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In this lecture, we will be looking at machine dependent optimization; Instruction 

Scheduling is one of them. We have seen one type of machine dependent optimization 

before - that is the v pole optimization. That was a very simple optimization - looking at 

a window of instructions to find patterns and then you know replace that pattern with 

more efficient sequence of instructions and so on. 

Instruction Scheduling is different. There are many types of instruction scheduling 

mechanisms. We are going to see a few of them. Basically all instruction scheduling 

mechanisms consider a sequence of instructions in one or more basic blocks - the 

minimum of course is one basic block - then based on different criteria they try to 

reorder the instructions. 

Why should these instructions be reordered? Basically, we want to make sure that the 

pipelines in the processor remain full most of the time and any hiccups in this pipeline 

are avoided. So, we see how best it can be done by using instruction reordering. Simple 

basic block scheduling, automation-based scheduling, integer programming based 

scheduling, optimal delayed-load scheduling for trees, and then trace, superblock and 

hyperblock scheduling are some of the instruction scheduling mechanism algorithms that 

we are going to consider. 
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So, what exactly is instruction scheduling? As I mentioned, it is nothing but reordering 

of instructions so as to keep the pipelines of the functional units of a processor with no 

stalls, so no hiccups. Instruction scheduling, in general, is an empty complete problem 

and therefore there is a need for heuristics to take care of instruction scheduling. If it is 

applied on basic blocks, then it is called local instruction scheduling and if it is applied 

on a sequence of basic blocks, then it is called global instruction scheduling. So, global 

scheduling requires elongation of basic blocks and these are called superblocks, 

hyperblocks, etcetera.  

So, let us look at some motivation. Why exactly instruction scheduling is needed? What 

are its advantages? Consider this sequence of instructions here. We have seven 

instructions and we are considering a load-store architecture. In other words, any 

operand must be in a register. So, we have to load the operand into a register and then 

use it. That is the model that we are considering here. 
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So, time to load is two cycles and each operation requires one cycle. In this code, this is 

the dependency graph directed as cyclic graph for this particular code. If you observe this 

code with the latency that is given here, two cycles for load and one cycle for half - we 

immediately see that there are two stalls, one at i3 and another at i5. Let us see, why? 

So, i3 loads - you know r1 plus r2 computes r1 plus r2 and puts it into r3. r1 and r2 are 

loaded from a and b in the instructions i1 and i2. The instruction i1 would have 

completed by the time we reach i3, because two cycles would have been completed. But 

the instruction i2 which loads b into r2 would not have completed, when we come to i3, 

so, there is a need to skip one cycle here and that is the stall that we are talking about. 

Once the result of load instruction in i2 is ready, the computation of r1 plus r2 can take 

place. Similarly, the instruction i5 - it has r5 equal to r3 minus r4. r4 is being loaded from 

a memory location c in the instruction i4 - it is not yet complete and therefore, there is a 

stall at this point. We have to skip an instruction and then execute the instruction i5. So, 

these seven instructions will really require nine cycles in order to complete. 

Now, suppose we want to get rid of these stalls, is it possible to reorder the instructions 

such that the dependences as given in the directed cyclic graph are still satisfied. In other 

words, we definitely want to wait for the loads to be completed before we come to i3 - 

that is the operands must be ready before we come to i3. Similarly, we want to make sure 



that r4 is ready before we come to i5; only thing is some reordering of instructions may 

be possible.  
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Let us see how? So, here is a new sequence of instructions. There are no stalls here, but 

dependences are indeed satisfied. How are the stalls eliminated? i1 remains as it is, i2 

remains as it is, but i4 is actually replacing the instruction i3 and i3 has been pushed 

down by one cycle in the step one. Now, when we arrive at the instruction i3, which is r1 

plus r2 - both r1 and r2 are ready - the reason is r1 takes two cycles. So, it will be ready 

by the time i4 is executed - r2 takes two cycles, so that will also be ready by the time i3 

is executed. 

So, r1 and r2 will now contain operands. There is no stall. r4, of course, would not have 

completed by the time we execute i3, but it is not required the instruction i3. So, once we 

finish i3, we execute i5 which requires r4 and r4 would have got its operand by the time 

we reach i5, because 2 cycles have elapsed. 

So, this particular sequence of instructions actually completes just in seven cycles. It 

does not take nine cycles at all. That is, because we have just swapped these instructions 

i4 and i3 - all thus have remained the same. So, i4 is in this slot with a load instruction 

and i3 is in this slot with the computation instruction. 



So, this is a very simple example, which shows that a certain change in the order of your 

execution of the instructions will lead to removal of the stalls. That does not mean every 

stall can be removed. There will be some stalls which cannot be removed, as we will see 

in later examples. We will have to insert NOPs in those cycles. 
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So, quickly to recap at what we need here, we definitely want to look at the same 

dependences, flow and t and output as we studied in parallelization. But these are now at 

the register and the load levels; they are not at the higher levels but between statements 

etcetera. They are at the machine instruction level, for example, i1 is r1 is loaded with r2, 

so then i2 is r3 equal to r1 plus 4 and i3 is r1 equal to r4 plus r5. 

So, here the value which is actually loaded into r1 is used in i2, so i1 delta i2 holds. 

Similarly, whatever is read from r1 is replaced in instruction i3 so there is an anti-

dependence between i2 and i3, so that is i2 delta bar i3 and then we also have i1 delta 

naught i3, because we are actually loading into the same register r1. i1 and i3 and are 

related by output dependence. 

So, anti and output dependences can be eliminated by register renaming; we have seen 

some examples of this in parallelization. For example, here we do not use r1 we just use 

say may be r6 or something like that then automatically there is no output dependence 

between these two, so that automatically eliminates this anti dependence as well. 
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So, what is a dependence direct acyclic graph? It is the same dependence graph as we 

studied in parallelization - it is just that here we have at the machine instruction level. 

Here is a simple example. This is the sequence of instructions which is running example 

that we are going to use. 

i1 to i9 - nine instructions. There are nine instructions here. Nine nodes here. These are 

the nodes of the direct acyclic. Each instruction is a node, there is a solid arc from one 

node to another node and that shows a flow dependence. For example, between i1 and i3, 

t1 is equal to load a, t3 equal to t1 plus 4, so there is a load flow dependence. Similarly 

there is another flow dependence between i1 and i4 and so on and so forth. 

So, all the flow dependences are shown in solid lines; then the anti-dependences are 

shown using the dash line. This is the dash line from i1 to i9. Here is i1 and here is i9. 

You may wonder, why load a in i1 and b equal to store t5 in i9 have been linked by an 

anti-dependence. The reason is memory disambiguation, which says that this a and this b 

are different, has not be done, so no algorithm has been applied to find out whether a and 

b are the same location are or different locations. 

So, because of that conservatively we will have to assume that there is an anti-

dependence from i1 to i9, because a and b could be the same. Similarly, b of course, is 

the same so, i2 and i9 also have a dependence. This is i2 and this is i9.  



Similarly, you know i1 and i8. i1, i2 and i8 also have similar anti-dependence here and 

here. So, these are the anti-dependences that need to be depicted in this dependence 

diagram. Then, there may be output dependences so those are shown by dash dot line. 

So, here is an output dependence, an output dependence is between these two and again 

memory disambiguation has not been done, so we do not know that b and c are different 

memory locations, so there is an anti-dependence from i8 to i9. 

So, the dependence diagram shows all these. Now, the problem of instruction scheduling 

would be to rearrange instructions in this sequence so as to respect all these flow, anti 

and output dependences, yet minimize the number of stalls that may occur in the 

sequence. 
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So, the first algorithm that we are going to study is the basic block scheduling. What is 

our model? We need to study the model of a basic block. A basic block is assumed to 

consist of what are known as micro operation sequences MOS which are indivisible. 

In other words, if an instruction contains three or four micro operations in it, once we 

start that instruction, all the micro operations in it will have to be completed and there is 

no way we can divide this sequence of four micro operations into two each and schedule 

them separately. 



So, once the instruction is started, all the micro operations will run one after another. 

They are indivisible. Each MOS has several steps and each one of these steps will 

require resources. Each step of an MOS requires one cycle for executions. This is the 

assumption. There are precedence constraints and there are also resource constraints. 

These must be satisfied by the reordered or scheduled program. 

We have the diagram here. This shows the precedence constraints. Once we say there is a 

delay between these two, the delay on this edge could be the time of execution of the 

load instruction, automatically this becomes a weighted directed acyclic graph and that 

shows all the precedencies that must be satisfied. 

The precedencies relate to data dependencies and execution delays as I mentioned just 

now. But the dependence diagram does not show the resource constraints. So, resource 

constrains relate to limited availability of shared resources. In other words, I want to 

execute this, add, sub and this add and there is only one adder, even though we may find 

that these three can be executed at the same step, it is not possible for us to schedule 

them in the same step, because there is only one adder. Compulsorily we may have to 

schedule them in three successive cycles. That is what resource constraint is all about. 
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Here is the basic block scheduling problem. First of all, the basic block is modeled as a 

digraph G with a set of nodes V and a set of edges E and R is the number of resources 

that we are going to have in the system in the processor. The nodes of the graph G are 



micro operation sequence and the edges of graph E show the precedences. There is also a 

label on the node V; instead of having on the edge alone we also have a label on the 

node. 

So, the label on the node indicates a resource usage function. What is this? There is a 

resource usage function rho v i for each step of the MOS associated with i with the node 

v. In other words, if there are four steps in an MOS associated with node v, each of these 

four steps will require resources, so rho v of 1 says how many resources of a particular 

type are needed for this particular micro operation sequence step, rho v2 similarly, for 

the second MOS step and so on and so forth.  

We are considering only a single type of resource; r is the total number of resources, so it 

is a simplified problem as such. If we have many types of resources, it is definitely 

possible to extend this problem to take care of those as well. It is just a question of 

checking all the resource constraints at a particular point in time. 

So, instead of just one vector of resources, rather one, number indicating the number of 

resources, we would have a vector of these numbers saying how many are there in each 

particular type. So, the length l v of a node v shows how many substrates are included in 

the micro operation sequence at node v. Label on edge e, any particular edge e shows the 

execution delay of the MOS and it is denoted by d of e. We have the resource 

requirements of a particular node v, e indicated by rho of v of i for each sub step i that 

node and we have on the label on the edges coming out of the node v or incoming edges 

of node v, the execution delay of a particular that MOS. 

Now, the formal notation and description of the problem is to find the shortest schedule 

sigma. Sigma is a mapping from v to n. For each node v, we need to find time slot. The 

time slot is nothing but a natural number. Which is the time slot in which v can be 

executed - that is the schedule that we want to find. For each node v, we want to find a 

particular number of that kind. 
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There are now restrictions. What are the restrictions? For all the edges e, say u comma v 

in the set of edges e, sigma v minus sigma u must be greater than or equal to d of e. What 

does this tell us? Let us look at the picture. 

So, here is a node u, here is a node v, u has been scheduled at the time slot sigma u, let us 

say, v has been scheduled at the time slot sigma v, obviously, sigma v comes later than 

sigma u, because u must be executed before v. There is a precedence constraint, rather 

edge connecting u and v, which says u must be completed before v. 

The delay on the edge u v is d. So, this delay d must be than less than or equal to the 

schedule of v, which is sigma v minus the schedule of u, that is sigma u. This is quite 

easy to understand, because we cannot start v before we complete sigma u. How much 

time does u take? It starts at the slot sigma u and then it requires at least d slots more in 

order to complete. So, sigma u plus d is the minimum time at which we can start. That is 

why, d less than or equal to sigma v minus sigma u. 
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So, that is the precedence constraint and sigma v minus sigma u greater than or equal to 

the delay on the edge e. What about resources? This says, if you sum up all the resource 

requirements at a particular point in time, all the resource requirements must be less than 

or equal to r. 

So, let us understand this better. Let us say, we have this matrix; each row indicates a 

MOS corresponding to a node, say v1 v2 v3 v4 etcetera. So, each one of these is a MOS 

and since we know that one time slot is required for each one of these MOS sub steps, so 

here is the time slot of the MOS sub steps. 

This is not a valid schedule. It violates certain conditions, but this will tell you what the 

resource constraint is all about. Let us say, the first MOS, v1, has been scheduled at time 

zero, second MOS at time four - one, two, three, four - you know 4 steps are needed, 4 

time slots are needed for sigma v1 to complete. Sigma v3 cannot be started before the 

fourth time slot. Then, we require five time slots for v2 so v3 starts at nine, then we need 

three for v3 so v4 starts at twelve. We have taken care of all the precedence constraints, 

the delays and so on, but then this did not check the resource requirements. 

So, let us consider the red diagonal and the blue diagonal. First look at the blue diagonal, 

let us say, we are looking at v4 in its second time step rather sub step, so, at this point the 

elements in the matrix really show how many resource elements are needed for that 



particular sub step. For example, sigma v1 in time slot zero requires one resource in time 

slot one require one resource, in time slot two requires two resources etcetera. 

So similarly, v4 requires one, two, three and two resources in the time slot zero; one, two 

and three are starting at twelve; so at this point in time, we are looking at this time slot 

twelve, time slot thirteen, fourteen, and fifteen. In time slot twelve, we require two 

resources because of v4, but remember v3 has not yet completed; v3 started at nine, so it 

is actually requires nine, ten, eleven - so these are all the time slots that are needed for 

this particular node to complete. So, what we really say is let us see what are the various 

timing requirements and resource requirements of these slots. 

So, for example, this requires two here, two here and two here - these are all the 

concurrently executing threads that we have, so sum of all these is five. So, assuming 

that there are five resources in this particular system, so the number of resources that we 

are using at a particular time, let us say, is five; so, we have five resources and utilization 

is also five. So, the resource constrains are satisfied. 

But when you look at the red resources - red circles here - we find that there is a 

violation. If you add up these three, and three, and two - we really make it eight. Because 

there are eight resources being used, but there are only five - that means the number of 

resources available is less than the number of resources that we are trying to use. So, 

there is a violation. 

So, that is precisely what I said. This is not a valid schedule. If these were to be a valid 

schedule, this would not have occurred. You would actually a summed up these things to 

be less than or equal to five; so, this is not a valid schedule, because the resource 

requirements at a particular point in time are actually beyond what is available in the 

system. 

So, that is what this is. rho v of i minus sigma v is less than or equal to r. That is what it 

should be, but it is not. The length of the schedule, a valid schedule would be maximum 

of sigma v plus lv where v is in v. So, we just take the maximum sigma v and lv, that is 

not the maximum of whole thing, we know one of the previous steps may have a smaller 

sigma v but a larger lv, so that may contribute to the maximum of the schedule. 



So, we have demonstrated that at some point in time, there may be satisfied resource 

requirements, but at some other points in time, there will be violation of resource 

requirements. So, this should never happen, resource requirements must be satisfied at 

every point in time. 
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So, how do we schedule the instructions so that the resource constraints and the 

precedence constraints are both satisfied? Here is a simple algorithm. This is a variation 

of the very well-known list scheduling algorithm that people have studied in operating 

systems, in job shops scheduling and so on. The requirement is to find the shortest 

schedule sigma which is a mapping from v to n such that precedence and resource 

constraints are satisfied and whenever there are holes we assume that they are filled with 

NOPs.. 

So, here is a basic outline of the function called list schedule, which takes the dag as its 

input v comma e. How does it work? It really does a topological sort of the graph. It 

starts with those nodes in the graph which do not have any predecessors, those are the 

root nodes of v, so the dag may not be a single component, you know, it may be a forest. 

So, in such a case, the number of root nodes of the graph will be more than one. There is 

a queue called, ready queue which shows all the nodes which are eligible to be 

scheduled. Root nodes of v are eligible to be scheduled, because they have no 

predecessors and when we begin with the root nodes of v, all the resources are assumed 



to be available. It does not mean that every node in the ready queue can be scheduled in 

the same time slot, they still have not found time slot for all the nodes in the ready queue. 

So, we just come from the top and include nodes as we go along. 

The schedule to be begin with is five, it has nothing. So, there is a loop while ready not 

equal to five do, in which we actually take out nodes from the ready queue and then 

schedule it, put something else in to the ready queue and keep doing this until all the 

nodes in the graph are scheduled. So, in that case ready node cannot get anymore nodes, 

so we stop when ready becomes five. 

Pick a node of highest priority, node from the ready queue and call that as v. How to do 

this? We will see a little later. Let us assume there is a prioritization of nodes in the ready 

list and one of the highest priority nodes is picked. 

Then, we need to compute the lower bound on the time slots at which the node v can be 

scheduled. So, this is done by the function SatisfyPrecedenceConstraint which we are 

going to see very soon. v comma schedule comma sigma. Once we have found the 

minimum time slot in which v can be scheduled, this is done by looping at the 

precedence requirements, we need to check whether that the minimum time slot satisfies 

resource constraints, whether all the resources which are needed are available to us and if 

so, fine - otherwise, we need to actually keep that slot vacant, take the next slot - check 

whether resources are available at that point and so on and so forth. 

So, this is done by the routine satisfy resource constraints v comma schedule comma 

sigma comma Lb. Once we have found sigma v, which is the time slot, which satisfies 

both the precedence and resource constraints, we include that node as a scheduled node, 

so schedule equal to schedule plus variable. 
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Then the ready list needs to be updated. What do you mean by updating? We take out the 

node v from the ready list here, remember we did not take it out, take it out then you try 

to add those successors of the node v, which actually are now ready to be scheduled. In 

other words, their own for example, v is the node to be is scheduled, which has been just 

now scheduled - there are three successors u1 u2 and u3 for this particular node, then w1 

and w2 are two other predecessors of u1 and u3, they have already been scheduled - so 

u1 was waiting for v2 be scheduled, now v also has been scheduled - so u1 is now ready 

for scheduling. u2 has only v as its predecessor so u2 is also ready for its scheduling. u3 

is similarly, ready, because w2 is already scheduled. v is now just now scheduled, so this 

is also ready for scheduling. 

But another successor of v which is x2, has a predecessors x1, which is not yet 

scheduled. So, even though v has been scheduled, x2 cannot be scheduled, because x1 

has not yet been scheduled. It can be scheduled only after x1 is scheduled, so that is what 

we do here. We take out v and then include all those nodes u, such that u is not in 

scheduled list, so obliviously u should not have been scheduled already. Then for all w 

comma u in e, uw must be already scheduled. So, for this node, all its predecessors must 

be scheduled. w is a predecessor of u and u is now being considering, putting into the 

ready list, so all its predecessors must already be scheduled. That is what we said here, 

x1 is not yet scheduled, so x2 cannot be included in the ready list, but u1, u2, and u3 will 

be included in the ready list. 



(Refer Slide Time: 34:02) 

 

Now, what are the two functions - precedence constraints and satisfy resource constraints 

do? They consider sigma u plus d of u v over all the schedule nodes u and then return the 

maximum of this value. Let us see what it really means. 

We are looking at v and now we are looking at all the predecessors of v, so that is what 

this said, sigma v is our node we are looking at u comma v, where u is a predecessor, so 

all the predecessors which have been scheduled - you know that they are scheduled 

because otherwise we would not have included v in the ready list - so these are all the 

scheduled predecessors already, now they have been scheduled at 10, 25, and 18. 
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So, what is the time slot at which v can be lower bounded at which v can be scheduled? 

Look at this, this is ten, the delay is two, so ten plus two is twelve, this is twenty five 

plus four is twenty nine, and eighteen plus three is twenty one, so twenty nine is the large 

value, so before the time slot twenty nine, we cannot really schedule v. Why? If you do 

that, then u2 would not have completed by that time, so we take twenty eight for 

example, u2 completes at twenty nine, so the values computed be u2 will not available to 

v, therefore, twenty eight is an illegal slot. 

So, that is what this really is all about. So, the max in this case was this twenty nine, 

others did not contribute to the maximum. So, this gives you the lower bound at which 

the node v can be scheduled. 

But the precedence constraint on its own will not tell us whether the resources available 

for executing v at that lower bound value, say of twenty nine. The function 

SatisfyResourceConstraint checks this availability. So for example, we started at l, at 

every time slot, Lb plus 1, Lb plus 2, Lb 3 etcetera from that point onwards is checked, 

this says infinity, but you really do not go to infinity, because there are only finite 

numbers of instructions. Each instruction has a finite number of MOS steps and we know 

that every instruction terminates. 

So, eventually after a certain number of steps, every instruction preceding v would have 

completed execution. So, resources must become available. So, this will never be an 



infinite loop. It is just shown that we do not know how many instructions, how many 

times slots we need to check. That is why, this says Lb to infinity. 

So, from Lb onwards, we check Lb, Lb plus 1, Lb plus 2, Lb plus 3, etcetera and what 

we check are exactly the same as what I showed you beforehand - the sum of the 

resource requirements of various times steps must be less than or equal to r, so this is the 

sum of the resource requirements of the other instructions which are concurrently 

executing with v - rho v j is the resource requirements of the j th sub steps of node v - so 

together tell you about the total resource requirements of the entire sequence. 

So, this must be true for all values of j from zero to lv, that is for all sub sets of the node 

v. Once we find a time slot i at which the resource requirements are also satisfied, and 

that may be Lb, Lb plus 1, Lb plus 2, etcetera we return that value i as the slot at which v 

can be scheduled. 
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So, for example, take the previous schedule itself, so here, this is sigma v1, this is v1, 

this is v2, etcetera, this is v3 and this is v4 - why did we show these two in red? This is 

time slot zero, this is time slot four, and this is time slot nine, ten, eleven, fourteen 

etcetera. These two time slots have been left free, nothing has been scheduled simply, 

because scheduling this instruction v3 in any one of these violates the resource 

constraint. 



So, if we leave these two free, then you know the resource constrains will not be 

violated. It is just for the sake of example. You know it may be one slots, it may be two 

slots or three slots in practice, but here I have just shown, these two as vacant saying that 

it is possible the two slots would be left free and then you know resource constrains 

would be satisfied if we schedule v3 at eleven and v4 at fourteen. So, that is why, we 

have left these two slots free. So, the Lb would have been nine because of the precedence 

constraints. So, this is 0 then plus four, then plus five is nine. 

But Lb and Lb plus 1 are not suitable for scheduling v3, because the resources are not 

available. Let us say, resources are available at eleven, that is eleven, twelve, thirteen - 

these three times step resources become available therefore, we can scheduled them at 

that time slot and you know then resource constraints will be satisfied. No violation 

occurs. 
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Now, how do we actually order these nodes? In the priority ordering here, I said pick the 

highest priority node in the ready list, we did not say what is the priority ordering that we 

used, that is what we want to see now. 

Let us consider two or three of these the varieties. One of them is the height of a node in 

the directed acyclic graph - that is longest path from the node to a terminal node - longer 

the path, higher the priority. Why? You know, if the path is longer that means there are 



many instructions which depend on this particular node, so it is better, if that node is 

scheduled early that is the heuristic that I use. 
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So, let me show you an example. Here is a simple directed acyclic graph, the legend says 

inside is node number, left side is path length, and right side is execution time, below is 

latency. If you look at the nodes here, these are the leaf nodes. For the leaf nodes, we say 

that execution time of the node is the path length, so execution time is one here, so path 

length is also one, execution time is two here ,so path length is two. 

When we go this particular node, so we take the execution time here, path length here, 

add the delay, so that becomes 3, we take the path length here, add the delay, that is zero, 

so it becomes true. So, the maximum of these really becomes the path length for this 

particular node four - that is what this says. Latency n comma m plus path length of m, 

so, max over all the successors of the node n. 

Then for this series, three plus zero, so that is three, and three plus two, that is five here 

path length and this becomes three plus one that is four, so this is how path lengths are 

computed. Let us say, when we start scheduling, let us say we consider these two nodes, 

then four and five, so this has a longer path length, so this node would be scheduled first 

and not this particular node. 



Then, we can even look at this scheduling of this particular dag before we go to the other 

heuristic. So, the algorithm says, consider the root nodes of the dag so that is one and 

three, these are the only two, which will be put into the ready list. So, one and three are 

in the ready list, we need to pick the highest priority node from that ready list, that is 

path length, so five and four, so node three which has path length five is picked, because 

it is higher, so that is why the schedule indicates nodes three as the first node. 

Let us assume that there are a number of resources to execute any number of instructions 

in parallel, so we do not have to worry about resource constraints in this simple example, 

the next example we look at that also. 

Then three is completed, but then the successor instruction is four that cannot be 

executed until two is completed, and two cannot be completed unless one is completed 

so one is the only instruction in the ready queue right now. So, we are going to include 

one in the schedule it, in the next time step after three. 

You know if the number of resources available is very large, no limitation. So, there is 

no problem about using resources, so one can be scheduled in the next time slot because 

one does not depend on three. 

So the next one after one, the node number two can now be included in the ready list, 

because two has only one as its predecessors, two can be now included in the ready list. 

The minimum time slot at that which two can be scheduled, this was scheduled - let us 

say at time slot zero, a plus one, so that is the time slot at which two can be scheduled, so 

we can compute the time slots at which these the instructions can be scheduled in this 

manner. 

Whereas, if we assume that only instruction can be issued in every cycle - that is you 

cannot have more than one instruction each cycle, then you know we have scheduled 

three at time slot zero, one at time slot at one. So, the minimum available times slot for 

this node number two is sigma of one plus one, so that is time slot number two so, after 

at the time slot two, we schedule this node two, because it has no predecessors and once 

two is complete, you know after time slot zero that four can be scheduled, the reason is 

node number three, which was initiated in time slot zero will complete in two time slot 

so by the time we reach time slot two, three would have completed. 



So, four can be scheduled in time slot three, because both its operands are ready and 

once four is completed, we again have five and six put into the ready queue. Which of 

these should be picked? Again, we use the path length as the criterion two and one, so 

node six has path length two, which is higher than path length of one of node five, so 

scheduled node six, first, and followed by node five. Now, the ready list is empty. We 

have assigned at a time slot for each one of the nodes in the directed acyclic graph. So, 

that completes this particular scheduling process.  
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Now, what is the second heuristics that can be used? We can compute what are known as 

earliest start time and latest start time, Estart and Lstart for each of the nodes. What 

exactly is Estart? It tells you that you cannot schedule a particular node earlier than the 

value of Estart. Lstart tells you that this is the latest time by which you should schedule 

the node, and if you violate either the Estart value or the Lstart value, and schedule it 

outside these limits, this may result in pipelines stalls. 

So, as far as possible, we should try to stick to the time slots between Estart and Lstart 

and schedule the nodes. But Estart and Lstart are really based on precedence constraints; 

they do not consider any resource constraints. Therefore, we may still have to violate the 

Estart and Lstart value sometimes, because of resource constraints, but then since there 

are not many resources available, there will be pipeline stalls and that cannot be helped. 



How do you compute Estart v? E start v is computed as the maximum overall the nodes 1 

to k - you are really looking at the predecessors of the node v u i comma v - so u i are all 

the predecessors, there are k of them. So, you consider Estart value of u i and the delay 

of the edge u i comma v, take the max overhead that gives you Estart of v. Let us see 

how this is done. 
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So, you have the node v here, for which you need to want to compute Estart. These are 

the three predecessors so u1 u2 u3, so they have their Estart value already computed, so 

that is 25 45 16, let us say, the delays are d1 d2 d3, 4 7 and 2 respectively, so you look at 

25 plus 4 then 45 plus 7, and 16 plus 2, so that means 29 52 18, the max is obviously 52. 

So, this is how you compute the Estart value. This tells you that v cannot start before 

time slot fifty two, so that is that is make sense, because we are really looking at the time 

at which all the three predecessors of the node v complete that is forty five plus seven. 

Now, the Estart value of the source node is taken as zero. We begin the computation of 

the Estart value from the top assuming the source node has a zero Estart value. What 

about Lstart? It is from the bottom, so Lstart u is computed as the minimum overall the 

successors. So, you want to compute the Lstart value of u. There are successors for u, 

those are all the v i nodes one to k, take the s start of the successors node subtract the 

latency and take the minimum of this particular computation overall the successors. 



So, let us see what we need. There are 3 successors, we want to compute the Lstart value 

for v, w1, w2, w3, their Lstart values are 12 36 and 21. What is the Lstart value for node 

v? Twelve minus two, thirty six minus one and twenty one minus three, so minimum of 

all these is ten, so that is the latest time at which node v can be scheduled. So, if you 

schedule later than that, then you know we are going to create some pipeline stalls. That 

is very obvious, is it so? Let us say ten so ten plus two is twelve here and ten plus one is 

thirty six and ten plus three is thirteen. 

So, if this can be scheduled at time slot two, that is why ten plus two is twelve, so if you 

actually exceed l, then this node will not be scheduled at twelve, it will be scheduled at 

some other value, so there would be some kind of a stall, but they cannot be helped if 

there are many resources available. 
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Now, once we compute the Estart value starting from the top, the Lstart value of the sink 

node is set at this Estart value, and we start computing the Lstart value from the bottom 

towards the top, so Estart and Lstart can be computed using a top down and bottom up 

pass respectively either statically before scheduling begins or dynamically during the 

scheduling itself. 

So, you know if you actually want to schedule the precedences rather the Estart and 

Lstart values during scheduling process, because the graph is going to change as and 



when we schedule certain nodes, it can be done, but that requires a little extra 

computation at schedule time. 
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So, a node with a lower Estart or Lstart value has a higher priority that is one possible 

heuristics, but a slightly better heuristics would be to consider slack which is Lstart 

minus Estart, you are really looking at the interval Lstart minus Estart, during which you 

want to schedule a node, so it make sense to consider nodes with a lower slack and give 

them higher priority - that is because you know Estart and Lstart are very close, there is 

not much gap between them. So, those nodes get higher priority and those which have 

higher slack value they have many more slots during in which they can be scheduled, so 

get a slightly lower priority. Instructions on the critical path may have a slack value of 

zero there Lstart and Estart values actually may coincide and hence they get the 

maximum priority. 
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So, this is an example which we saw already. Here is another example. Let me show you 

how the Estart values and Lstart values are really computed. For example, if you look at 

this particular graph, the add, sub and store values are supposed to have one cycle, two 

cycles and three cycles respectively, rather add sub store has one cycle, latency load has 

two cycle latency and mult has three cycle latency. The path length and slack are shown 

on the left side and right of the parentheses. So, eight is the path length and zero is the 

slack whereas, within the parentheses we are showing Estart and Lstart, so we start with 

a value of 0 for Estart and then you know, we compute zero plus two, as the Estart value 

for add, zero plus two for the Estart value of sub, and from here, two plus one, three, is 

one possibility for this particular add node, whereas, on this side two plus one is three, is 

the only possibility for the node mult and then we have you know for this particular node 

we have three delay slots for multiply, so three plus three, six is the Estart value for add , 

so this side we get three and this side we get six, so Estart really is the max of these. So, 

it is computed as 6 and when plus one is seven for this particular node s. 

So, this is how Estart values are computed. We will stop at this point, continue this 

example in the next lecture, where we are going to discuss in more detail how the Lstart 

values are also computed and used for scheduling. Thank you. 

 


