequency of the chip, and thereby reducing the energy consumption. 
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The network layer puts network interface in standby mode, when it is not likely to 

receive any message. Thereby, there is an obvious saving of power. Let us consider the 

effect of shrinking device size on energy-aware design. Why? Why should we do that? 

The point is with each generational scaling of feature and size, more complex and 

aggressive designs are being used. We all know that when integrated circuits were 

introduced in 70s, they had only a few gates on them. Slowly gradually, now, they have 

billions of gates and transistors on them. 



This is possible only because there is a reduction in size of each one of these devices. So, 

there is more area available on the chip; hence, more complex and aggressive designs are 

now being used. These designs employ higher clock frequencies,  they use larger chip 

area and much larger number of transistors. 

(Refer Slide Time: 14:25) 
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For the alpha processor and generations of them, let us see how is the power utilization. 

For 21064, the frequency was 200 megahertz, die size was 234 millimeter square, power 

consumption was 30 watts and power supply was 3.3 volts. As the next generation 

devices were introduced, the size of the die reduced, and it actually increased the supply. 

For example, from 234 it became 299, 313, 340, 396, etc. So the devices became more 

and more complex, but the frequency also increases – 300, 575, 1000, 2000, etc. The 

supply voltage really reduced – 3.3, 2.2, 1.5.; 21464 was 1.2 volts, die size is 396, 

frequency is 2000 megahertz or 2 gigahertz, but the power consumption is 150 watt. 
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Power consumption, even though the device size has reduced, has increased because the 

number of devices has really gone up by leaps and bounds. The size of the chip and the 

number of devices being large, results in higher participation. That means, shrinking 

device size does not imply less power dissipation, as one may think. 

(Refer Slide Time: 16:13) 

 

Let us also look at the power density on chips. This is a slightly old graph, but it suffices 

to give us the information that we require. Starting from 386 here, as we went to 486, 



pentium, pentium pro, and to pentium 4, there is a steady increase in the power density. 

Watt per centimeter square is on this side, so there has been a steady increase. 

Pentium 4 is at some level and you can see that; the next bar corresponds to a nuclear 

reactor. In other words, pentium 4 is only slightly lower at power density, or it is only 

slightly less hard compared to the inside of a power nuclear reactor. After the nuclear 

reactor, there would be the sun. 

At Pentium 4 level, there is already probably the maximum or just below the maximum, 

as far as we have reached that maximum, as far as the power density is concerned. This 

is the reason why multi-core chips have been introduced. If we look at the multi-core 

chip specification carefully, we will see that the frequency of each core is lower and the 

number of cores per processor is more than one. What really has happened is you have 

reduced the power density, and frequency being lower, the power consumption will also 

be lower. 
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Power density on the chips has reduced, but to make up for the loss of performance, the 

number of cores has been increased, so that if the software programmers are smart 

enough, they actually give you the same performance. But, increasing the power density 

in chips decreases reliability and lifetimes of chips – it decreases battery life. It increases 

power production cost due to complex cooling and packaging. It effects the environment 



and the human body. Power density ultimately precludes further scaling of CMOS chips. 

I have already mentioned this. 
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What are the various techniques available at various levels to achieve energy savings? At 

the lowest level, we have transistors, gates, architecture. The software layer is above – 

operating systems, compiler, virtual machine applications. At various levels, let us take a 

look at the techniques, which are used at the transistor-level. The size of the transistors 

and transistor ordering controls the energy consumption at the gate-level technology 

mapping. Which particular technology at the gate restructuring control energy 

consumption? 

At the architecture-level, clock, memory and interconnect optimizations, which we are 

going to see later, will control power consumption and energy consumption. With 

applications, virtual machines, compilers and operating systems, we have a host of 

techniques, which interact with each other. That is the reason why there is no separation 

between these techniques. 

We can do better algorithm design. We could actually put resources such as function 

units into hibernation, then we could run image processing programs, which give you 

courser images at their by safe power. We could do remote execution. Do not execute on 

the mobile unit, but execute the application on a remote server. And then, schedule the 

instructions, which I have already mentioned, memory management, turning of cache 



and memory banks when no performances is needed and energy accounting. This we will 

see in detail when we actually look at the cloud and data center application. 
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In other words, we really need to look at all aspects of a computer system, starting from 

hardware to software to application, in order to reduce the power consumption. How? 

Where does the power go? Which parts of a system consume more or less power? Let us 

see. And what type of a system, of course? At the bottom of this chart, we have very low 

power devices, such as sensors. Then, there are 4 columns, corresponding to storage, 

communication, and I/O, computation, and others. 

A sensor network system will have very little storage, so it is not very important to have 

more storage. This could be 2. For example, there is not too much storage on a low 

power sensor system, but if it is a non-RF, there could be a lot of storage. So that is why, 

it is 2 for sensor devices and for non-RF hardware, it is 1. That is most important to 

consume power. Communication is the highest power consumption operators on the 

sensor – the transmitter and receiver. Whereas, computation is least important, hence it 

does not take too much power to compute, whatever it is reading. 

At the highest end, the server, the d ram and disk are the storage devices. It is important 

to conserve power in these devices. Communication, of course, is not so important in a 

server. However, computation is very important, so we need to have the CPU reduced 

power consumption. Of course, power supply is also needed to be designed appropriately 



to reduce the power consumption. This is how the power consumption spectrum really 

looks like. 

In a workstation, for example, rather, in a system on chip, etc., storage is very low, so we 

have to conserve power only in the communication. Whereas, if you look at no 

communication digital device, there may be a lot of storage. So, we need to reduce the 

power consumption in storage, application and the device, etc. It is important to see 

which one deserves attention for power consumption reduction. 
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Let us take a simple case study of clouds and data centers. Clouds are nothing, but for us, 

the abstraction is a collection of computing systems – extraordinarily large warehouse-

sized computing systems. Clouds and data centers are the same as far as we are 

concerned. There is a technical difference between the two but that is not important for 

us.  

These are extraordinarily large – they would have possibly 4,000 to 8,000 servers or 

more. The cost of building data center facilities is very large. In fact, apart from the 

computing elements, we need to actually worry a lot about the power capacity 

provisioning as well. How much power capacity should we provide to a data center? 

Power capacity provisioning can be as expensive as recurring energy consumption costs. 

As we need to build generator, UPS station, and so on and so forth, this becomes very 

important. What happens is you could actually be providing a large capacity, but we may 

not be using all the capacity. So you have wasted a lot of money in building the power 

plant with the capacity which is more than what is needed. But, if you provide very little 

expansion possibility, then you may be actually getting saturated very soon and you will 

not be able to add more servers or more equipment, to your datacenter. 

There are strong economic incentives to operate facilities close to the maximum because 

if you operate the power plant, etc., at the almost maximum level, non-recurring cost can 

be amortized. You can recover the non-recurring costs very quickly. In this study, we do 

not consider power conversion losses and power for cooling, that is, air conditioning, etc. 
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Saying yes, we must use the power plant to its maximum capacity is easy, but 

maintaining maximum capacity operation is very hard in practice. Why? There are 

uncertainties in equipment power ratings. You may say something requires 60 watts, but 

actually it may be requiring only 15 to 20 watts when it is running on medium load. It 

may be requiring the full 60 watt only at very peak load, which is very infrequent. This is 

the problem. The manufacturer would have rated the equipment as 60 watts, but in 

reality, on an average, it may be running at 20 to 30 watts.  

Power consumption varies with actual computing activity. This is another problem. So 

computer systems do not take the same amount of a power continuously. Their 

requirement varies with applications, which are running. 

Effective power provisioning strategies are needed. Why? We need to determine how 

much computing equipment can be safely and efficiently hosted within a given power 

budget. So, putting very few computing equipment, based on the name plate, rather 

specification plate figures, would be risky because you are going to put very few of them 

and power plant will not be used to its maximum capacity. Whereas, if you put too many, 

then there may be outages and this will create a service-level / service agreement 

violation and this may be very expensive. 



We cannot run the business of exceeding the maximum capacity. We should be very 

careful and judicious in planning how many computing elements we can put in the 

datacenter? 

(Refer Slide Time: 28:22) 
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How do we determine the right deployment and what power management strategies are 

we going to use? This requires understanding simultaneous power usage characteristics 

of thousands of machines over time. A datacenter would have thousands of machines, so 

it is very difficult and almost impossible to learn the characteristics of every machine. 

Well, some machine may fail and it may be replaced as well, so it becomes almost 

impossible to know the exact characteristics – power usage characteristics – of all the 

machines. 

What are the important factors that we need to keep in mind? The rated maximum power 

of computing equipment is overly conservative and not useful. I have already mentioned 

this. Whatever is mentioned on the plate outside the equipment is an overwriting, so we 

cannot use this for counting the number of equipment. 

Actual consumed power of servers varies significantly with activity. Applications 

determine this amount. Different applications exercise large-scale systems differently. 

This is another issue. Hence, we need to monitor large scale workloads and only then we 

can get insights into aggregate load at the datacenter-level. Unless large scale workloads 



are monitored, you cannot really get ideas on how to control the power consumption in a 

system. Running small applications on a single CPU, etc., will not give us this insight. 
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This is the datacenter power distribution hierarchy. We have a main supply, a 

transformer, a switch, which either switches to the main supply or to the generator. Then 

we have a number of UPS, static transfer switches to switch the power distribution unit 

to either this UPS or this UPS. You observe that at the highest level, power capacity is 

1000 kilo watts. As we go down to the power distribution unit, each one of them can 

handle 200 kilo watts. The PDU supplies panels, each of which can handle 50 kilo watt. 

Panels, in turn, supply to racks, each of which can handle 2.5 kilo watts, and the racks 

will contain the motherboards, each of which may require 300 to 500 watts or more. 



(Refer Slide Time: 31:10) 

. 

Inefficient use of power budget is a problem – we may have staged deployment. In other 

words, facility is sized to accommodate business demand growth. We do not use the 

entire power plant, we add only few units and as our requirement goes up, we really put 

more and more units into operation. 

Fragmentation: Addition of one more unit might exceed the levels’ limit. For example, 

at the rack-level, you may not be able to add one more board because the rack capacity 

of 2.5 kilo watt may get exceeded. That is by looking at the specifications of that 

motherboard. But in reality, each motherboard may be taking quite a bit less compared to 

what is this specification. So, there is unused capacity even at the rack-level. For 

example, if you have put 5 boards, there may be possibility of putting 6 or 7 boards. That 

means, a little bit of power capacity has not been used at the rack-level. Similarly, at 

each rack-level, this can accumulate, at the PDU-level it becomes bigger, and finally, 

there may be a lot of capacity in the system, which is unutilized but fragmented up to the 

rack-level. There is the conservative equipment rating, which I have mentioned already. 

It is actually 60 percent more than what is really used – variable load and statistical 

effects. For example, statistically it is known that it is unlikely that large groups of 

systems will be at their peak activity levels as the size of the group increases. In other 

words, if there are thousands of processors, not all thousand processors will run at the 

peak capacity level. 
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How do we estimate power? We measure the CPU usage, using performance counters, 

and the total system power, that is, using some meters, and so on, and find a curve that 

approximates system power against CPU usage. What we want to tie is the CPU usage to 

the total system power? This is necessary for power capping, which I will explain a little 

later. 

In other words, we want to actually measure the CPU usage, which is very easy to do by 

software using performance counters. Once we have a graph and an equation which tells 

you what is the system power for each CPU usage, it can be used to our advantage. We 

do not have to measure system power all the time. 
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Here is the graph. This is the idle power level and this is the busy power level for the 

system. In between, the power utilization of the system actually varies. These bars, 

vertical bars, as we see, are the actual measurements that we have taken. And in between, 

we have a line here. At the lower level, we have a dotted line, and in the middle of these 

bars, we have a solid line. The solid line and the dotted line correspond to two models, 

which have been fitted to this particular usage pattern. 

This has CPU utilization on this end and system power consumption on the other side. 

One of the models – the solid line model – seems very accurate. It actually reflects how 

the power is consumed within the system. So let us see whether this tallies with the 

actual system and measurements. 
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Here are two graphs. One of them is the measured power consumption in the system and 

the other is the estimated power consumption in the system. Using the fitted model, that 

is, the equation that we saw in the previous slide, you can see that the measured power 

consumption is higher than the estimated one, but only by a fixed offset. That offset is 

same at all points in time. So, that can be easily adjusted. The moral of the story is, by 

using that equation, which we have presented in the last slide, we are able to actually 

come up with a very accurate estimate of power consumed by the whole system, as a 

function of CPU usage. 



(Refer Slide Time: 36:20) 

. 

Let us also see how much power is used on an average in a system and running 

applications. On this x-axis, we have normalized power consumption, and on the y-axis, 

we have cumulative distribution of time. What is the implication? How do we read these 

graphs? At the lowest level, when we are yet to begin, that is, we are just idling; the 

normalized power consumption is still about 0.5 or so. In other words, this is the idle 

power consumption of the system, when the system is doing nothing. As we go on 

executing the program, we will reach one, that is, the end. During this transition from 0 

to 1, that is, we actually see that the power consumption of various applications – web 

search, web mail, map reduce, etc., vary. Let us look at a mix of these applications. We 

start with 0.65 as idle power consumption, and 60 percent of the time, we would be using 

only about 0.72 or 72 percent of peak power consumption of the system. 

Even when we reach 1, that is, let us assume that there are portions of the program which 

actually execute at the peak power, this is the peak power. The peak power is only 85 

percent of the maximum power that we assumed we have. So, the rating is 1 but we have 

used 85 percent. For most of the time, say 95 percent of the time, the applications run at 

less than 80 percent peak capacity. So, 20 percent is the over provision that we have on 

the computer system. 

In other words, we could put another CPU, so that one more program can run on that 

particular CPU and the power consumption. If we add one to four or something like 20 



percent saving in each one of them, it will give us one more CPU, which can be added. 

This is the way we use this graph to determine whether we should add something or we 

should not add something. 
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When should we not add something? Consider this particular graph. This really 

corresponds to web search. In web search, there are parts of the program when the power 

consumption system is almost 95 percent. In other words, you cannot take the risk of 

adding another CPU, if only web search is running on all the machines. If there is a mix 

of these programs then may be, for four CPUs, you can add an extra CPU, etc. 

This is a similar graph. So, normalized power with rack PDU and cluster-level for 

various applications the mix. If you look at it, this is the cluster-level. See that cluster-

level is over-provisioned – 30 percent more. It really consumes only 70-72 percent. Most 

of you know the highest level. There are no programs, which really require it to consume 

100 percent of the power. That is possible. 
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Now, having said all this, we understand that the CPU runs programs, the datacenter runs 

programs of all kinds. Not all CPUs are going to run at the peak power level, and 

therefore, there is a possibility of adding one more CPU and run more programs. Power 

is saved because each CPU requires less power than what its rating says, may be 70 

percent is all that it is using, 30 percent is spare. So, we could add one extra CPU for 

each of the 3 CPUs in the system. But suppose, we add more CPUs and suddenly the 

processors start executing programs which require high power consumption. That is 

possible. In such a case, we could be exceeding the power consumption of the system 

beyond the rating. So the system is under-provisioned most of the time. More process 

can be added whenever maximum power is not used, but then loads can be monitor and 

whenever power utilization tends to go beyond a cap, that is, whatever threshold we set, 

task can be descheduled or dynamic voltage scaling can be deployed. In other words, you 

reduce the voltage of the entire data center – all CPUs. That will reduce the power 

consumption of all CPUs and you can work at a lower frequency and lower performance 

level for certain duration. Once some of the task complete and exit, perhaps the situation 

will change, and you can increase the voltage and the frequency of the system again. 

This works well with loose service-level guarantee. There are no hard service-level 

guarantees, that is, I am going to finish this particular job in such an amount of time. 

Such guarantees are not really provided. So, give or take an hour, your program runs to 

completion, the customer is happy. About 45 percent increase in machine deployment 



with 1 percent of time spent in power capping mode. In other words, the system actually 

starts using peak or little more than peak power only for 1 percent of the time. In that 1 

percent of time, you reduce the voltage and immediately the system finishes some jobs 

and goes back to low power or underutilize mode again. This is really what happens in 

practice. Because of that we have really put 45 percent more CPUs, and only 1 percent of 

the time, the machine has gone to peak power condition. Only 1 percent of the time is 

spent in power capping mode, that is, when the peak power condition is met and number 

of trips beyond the caps is only 9 per month -- only 9 times. Average length of each trip 

is only 48 minutes. If you have a loose service-level agreement, this is hardly the price to 

pay because you are using the power provisioning of the plant to maximum capacity. The 

customer is also going to be charged less. You are going to have more customers, so the 

cost per customer will be lesser. 
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What is the impact of dynamic voltage scaling on energy savings at the data center-

level? I have already mentioned that we are going to use DVS at the data center-level. 

What we really have are 3 sets, you know; 4 sets of graphs for different application, 3 of 

them for different application and on a real data center with a mix of applications and on 

a real data center with a mix of application this is for the fourth one. We have three bars 

in each of these groups -- one says 5 percent, next one says 20 percent, and 50 percent 

CPU utilization threshold. What does this really mean? 



On this side we have energy saving. So, 5 percent means I cannot tolerate -- very slow 

CPU performance. At some point in time, let us say, I have reduced the voltage dynamic, 

voltage scaling has happened. I have reduced the voltage of the data center, the CPU 

utilization will come down by 5 percent. Then, I cannot tolerate any more. I am going to 

increase the voltage back to its normal. 

Obviously, if this threshold is only 5 percent, then I will be running the data center, at 

most of the time, at the highest voltage level and for only a very small number of times I 

am really going to reduce the voltage. So, the saving is quite less. It could be about 8-10 

percent. Whereas if I can tolerate 20 percent slowdown in my CPU speed, in other 

words, my application takes 20 percent more time, then I get more – may be 15 percent 

or so. And if I can tolerate 50 percent slowdown in my application, I can actually get 

much more saving – 20 percent or more. 

But obviously, we cannot sacrifice performance to such a great extent, so we may be 

somewhere between 5 and 20 percent slow as far as DVS is concerned. Normally, it is 

not more than 5-6 percent. Later, we are also seeing compiler techniques to do dynamic 

voltage scaling. Then, we can do fine grind control and get much more power saving 

than what is mentioned here. This is actually at the data center-level. The operating 

system would reduce the voltage of the entire data center and not on CPU basis. 
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Now, we consider power and energy models. In the first part, we considered the 

introduction and then we saw cloud and data center application in power saving. Why do 

we need power and energy models? We need power and energy models during early 

designs space exploration for power estimation. We have started designing a system and 

we need to know how much power our system is going to consume when it is 

implemented. Why? Why do we need such an estimate? 

Well, we want to design alternative designs, which can save energy. Unless we know 

how much power each one of these designs will take, we really cannot decide which 

design to implement. At this level, the models may not be very accurate because we do 

not have all the data about the implementation. They address relative power efficiency. Is 

design A better than design B? That is going to be the question that we answer. This can 

be answered reasonably well with the power and energy models that we are going to 

study. 

They are also required to perform optimizations in compiler and operating system. 

Compilers and OS require models to estimate power and energy consumption, and 

thereby they use strategy a, b, c, etc., in order to save energy. OS and compilers also 

require such models. 
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Let us look at the first model – instruction- and function-level power models. At the 

instruction-level, we are going to assign a power cost to each assembly instruction class. 

In other words, the entire set of ALU instructions – add, subtract, etc., each of these will 

be assigned the same cost. Each class of instructions, which uses ALU or floating point 

unit or memory or something else, will be assigned a cost. 

Each instruction in that class will be assumed to consume the same amount of power. 

Then, how do we assign this cost? We experimentally measure current drawn by a 

processor while executing a known sequence of instructions. We try to put known 

sequence – the same kind of instructions – execute, make the program run on a 

processor, then look at the current which is drawn by the processor and compute the 

power by multiplying it by the voltage. 

Such a simple scheme has problems. There are many inter-instruction effects. For 

example, cache hit miss. If the data or instruction is in a cache, the power consumption is 

different as compared to when it is in the main memory and not in the cache. Then, there 

could be pipeline interlocks. If there is a delay and the load is not yet over, there is a 

pipeline stall. This could actually cause different power dissipation in the system. 

To take care of such inter-instruction effects, we really have to run a very large number 

of programs in order to assign cause to the instruction. The problem is – there are a large 

number of such inter-instruction effects, so the multiplicative effect would be large. We 



will have to collect and analyze extremely large number of instruction traces, in order to 

assign reasonable cost to instructions. 
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This model is not very easy to, let us say, make and calibrate. Suppose we want to do it 

on a program-level or function-level, we can have macro models characterizing the 

average energy consumption of a function or a group of functions. For example, suppose 

we know that we are running insertion sort, we know that the time required for insertion 

sort is an square, where n is the number of elements. So, we could choose a quadratic 

power model for the power consumption, say an square plus bn plus c for the insertion 

sort program. 
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Measure the actual power dissipation for different values of n and then use regression 

analysis to find a b c. Given n, we can say what the power consumption for that 

particular n. This is a way of characterizing the energy consumption of a program. Such 

high-level models allow designers to assess a number of candidate architecture and 

alternative software implementations. In an embedded system, the same program or same 

set of programs will be run again and again. In the washing machine, the same program 

runs again and again. Or in a media player also, the same thing happens. The program is 

known, and if we build the approximate models like what we saw just now for this 

particular program on various architectures, then we can access and say this architecture 

is better for this program or this architecture is very bad for this particular program, etc. 

Then, we can also look at alternative software implementation insertion sort, may be, 

written in different ways and you can similarly compute, rather have a model for each 

one of this implementations, test it on various architectures, and choose the correct 

candidate architecture for your application. 

However, for very detailed analysis and design, that is, design of the hardware, power 

and energy models of main subsystems and components are also needed. In other words, 

we will need micro-architectural-level, ALU-level, memory-level, cache-level inter 

connection-level models, in order to study the design and make an estimate of how much 

power is consumed by that particular design. We will stop at this point and continue with 

such micro-architectural models in the next lecture. Thank you.  


