Compiler Design
Prof. Y. N. Srikant
Department of Computer Science and Automation
Indian Institute of Science, Bangalore

Module No. # 16
Lecture No. # 31
Software Pipelining

Welcome to the lecture on software pipelining. Software pipelining is a new type of

optimization at the machine code level. What exactly is pipelining?

(Refer Slide Time: 00:17)

Software Pipelining

.M. Srikani

e ey T T T
T ST T

Bangalons 560013

MPTEL Course on Compiber Design

(Refer Slide Time: 00:27)

Introduction to Software Pipelining

@ Charlaps execution of instructions from mulliple lerations
of & loop
@ Exscules nstructions from different ferabons in the same
pipeline, 0 thal pipalines ana kapl DU'E-;.' wikhout stalis
@ Objective is o sustain 2 high initiation rate
& |ritintion of o subsequent kerstion may start ewen bafore
Ihi previous Aoraticn is compsshe
@ Linroling loops several imes and parformang global
schaduling on the unroled kop
& Explofts greabar ILP wibhin unngdied ifarations
& Very litle or no overlap across geralions of the loop

Everybody is familiar with the hardware pipelining concept. There are different pipeline
stages through which, for example, an instruction close, fetch, decode, and so on and so
forth.

Similarly, software pipelining implies overlapping execution of instructions from
multiple iterations of a loop. In hardware, there are different stages of a pipeline and the
same instruction flows through all these stages. But in software pipelining, we want to
make sure that instructions from different iterations, not necessarily the same iteration,
are also permitted to use the functional units of the processor, so the stalls are actually
minimal. All the pipelines are kept busy. The hardware pipelines are kept busy without
any stalls, so we mix instructions from different iterations of the loop. In other words,
software pipelining is meant for a loop. It is not meant for simple straight line code
(Refer Slide Time: 01:46).

What is the objective of software pipelining? To sustain a very high initiation rate. In
other words, we want to start execution of as many instructions as possible in a single
cycle, if possible. That means, initiation of subsequent iterations may start even before
the previous iteration is complete. If there are not enough instructions in the same
iteration, which can be started in a particular cycle, then it is possible that instructions
from the second or third iteration ahead may be started right now. But then, on what

basis does one do all this? Obviously, dependencies between instructions. That is, if an

instruction produces a result and it will be used five cycles later, you really cannot say
that I will start the instruction, which is using it much earlier than five cycles later; that is
not possible. Only when there are no dependencies which hurt, the instructions from

other iterations can be started.

Unrolling loop several times and performing global scheduling on the unrolled loop is
also a possibility for increasing the parallelism, rather than harnessing the parallelism
available in programs. This exploits greater instruction level parallelism within the
unrolled iterations. For example, if we unroll a loop once, then two iterations of the loop
will be executed as straight line code, one after another, in the body of the loop. The
parallelism available in these two iterations will be utilized. If we do it three times, the
parallelism in three iterations will be used, and so on and so forth. But there is not much
overlap across iterations of the loop. In other words, if we can start the second, third,
fourth iteration instructions in the same cycle, this unrolling mechanism will not help. Of
course we may say, why not unroll the loop five times and then start the instructions?
But then the body of the loop really becomes very large. There will be a code blob

attached to loop controlling then.

(Refer Slide Time: 04:13)

Approaches to Software Pipelining

@ Iteratve modubo schaduling
@ Similar 1o list scheduling, compules pronties and uses
‘Gperabon schedul N {dedads laded)
& Uses Modulo Resarvistion Tabees (MHET)
@ A giobal resouwrce reservason tabls with I columes and R
st
@ MET records rescurce paage of Ta scheduble (of B kemal)
o it is Consdnacted
@ [rebally a enghes are {
@ If an insinucton UESES B PesOUNDS © Ak b
[il £, 0 rodd IV ol Sl BS 1
@ Slack scheduling
& Uies eafhesl and IFes] dses imes 105 &ach in
{diPerency m Sleck |
Schedules an instruchon withen #s siack

& Also yusoes MET

There are two approaches to software pipelining -- one is called iterative modulo
scheduling and the other is called slack scheduling. In iterative modulo scheduling, we

use a mechanism or a methodology which is very similar to instruction scheduling, that

is, list scheduling algorithm. We compute priorities, as in the instruction scheduling
algorithms, and use operation scheduling here. In the case of instruction scheduling, we
utilize cycle by cycle scheduling. But here, as a rule, we use only operation scheduling,
The reason is very simple. It is because we use the modulo reservation table, instead of
the global reservation table (Refer Slide Time: 05:05).

What is an MRT (Modulo Reservation Table)? It is a global resource reservation table
with its 1l columns. In other words, Il is the Initiation Interval, which will become. That
is, every Il cycles, | am going to start new iteration. This is what initiation rule is. There
are Il columns and r rows, where r is the number of resources in the system. We really do
not have a table, which is as large as the schedule of the entire program. That is what a
global reservation table is. Here, we have just Il columns and r rows, instead of t
columns, where t is the length of the schedule.

MRT records resource usage of the schedule for the kernel. What is a kernel? That is the
set of instructions, which are within what is known as a core of software pipeline. This
will become very clear very soon. The usage of resources for that entire program, which
is inside the kernel, is actually recorded in the modulo reservation table. Why is it called
modulo? All the resource usages are recorded with time modulo Il. For example, initially
all the entries are 0, but if an instruction uses a resource r at time step t, then the entry
MRT r coma t mod Il is set to 1. That is how it would be. So everything is modulo the

initiation interval.

Slack scheduling is similar. Only difference is, it uses earliest and latest issue times, that
is, the deadlines for each instruction and the difference is slack. We have seen this before
in the instruction scheduling algorithms. It schedules an instruction, rather tries to
schedule an instruction within its slack. Here also, we require the modulo reservation
table. It is just that, the priority used is slack, rather than height of an instruction, and so

on.

(Refer Slide Time: 07:25)

Introduction to Software Pipelining - contd.

2 Mone complex than instrection schaduling
@ NP-Complete
2 Imolves finding inibation inteérval for successaa lerations
@ Tnal and efvor procsduns
2 Stact with minimum |, schedule the body of e 100D USINg
oni2 Of the approaches Dalow and check f schagule lenglth
& WitFun Sounds
& Slop, i yes
& Try mad wadim of 11 f P

@ Raquires a modulo resarvaltion table

@ Schedule lengths are dependent on |, depance
distance batwean instructions and resourcd con

Obviously, the software pipelining algorithms are much more complex than instruction
scheduling algorithms. The problem is NP complete. What does it involve? It involves
finding initiation interval for successive iterations. What is the initiation interval? | have
already mentioned this. It is the number of cycles after which we start the next iteration,

S0 it is not necessarily as many cycles as the body of the loop.

Finding the Il (Initiation Interval) is a trial and error procedure. We start with the
minimum initiation interval. We will see how to compute this later. Schedule the body of
the loop using one of the approaches below and then check if the schedule length is
within the bounds, that is, 11 0 to Il minus 1. We are going to discuss strategies later, but
the approaches would be either operation scheduling with some priorities computed or

use the slack.

If we have found a schedule for the instructions between 0 and Il minus 1, then stop.
Otherwise, increment the value of Il and make it Il plus 1. For a larger Il, there is more
because the number of time steps available is much more. There is a good chance that we
will get a schedule without conflicts. Of course, we use a modulo reservation table.
Schedule lengths are dependent on the initiation rule, dependence distance between

instructions and resource contentions.

(Refer Slide Time: 09:12)

Software Pipelining Example-1

Let us take a simple example. Here is the body of a small loop. The instructions are a i
plus 1 equal toaiplus 1, biequaltoaipluslby?2 ciequaltobiplus3andaiequal
to ¢ i. Here is the dependence diagram for this particular loop. Instruction 1 has
dependence on itself -- a i plus 1 and a i. a i is used from the previous iteration and a new
one is written. The first component is the dependence distance and the second
component is the delay or the latency. Dependence distance is 1, so we use the result
from the previous iteration. The delay for each instruction is assumed to be 1, just for

mere simplicity.

This is a loop and from here onwards, we will have no loops . There is no dependence
between iterations anymore after this. All of them are 0 coma 1 and 1 is the delay for or

the latency of the instruction.

Let us start executing the instructions one by one. Look at the trace for how it goes. Here
is the timeline 1, 2, 3, 4, etc., so we start S1, then S2, then S3 and then S4. Now we go
back and start S1, S2, S3, S4, etc., etc. That is the sequential execution. It would be S1,
S2, S3, S4, and so on.

In this case, we are executing just one statement in each cycle or in each time step. Just
look at it, the statement S1 depends on itself, that is, until the first S1 is completed, we
really cannot start the second iteration S1. That is what this dependence is. If we assume

that this is satisfied, let us start S1; then when we go to the second cycle, we start S2 of

course, second time step. In the same time step, we also start S1 for the next iteration
because there is no dependency between this S1. This S1 really requires results from this
S1, so that is already executed. There is no dependence between this S2 and this S1.
There is no problem as far as dependencies are concerned. When we start S3 of this first
iteration, we would be executing S2 of the second iteration and S1 of the third iteration is
begun. In other words, we are trying to execute three statements, all from three different
iterations in the same cycle. Then we go to S4, then obviously S3, S2 and S1 are there.
There are no more instructions, so the stable state of this particular sequence would be
S4, S3, S2, S1, S4, S3 S2 S1 and so on. Finally, after the number of iterations that is
required is over, we execute the rest of the instructions S4, S3, S2, S4, S3, and finally S4

and stop.

(Refer Slide Time: 12:33)

Software Pipelining Example-1

Here, the steady state, we are going to execute four instructions in each cycle -- S4 of
current iteration, S3 of next iteration, then S2 of next plus 1 and S1 of next plus 2. All
the four instructions are being executed in the same cycle and we are assuming that there
are enough resources integer units, floating point units, branch units, load store units,
etc., available and there is no resource conflict between any of these instructions, so that
all the instructions can be executed. There is no dependence between these instructions
across iterations, except for S1. We can do this. In other words, the loop is actually one

instruction, rather one complex instruction, consisting of these four instructions from

four iterations. That is the kernel of our loop. These are the four instructions, which we

are going to execute again and again, as many times as necessary.

(Refer Slide Time: 13:38)

Software Pipelining Example-2.1

Mo of tokens present on an arc indicates the depandence
distance

Let us take another example. Here we go down one step and look at machine level
instructions, just for the sake of information. The loop is very simple -- a i equal to s star
a i. and it executes for n number of times. Initially, Let us assume that variable t0
contains 0, variable t1 contains n minus 1, and t2 contains s and t3 equal to load a coma a
of t0. Right hand side is being loaded now. Then t4 is t2 star t3, so that is, s stara I, a tO
equal to t4, that is, this particular item is being stored. Then, we need to go to the loop
branching part, so we increment t0 by 4, that is, our i4 bytes. This is the address, t0 is 0.
We would like to assume 4 bytes per element of the array, hence t0 plus 4, then the
counter is t1, so that is, t1 minus 1. We will check whether t1 greater than or equal to 0,

keep iterating.

The dependence diagram for this particular loop is here. Here, i0 is the load instruction,
we feeds to the multiply, that is, i1, and multiply feeds to i2. Meanwhile, i3 is add
instruction, which is independent of any of these, but that also feeds to i2. That’s the only
thing. Then we have this i3 again. There is a self loop. The reason is this - i3 t0 equal to
t0 plus 4, and then i2 is store instruction, i4 is a subtract instruction and i5 is the branch

instruction.

The dots on these indicate that there is a dependence backwards by one iteration. For
example, i3 here is t0 is equal to t0O plus 4. This value of t0 is used in the next iteration.
That is tO here. That is why this dependence. Similarly, i3 — this is old value of i3 and
this is the new value of i3, so there is a loop. From s3, this value is used here in the next
iteration. So, that is the other iteration, the other dependence that is shown here.

Similarly i4 has dependence to itself and then it feeds to i5.

(Refer Slide Time: 16:45)

Software Pipelining Example-2.2

@ Murnber of tokens present on an arc indicates the
dependance distance

@ Assume that the possible depandencs from i2 1o 0 can be
digambiguated

@ Assume 2 INT units (latency 1 cycle), 2 FP units (latency 2
eycles), and 1 LODVSTR unit {(latency 2 cycles/1 cycle)

@ Branch can bo axecuted bwlNT units

@ Acyclic schedule takes 5 cycles (see figure)

@ Corresponds 1o an initiation rate of 1/5 teration par cycle

@ Cyclic schedule takes 2 cycles (see figure)

This is the loop structure. Now, the number of tokens on an arc indicates the dependence
distance. | explained this already. Assume that the possible distance from i2 to i0 can be
disambiguated (Refer Slide Time: 16:57). In other words, if you look at this a t0 and then
the store, that is, i2, there is obviously a dependence between these two. This load must
happen and then the store. Let us assume that it can be handled by hardware in some

way. Software pipeline has to actually respect this particular dependence diagram.

(Refer Slide Time: 17:21)

Software Pipelining Example-2.2

@ Murnber of tokens present on an anc ndicates the
dependanca Sistance

@ Assume that the possible depandence from i2 1o i0 can be
disambiguated

2 Assume 2 INT units (latency 1 cycha), 2FF units (latency 2
eycles), and 1 LOVSTR unit {(latency 2 cycles/1 cycla)

@ Branch can bo axecuted by INT units:

@ Acyclic schedule takes 5 cycles (see figure)

@ Cormesponds 1o an initiation rate of 1/5 iteraton par cycle
@ Cyclic schedule takes 2 cycles (see figure)

Assume that there are two integer units -- each latency is one cycle, two floating point
units latency two cycles, one load store unit with load requiring two cycles and store
requiring one cycle. Let us also assume that the branch can be executed by any int unit.
Now, acyclic schedule takes five cycles. | will show you this. It corresponds to an
initiation interval of only 1 by 5 iteration per cycle. There are five cycles, so one by is
the iteration count, initiation iterate. Cyclic schedule, that is, the software pipeline

schedule requires two cycles. How?

(Refer Slide Time: 18:02)

Acyclic and Cyclic Schedules

Acyche Schedule

0: load

117 s, 30 aedd, B sub

i slore, 5 boe

Cyclic Schedule

| 4 Mosun | i1 mut | 0 lad
iZ: store

|5bg|1.|_

3 add

P Iy e Bty

Let us look at this diagram. You can schedule i0. It requires that result to be used by i1,
so we need to have this as a no operation. There is a nothing to do here. Here, we can
execute i1, i3, and i4 — all of them in parallel. There is no dependence between these.
Then again, this mult requires two cycles, so we hold on i2 scheduled in the fifth cycle,
along with i5. That is why we require five cycles for acyclic schedule. This is the regular

instruction scheduling.

What about the software pipeline? | will show you the details in the next slide. We are
going to have this as our kernel or core of this software pipeline. i4, i1 and i0 execute in
the same cycle; i2, i5 and i3 execute in the other cycle. These two are executed together

and i3 on another unit. How? Let us look at it.

(Refer Slide Time: 19:04)

Software Pipelining Example-2.3

Iteration O, iteration 1 and iteration 2, as usual, have been unrolled. We have load, mult,
add, sub store, bge in this iteration, in this sequence. At iteration 1, we start i0 here and
then go on. Again i0 here, and then go on, etc., etc. Why are we doing this? Why could
not we have started 10 here or here and so on? The point is, we must have sufficient
number of resources to execute the instructions of the second or third iteration in the
same cycle. We cannot start another load here because load requires two in cycles to
complete and there is only one load store unit. We are assuming that more than one load
cannot be issued at the same time by the unit. So, that is the reason why i0 has to start

here.

(Refer Slide Time: 20:57)

Acyclic and Cyclic Schedules

Acychec Schedule

I0: koad

117 e, G edd, B8 sub

i store, 5 bge

Cyclic Schedule

] 1 Sl 11 st | WD e

i storm

3: add
5:bge |

P e R

(Refer Slide Time: 21:01)

Software Pipelining Example-2.3

This, of course, is subject to dependencies, and then this is again is subject to
dependencies within the loop, and this also, in the same way. If you observe at this point,
we have reached some kind of a steady state and this pattern repeats — i4, i1, i0, i2, i5, i3,
14, i1 and there will be i0. Here if we had peeled iteration 3 as well, i2, i5 and i3, and so
on. The same pattern repeats. Because of that, this is the stable state of the software
pipeline and all the instructions in the loop are in the kernel of the loop -- this particular
part. There is i0, i1, i2, i3 and i4, at various places. The dependencies are also satisfied
because, for example, il feeds to i2, so il is here and i2 is here. This i1 is here and this 12

is here; so in this the loops are also shorter. Many instructions are executed in the same
cycle but they are all form different iterations. So, there is no problem regarding which

result is used by which one.

The register location would be done appropriately to make sure that results are handled
appropriately. What should be remembered here is that many instructions can be

executed in the same cycle and these instructions are from different iterations.

(Refer Slide Time: 21:38)

Software Pipelining Example-3

3= YT ' - a pft
: 2 mmhtighisn, 2
S dempe e i inge

i s
'.ﬁ

One more example. Here is a small loop consisting of many instructions of this kind — i0;
i 10, 1 equal to a i plus b; i t1, i equal to c i star const 1, etc., etc. Here is the dependence
graph for this particular small example. So, 0, 1, 2 -- the operations are written beside the
numbers or at the base level. Then, 3, 4 are dependent on them and finally 5 is dependent
on 3, 4, and then there is a cycle. This is the cycle that we have. The distance are 0 for all
these instructions, except for this — a distance of 2. You can see that the distance is
created because of this e i minus 2. This e i is computed in instruction 5, e 2 is actually e
i minus 2, so there is a dependence distance of 2 between instruction 2 and instruction 5.
Now, let us unroll the loop. Once you have unrolled it, you will see that these are the five
instructions — 0, 1, 2 can all be executed in a single cycle; 3, 4 in another cycle; and 5 in

another cycle. Let us do so.

We have this group, then this group, for the various iterations of the loop. Once we reach

this point, we know that we have a stable state. How to detect this? That will be through

the algorithm. We have 3, 4, 5, 0, 1, 2. This pattern repeats - 3, 4, 5,0, 1, 2; 3,4, 5,0, 1,
2, and again 3, 4, 5, 0, 1, 2. The pattern would repeat. Our software pipeline kernel
consists of the same — 3, 4, and then 5, 0, 1, 2. We just say ps0, psl because these are
stages just to show that they are not from the same cycle. 3, 4 and 5 are from the same
iteration, and 0, 1, 2 are from a different iteration. This is time cycle 0, this is time cycle

1, so this is the loop, which would be repeating, as many times as necessary.

This is the concept of software pipelining. We try to execute many instructions from

different iterations in the same cycle, in as many cycles as possible.

(Refer Slide Time: 24:00)

Minimum Initiation Interval (MII)

@ Minimum time before which, successive iorations cannot
B startad
@ Ml = mace| Restdll, Rechdil)
@ el i the munimoem I o B0 resouncs consiramis
& [Reci s the minimum M dee 10 recurrénces of cychc
data dependances

Now, let us start looking at the algorithm for software pipelining. We need to compute
what is known as minimum initiation interval? How many cycles need to pass before the
next iteration can be begun? That is minimum time before which successive iterations
cannot be started. MII is the maximum of ResMII and RecMII. What is ResMII? This is
the minimum imitation interval, due to resource constraints. RecMII is the minimum 1I

due to recurrences or cyclic data dependencies. Let us elaborate.

(Refer Slide Time: 24:48)

Resource Minimum Initiation Interval (ResMIl)

& Vary expansive to determing axactly
@ For pipalined function wnits

Rastdll — max | [;‘I :

whane N, reprasants the number of Instructons that
exgcute on o functional unit of type r, and F; is the numbar
iof functional units of type r
Fof non-pipained LIS of FLUIs with complex structural
horards = :

Reshll = oo '-"l'r__HJ' (2)

whone Ny . nepresonts the maximum numbear of ps
fior which instruction & uses any of the siages of a
functional unit of type r. For example, forane ~ 0=
U, Ny, equals o the latency of the functior

Resource Minimum Initiation Interval (ResMII) is very difficult and very expensive to
compute exactly. It is almost like solving the problem before we compute it. For function
-- pipelined function on it, it can be approximated as maximum of N, by F, over all the
resource units r. What is N,? N, is the number of instructions that execute on a functional
unit of type r and F, is the number of functional units. Look at all the instructions in the
loop body, which execute on a particular type of resource, then divide it by the number
of function units of type r. That gives you ResMII for that particular resource. You do

this for all the resources and then take the maximum.

(Refer Slide Time: 25:50)

Resource MIl Example - Fully Pipelined FU

Resll = max|Reshilps. ReaMiies. Resbill o sra)

{31 E"-l

Reshii '11:|l:| 537 z

(Refer Slide Time: 26:50)

Software Pipelining Example-2.3

Let us look at an example. The previous example, here is the graph. We know that there
are two integer units, 2 f p units, and 1 load store unit. If you count the number of
instructions of each type, int, f p and load store, we have add, sub, then this bge, which is
again a branch instruction that are executed in the int a | u. There is only one mult
instruction, which is the floating point variety, so 1. Then, there are two instructions load
and store, so that is 2. The number of int units is 2, f p units is 2, and load store units is 1.
So, the maximum of all this is 1.5 5.5 and 2, that is, 2. Resource MII is 2. That means,
you cannot have a software pipeline kernel of length less than 2. What we got here was

really a software pipeline kernel of length 2. That is the optimal part.

(Refer Slide Time: 26:57)

Resource Minimum Initiation Interval (ResMIl)

@ Vary axpansive 1o deferming exactly
@ For pipalined funclion units

T
Rasidil rﬂa-!-:| [; ':

whang N, reprasents the number of Instructons that
exgcute on 3 functional unit of type r, and F; is the numbar
of functional units of type r

Fof non-pipalned FLIS of FLIS with complex structural
hoarards

T
ResMil = man | =22 (2}

F

whong Ny . nepresents the maximum number of lops
fior which instruction & uses any of the stages of -
functonal unit of type r. For example. fora r :
=L, N, equals io the latency of the funch »

=

For non-pipeline function units or function units with complex structural hazards,
ResMII is defined as max over all the resource function units. All the resources of sigma
N, coma r over all a. Hence, a is the instruction, and N, coma r represents the maximum
number of time steps for which instruction a uses any of the stages of a functional unit of
type r. If | am using any particular resource, it does not matter which stage of that
resource, | account it for the function for the instruction a. I sum up all the requirements
of the instruction a, that is, sigma overall and sigma overall a., then divide it by the
number of function units of type r and take the max for all such resources. You get the
ResMII.

(Refer Slide Time: 27:58)

Resource MIl Example 2

| 0
y | @
1

0

LOFST fhunciomn unit

Iy n02), rd@): 1z (@)
iy ipl2), r2): g7 w2, Py
s 1), rf2) iy 120 1yi2)

Resources: (AL r (B r 6}

ReaMill = raaa (o 1068, ¢, 10, r 220)
= rax (1.2 1,25, 0.5 =3

Let me show you an example. Let us say, these are the reservation tables for int unit, | d
store unit and function unit. These are purely fictitious. This is not possible in practice.
Now, for instruction io,, which is a load, load would require two cycles of ry, two cycles
of r, and none of r,. So, ro is 2 and ry is 2. Here, i; is a floating point instruction, so it
requires all in this FP unit. So, we would require, this is slight mistake, this should have
been 1 1 1 here. So r; is required three times, the rest are all 0. Then, i, would require ry
two times and ry two times, i3 would require ro two times and r; two times, and so on,
and so forth. Now, if you sum up all the ro requirements, you get 8; if you will sum up all
the r; requirements, you get 8; rp requirements, you get 6. This is the number of
resources -- ro is available in 8 units, ry is available in 8 units, and r, is available in 6
units. Why?

We have two integer units, so ro is required in three phases. Rather we would say, we
have 4 into 2, 8 of these 0 0, this is 1, 2, and ry is required here also -- 1 and 2. As | said,
this should be zeros, only these should be ones. Now r is required, we would have eight
resources again because two of this and two of this -- 4 into 2. So again, eight resources
and r, would be available in six resources. If this is 1, 1, 1 each, we would have three of

them, then into 2, would be 6.

Then, you divide. This is the just an assumption that so many units of ro, SO many units

of r;, so many units of ry, etc., are available. Now, you divide 10 by 8, 10 by 8 and 3 by

6, you get max of 2. With a complex pipeline, this is what you really do. You count the
usages of the various units, divide it by the number of units of that kind, and you get
ResMI|I.

(Refer Slide Time: 30:23)

Recurrence MII

@ Racurmence Minimum Initiaban Interval { Rechili)
Dependent on the cycle hength (bath defay hength and
desiance hemngth) in the dependence giaph
il i
» Fochili = may |
comee | WEfRCe|C

& Can be computied ::_r ErUmarat g all LGS

What is recurrence MII? Recurrence MII initiation interval is actually the minimum
initiation interval due to cycles. This is dependent on the cycle length, both delay length
and distance length, in the dependence graph. It is defined as max over all the cycles.
What we really do is you enumerate all the cycles, take one cycle at a time, compute
delay in the cycle, divide it by the distance in the cycle, take the max over all cycles, and

that will be your RecMII. Let us see how to compute it.

(Refer Slide Time: 31:05)

Recurrence MIl Example

RecMll = max{ Rechi_ ce on i Rechils e on

1 1 \
Rachdll = rmax | 77)]

(Refer Slide Time: 31:55)

Minimum Initiation Interval (MII)

@ Minimum time before which, successive torations cannot

b stariad
@ M = max| Restdll, Rechdil)

@ FAesidiEs the munimum I o 30 esouncs consiramis
& [Reckl s the minimum M dee 10 recurrénces of cychic
data dependences

For this example again, we have two cycles here -- One is here and the other is here. This
is delay of 1 and distance of 1. This is also a delay of 1 and distance of 1. So, we have 1
by 1 and 1 by 1. The max is 1. For RecMIlI, this would be 1. Initiation interval ResMII
was actually 2. For this example RecMII is 1, so the minimum initiation interval would
be max of this, that is, rather the minimum of this, that would be just the 1 or 2. For
example in this case, we really say MII is the max of ResMIl and RecMII not the min,

even though, it is a minimum initiation interval. The reason is the restriction on the

resources or the restriction on the cycles. This will stop you from initiating the next

iteration. So, you really cannot take minimum here. It has to be the maximum.

(Refer Slide Time: 32:18)

ResMIl and RecMIl Example - Fully Pipelined FUs

Bashll = s |'-

Rachll = max |:

1+ 1
0

Now, let us take another example. Let us compute ResMII and RecMII for our cluster
example. Here is the code and this is the dependence graph. If you look at it, you have
ResMII. You really have only two types of instructions. Add adder, so two multipliers,
two adders and one clusters. You have just 1 and 2, two multiply instructions and four
add instructions. Hence, four adders and two multipliers. Add instructions and we have
two of each, so 3 by 2 and 2 by 2. That would be 2 coma 1. The maximum is 2. ResMlI|I
is 2. So, we really have minimum possibility of 2 because of ResMlII for the kernel

length.

What about RecMI1? Actually you have to take the cycle. There is only one cycle, so no
question of taking a max there. Add the delays and distances. If you add the delays — 1
plus 1 plus 1, that is 3. You add the distances 0 plus 0 plus 2, that is 2. So, 3 by 2 is 1.5

and its ceiling is 2.

RecMII also says 2, ResMII also says 2. We have demonstrated that it is possible to get a
software pipeline of length 2. In this case, we have achieved it. But in general, you may
not be able to get a software pipeline of length MIl. You may actually get something

more than that because of difficulties in scheduling.

(Refer Slide Time: 34:07)

Modulo Scheduling Algorithm

& Compiite Bl and sat 1l ta B
@ Compute piarity for sach node
& Hgaghl of & nodi S on of thi pesarty funclions and is
doscribed Labar
& Hoght & computed using Doth delay ond oesiancs
@ Choose an cperation of highest priority for scheduling
@ Compute Estart for the operation (deseribed later)
& Try slats within the range (Estart, Estart+1i-1), for resource
contentions (all mnges are moduwi I

What is the algorithm? The algorithm is — compute the minimum initiation interval and
set the Il value (initiation interval value) as MIl. We are going to try and get a software

pipeline of length MII the first time. How to do that?

We are assuming that some distance height of height etcetera is used not the slack. Let us
compute priority for each node. What are the priorities? Height of a node is 1 of the
priority functions and we are going to say how to compute it a little later. Height is
computed using both the delay and distance components of the dependence graph or on
the arcs, we have this dependence — the delay and the distance. We are going to use it to
compute the height. Let us assume that priority, that is, height, is computed for all the

nodes.

Choose an operation of highest priority for scheduling. Pick up. This is operation
scheduling, so there is no ready queue. We are just going to pick up the highest priority

node and start operation and start scheduling.

How to do that? You compute earliest start time for the operation. Again, we are going to
show details of this a little later. Now, you start and try to schedule the operation
between in the interval e start and e start plus Il minus 1. Why? Why should we try
scheduling the instruction in this range? The reason is that the software pipeline is
supposed to be of length Il cycles and every Il cycles we are going to begin a new

iteration. Now, we are looking at the instructions of the loop in one iteration, that is, the

body. We must be able to fit all the instructions of the loop within a window of 11 cycles.
That is why e start is the earliest start time for an instruction. So, we look at e start plus 11
minus 1. All these are modulo II. If we go beyond Il slots, we actually rap around and
come from the top. We try all the instructions — e start, e start plus 1, e start plus 2, etc.,
etc. Modulo of course Il and see if we can fit these instructions into these slots.

Then, checking whether the instruction fits into a slot implies checking for resource
contentions. If there are enough resources, then we can schedule it. Otherwise, no. How
do you check resource contention? That is where the modulo reservation table that | have
mentioned earlier comes into picture. MRT records resource usages in every cycle. So,
you just check whether the resource that you need for this particular instruction is

available. If so, schedule it.

(Refer Slide Time: 37:28)

Modulo Scheduling Algorithm

a‘ If one is availabla, then schadule the Instruction; this may
invohve unscheduling those immadiate successors of the
instruchion, With whom thans 18 a3 I!EF‘-E-I'II!Er'ICE' confhcy (no
rasource conflicts are possible; this has st bean chacked
betore schedulng the instruchan)

@ If none s available

& choogs Eatart, If the matruchon had nol basn schaduled 80
bt

& choose prvv-schad-tima+ 1 if the nstruction 'was prvioushy
schaduled al prev-sched-me

@ [ras will ivanably mvolse urischadulng all ha insiruchons

which have nesounce contentions wilh the insinicg ToyTe]
&G NEgubedg -

@ If there have been too many failures of the abow s (&)
o (7], than increment || and repaat the shep <

If a slot is available, then schedule the instruction. No problem as such. This may involve
actually unscheduling those immediate successors of the instruction, with whom there is
a dependence conflict. Why? This is operation scheduling, so we have just picked up the
instruction, computed its e start and put it there. It may so happen that some other
instruction, which is following it in the dependence graph may be scheduled in an
inappropriate slot. That may happen because of the step number 7, which we are going to

see later.

There is some other instruction, which is now colliding with it because of the precedence
problems, so it has happened. Now, we must remove the successor, which is colliding
with our instruction, which has just now been placed and perhaps the removed
instruction will find a different slot in the next scheduling cycle.

It is not possible to have any resource conflicts because we have already checked
whether resources are available. Whatever precedence conflicts happened because of the

successors, the successors were all removed, so they will be rescheduled again.

Suppose we are not able to find a slot, that means, the slot has already been occupied by
somebody. There is a resource contention in every slot in between e start and e start plus

Il minus 1.

Now, just choose e start. If the instruction has not been scheduled so far, this is the first
time that we are scheduling the instruction. In that case, you will choose the e start slot

and forcefully fit that instruction into the start e start slot.

If we forcefully fit an instruction there, there may be some instructions, which are
already fitting there, so we have to remove them. That means, unscheduling those
instructions and remove them and finally schedule them in some other slot later on in the

second cycle, third cycle, fourth cycle, and so on and so forth.

Choose prev minus sched time plus 1, if the instruction was previously scheduled at prev
sched time. If this is the first time we are using, then e start. If it is not the first time, then
it would have been scheduled previously in slot, let us say prev sched time, so we use
prev sched time plus 1. If the instruction was previously scheduled at prev sched time.
We had scheduled it previously, but then you know it was kicked out, and so on, so that
is why we are rescheduling it now. That is what we mean. In the previous time, we had

scheduled it at prev sched time. Now add 1 to it and try the next slot.

This will invariably involve unscheduling all instructions, which have resource conflicts
with the instruction being scheduled. There may be instructions in the current slot or next
slot, and so on and so forth, which now collide because of resource contentions. All these
are now unscheduled and we are going to try scheduling all over again for these removed

instructions.

This looks like a very violent case with too many instructions removed and so on. No,
not necessarily. The fear may be that there may be failures and we may be going in a
cycle — each instructions removing something else, just like the thrashing problem of
operating systems.

Now, we are going to keep a counter. If there have been too many failures of the type 6
or 7, then increment the initiation interval and repeat the steps. Once they pass the
counter value for this thrashing, rather we cross the counter value for this thrashing, we
say this initiation interval is not good enough for us, and may be we need a larger
initiation interval with extra space, extra cycles. So, we increment the Il and repeat the
scheduling all over again. All the partial schedules are thrown away and scheduling is

started afresh.

(Refer Slide Time: 42:23)

Operation Scheduling

@ Foady kst has no use hare bacause unschadubng of
proviously scheduled instructions is possibie

@ MRT with Il columng and & rows 18 used 1o record
commitments of scheduled instructions

@ Conflict attime T meansconfickat T + k«and T - k= |

]‘ 0. if G is unscheduled
Estart|P) _max _ « max{0. SchedTime(Q) + Delay(Q.P)
— Il « Disgtancal Q. P)]. oihanvise

l’ 0. & P is the STOP pseudo — op
_ max _ [Height{ Q) + Delay(F. Q

Height|{F)
l I « Diigtanca{ P, Q). athenwse

@ Maote that only scheduled predecessors will be considered
in the computation of Estant

How do we compute e start and height? We know that we are going to use operation
scheduling. What does operation scheduling imply? That there is no ready list because
unscheduling of previous instructions is possible here in any operation schedule. So,

ready list has no value.

We use an MRT with Il columns and R rows to record the commitments of scheduled
instructions. | have already explained this before. Conflict at time T implies conflict at T
plus k star Il and T minus k star Il. This has to be checked, rather this is certain. So, k

equal to 0, that means T, that is a conflict. k equal to 1 implies T plus Il and T minus II.

All these are modulo Il. That is why, if we are going to begin another iteration Il cycles
later, conflict at T implies conflict in the next iteration, which is started Il cycles later.
And there would have been one iteration running Il cycles earlier also, so conflict at T
implies conflict in the previous iteration and the successive iteration, which was started

minus Il cycles before and Il cycles later. That is what this really says.

What is e start? Earliest start time is 0, if Q is unscheduled. What is Q? Q is a
predecessor of P. We are going to consider only scheduled predecessors in the
computation of e start. Unscheduled predecessors are not used. Otherwise, if it is already
scheduled, then, max of 0 coma sched time of the predecessor Q plus delay of the arc
from Q to P minus Il star distance Q coma P. This is the modulating moderating factor.
This modulation, which is introduced by the modulating factor make sure that we take all
the factors available to us for the computation of e start. So, height is similarly computed
as 0, if P is the stop pseudo op — the last one — because we compute from the bottom
upwards. It is max of height Q plus delay P coma Q minus Il star distance P coma k.
Very similarly again, this distance P coma Q, this is the factor that modifies the height.
Otherwise, it would have been the height computed as in the case of instruction

scheduling. Now, there is a modulating factor here, that is, the distance star II.

So, e start P and height P are computed in this fashion. They are used for the scheduling

as | described before.

(Refer Slide Time: 45:39)

Rotating Register Set and Modulo-Variable Expansion

@ Instancas of a single vanabde defined in a koop are acthe
Simuttanaously in diffargnt concurrant ¥ SCN [berahong
(see figure in next slide)

* WYalue produced By 11 In bme slep s used Dy G only In
lime skep 5

& However, another instance of i1 from & 70 e slep 4
Couid overwribd The SEshnation fegesied

& Assigning the sama regster for each such variable vwill b
]

@ Automatic register renaming theough rotating register sets
is ong hardware solution

@ Linroling the loop as many as || tmes (max)| and then
applying the usual RA ks ancther solution (Modulo-variable
oxpansion |

& This process essentally renames the desbrnation regesiens
Appropriately
@& Increases |l

So far, we did not worry about any register requirements. What happens, there are not
enough registers, and things of that kind. So, let us start looking at that particular
problem. Instances of a single variable defined in the loop are actually active

simultaneously in different concurrently active iterations. Let us look at the figure.

(Refer Slide Time: 46:20)

Interacting Live Range Problem

In the figure, value produced by il in time step 2 is used by i2 only in time step 5. So
here is the figure. So il produces a value in time step 2 and i2 actually uses it only in
time step 5. That is what is here. Now, what happened, because of the software pipeline
here, another il has already begun. This i1 had actually produced result, this i2 had not
yet consumed the result and the next il has already started, so it should not happen that
whatever i2 is supposed to store is already over written by i1, even before i2 uses it. That

is what the problem here is.

(Refer Slide Time: 47:04)

Rotating Register Set and Modulo-Variable Expansion

@ Instances of & simgle vanabde defined in a kbop are actha
simustanaously in iiffargnt SoRcurran iy aciiag Iberahons
(sea figure in next shde)

& Yalus produced By i1 in bmes 2lep B used Dy G only n
lime skep 5
& However another instance of i1 from & 7 0 bmed 21ep 4
Could oveneribi e deshnation negesied
& Azgigning the sama regesier for each such variable vwill be
NCTEC]
Automatic register renaming thoocugh rotating register sets
i ong hardwane solution
Unrgling the loop as many as || bmes (max) and then

applying the usual RA ks ancther solution (Mod riable
oxpansion)

Thes process essenbally renames the deshnatie e b
Appropriabehy L
& |PEreasas il

(Refer Slide Time: 47:20)

Another instance of i1 from iteration one in time step 4 could overwrite the destination
register. Assigning the same register for each such variable would be incorrect. In other
words, this variable which is computed by i1 and written into by i2 in the iteration O
must get a register, which is different from the register assigned to i1. and written stored
by i2 later on. This register and this register — they are in two different iterations but they
are probably going to execute together. This register and this register must be separate.
That is the basic idea.

(Refer Slide Time: 47:13)

Rotating Register Set and Modulo-Variable Expansion

@ Instancas of & single vansbhe defined in a Iop are acknag
Simustanaously in dliffarant CoRcurran iy aciiag Iberahons
(sea figure in next shde)

& Yalue produced By 11 In bmes 2lep 2 S used Dy G only 0
lime shep 5

& However, anothor instance of i1 from S8 70 bmea 2lep 4
CoUl oververill Bhe deshination regesied

& Asgigning the sama regesier for each such variable vwill be
NCTEC]

@ Automatic registar renaming through rotating register sats
i one handware solution

@ LUinroling the loop as many as || tmes (max) and then

applying the usual RA ks ancther solution (Mod riable
oxpansion)

Thes process essentally renames the deshnatiy Al b
Bppropriabehy g T
& |PCreasas |l

(Refer Slide Time: 48:15)

Interacting Live Range Problem

Automatic register renaming through rotating register sets is one hardware solution.
Automatically, for each iteration, the register numbers are changed and a set of registers
is available again for the instructions to use. So, there may be, let us say, a register ry
available to il in iteration O, this becomes ro prime in the second iteration, ro double
prime in the third iteration, and so on and so forth. That is what we mean by rotating
register set. There are set of registers — a vector of registers — one for each iteration. For

ro, itself will have different instances 1 for each iteration.

(Refer Slide Time: 48:43)

Rotating Register Set and Modulo-Variable Expansion

@ Instancas of a single vansbdhe dafined in a Op are acknme
simultanaously in diferent concurrently active ieratons
(sea figure in naxt slide)

@ Value produced Dy 11 in bme slep d = used Dy G only m
lime shep 5

& However, another instance of i1 from & 7 0 b s1ep 4
CoUl overnsTibd the deshnation regesied

& Assigning the sama register for aach such varialie will be
TRz

@ Automatic.registar renaming theough rotating register sets
i one hardwane solution
@ LUnroling the loop as many as || tmes (max) and then

applying the usual RA ks ancther solution (Mod ria bl
oxpansion)

Ths process essenbally renames the deshnatio SiS
Bppropriabehy o
& |PCreases il

That is one hardware solution. Unrolling the loop as many times as Il, that is the
maximum, and then applying the usual register location is another solution. This is called
modulo variable expansion. This process essentially renames the destination registers
appropriately, but increases the 11 as well.

(Refer Slide Time: 49:06)

Interacting Live Range Problem

(Refer Slide Time: 49:59)

Rotating Register Set and Modulo-Variable Expansion

@ Instances of a 5-ng|u vanable defined in a 0P are ek
Simustanaously in iiffarant ooncurrantily acinag Iberahons
(sea figure in next slde)

& Wilue produced By 11 in bme slep = used by o only in
lime shep 5
& However another instance of i1 from & 1 in bmea Slep 4
Coul ovensTibl the deshnaton regesied
& Assigning the Sama register for cach such varialie will bs
NCOTeC]
Automatic register renaming through rotating register sats
i one handware solution
Unrgling the loop as many as |l bmes (max) and then

applying the usual RA ks ancther solution (Mod riable
axpansion) ,

Thes process essenbally renames the desbrnsdi gl
AQETOpruabidy -, -
& |PEreasas il

What happens here is — il here is i2 in iteration 0. Here is another il and i2 in the next
iteration. Suppose we unroll the loop, we have Il of 2 here, so these instructions will all
be here. We have unrolled the loop, then we assign two different registers for this i1 and
this i1l. Automatically, this i2 and this i2 will use two different registers by the usual
register location, and then we find a software pipeline. There should be no difficulty in
this case because there can be only two instances of il active in any kernel. Since we
have taken care of renaming the registers, there should be no difficulty. But then we have
unrolled the loop; that means, the number of instructions in the body has increased, so

we may have to increase the initiation interval and hence efficiency may become lesser.

(Refer Slide Time: 50:12)

Register Spilling in Software Pipelining

@ Register reguirermsent (8 higher than the avadable o of
feQEiers

2 Spill o lew varsables (o memony

& Hegishar spills neod adddbanal loads and slones

& (I 1he memory unil = saturated in the kerrel, and addibonal

LIVSTR cannal be schaduled

& N vnlud reiis 0 B iriidad &Nl 1600 Pl e reloPadided

#* Reschadule loog wih a larger |l but weihoul msertng spls
o I N e a Pl M {iier Podguin ematl OfF e

soha e

& Ganeraly, ncreasing H produces worse schedul 1an
addng spill code

- -

What to register spilling? Register requirement is higher than the available number of
registers. So, we spill a few variables, obviously. Register spills need additional loads
and stores, so if the memory is already saturated, then we may have to actually increase
the 1l value and retry, or we could reschedule the loop with a larger Il but without
inserting the spills. Increased 11, in general, reduces register requirement. This may be
alright. Generally, it is better to spill and then increase the Il, if necessary, rather than

straight away increase the 11, and schedule the code.

(Refer Slide Time: 50:54)

Handling Loops With Multiple Basic Blocks

@ Higrarchical reduchon
& Two branches of & condibonal are firs? scheduled
mglependenily
& Enbre condibional s hem rested as 8 single node
@ Fesource reguirements i union of Bhe resounce
requiremanis of tha beD Brandhsad
@ Langth of schedule Malency) esgual 1o e max of tha lengths
of tha branches
@ AR 1Ml Snbeg 1000 B SChaduled, Condibondls are
rirSedted

2 IF-Converseon and then scheduling the predicated code
(resource usage here S the sum of tha USIGES o
Drancngs)

What happens if there are if, then, and else branches inside the body of a loop? We can
perform what is known as hierarchical reduction. So, two branches of a conditional are
first scheduled independently -- then and else parts are scheduled independently. Now,
the entire conditional is then treated as a single node. How? Resource requirements of
this entire conditional is the union of resource requirements of two branches. Why? The
reason is each one or either one of the branches is going to be executed, not both. So, we
just take the union of these. The length of the schedule latency is equal to the maximum
of the lengths of the schedules of branches. Again, the same reason; only one of them
will be active at any point in time. Now, we have reduced the entire conditional to a
single pseudo op with resource requirements and the delay. Now, we schedule the loop.
After the entire loop is scheduled, conditionals are reinserted. So, the loop is back to its
original shape and then it is used.

The second possibility is doing if conversion. If you convert if statements with
predicates, then the body of the loop blows up. If there are four statements in the then
part and five statements in the else part, the if converted body will contain nine
statements. So, scheduling the predicated body involves more resource usage here. It is
actually the sum of usages of the two branches. It is not actually the union as in the case
of hierarchical reduction. You really require more resources. There will be more resource
contentions as well. In general, after if conversion, you may actually end up with a
higher 11 than in the case of hierarchical reduction. Further, you will also need predicated

instructions and the hardware support for all this.

This gives you an overview of software pipelining algorithm and issues of register

location, etc. This is the end of the lecture.

Thank you

